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ABOUT BREZIS-MERLE PROBLEM WITH HOLDERIAN CONDITION: THE

CASE OF THREE BLOW-UP POINTS.

SAMY SKANDER BAHOURA

ABSTRACT. We consider the following problem on open set Ω of R2:

{

−∆ui = Vie
ui in Ω

ui = 0 on ∂Ω.

We assume that :

∫

Ω

euidy ≤ C,

and,

0 ≤ Vi ≤ b < +∞

On the other hand, if we assume that Vi s−holderian with 1/2 < s ≤ 1, and,

∫

Ω

Vie
uidy ≤ 32π − ǫ, ǫ > 0

then we have a compactness result, namely:

sup
Ω

ui ≤ c = c(b, C,A, s,Ω).

where A is the holderian constant of Vi.

1. INTRODUCTION AND MAIN RESULTS

We set ∆ = ∂11 + ∂22 on open set Ω of R2 with a smooth boundary.

We consider the following problem on Ω ⊂ R
2:

(P )

{

−∆ui = Vie
ui in Ω

ui = 0 on ∂Ω.

We assume that,

∫

Ω

euidy ≤ C,

and,

0 ≤ Vi ≤ b < +∞

The previous equation is called, the Prescribed Scalar Curvature equation, in relation with

conformal change of metrics. The function Vi is the prescribed curvature.

Here, we try to find some a priori estimates for sequences of the previous problem.

Equations of this type were studied by many authors, see [7, 8, 10, 12, 13, 17, 18, 21, 22, 25].

We can see in [8], different results for the solutions of those type of equations with or without

boundaries conditions and, with minimal conditions on V , for example we suppose Vi ≥ 0 and

Vi ∈ Lp(Ω) or Vie
ui ∈ Lp(Ω) with p ∈ [1,+∞].

Among other results, we can see in [8], the following important Theorem,

Theorem A(Brezis-Merle [8]).If (ui)i and (Vi)i are two sequences of functions relatively to

the previous problem (P ) with, 0 < a ≤ Vi ≤ b < +∞, then, for all compact set K of Ω,

sup
K
ui ≤ c = c(a, b,m,K,Ω) if inf

Ω
ui ≥ m.
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A simple consequence of this theorem is that, if we assume ui = 0 on ∂Ω then, the sequence

(ui)i is locally uniformly bounded. We can find in [8] an interior estimate if we assume a = 0,

but we need an assumption on the integral of eui .

If, we assume V with more regularity, we can have another type of estimates, sup+ inf . It

was proved, by Shafrir, see [22], that, if (ui)i, (Vi)i are two sequences of functions solutions of

the previous equation without assumption on the boundary and, 0 < a ≤ Vi ≤ b < +∞, then

we have the following interior estimate:

C
(a

b

)

sup
K
ui + inf

Ω
ui ≤ c = c(a, b,K,Ω).

We can see in [12], an explicit value of C
(a

b

)

=

√

a

b
. In his proof, Shafrir has used the

Stokes formula and an isoperimetric inequality, see [6]. For Chen-Lin, they have used the blow-

up analysis combined with some geometric type inequality for the integral curvature.

Now, if we suppose (Vi)i uniformly Lipschitzian withA the Lipschitz constant, then,C(a/b) =
1 and c = c(a, b, A,K,Ω), see Brézis-Li-Shafrir [7]. This result was extended for Hölderian

sequences (Vi)i by Chen-Lin, see [12]. Also, we can see in [17], an extension of the Brezis-

Li-Shafrir to compact Riemann surface without boundary. We can see in [18] explicit form,

(8πm,m ∈ N
∗ exactly), for the numbers in front of the Dirac masses, when the solutions blow-

up. Here, the notion of isolated blow-up point is used. Also, we can see in [13] and [25] refined

estimates near the isolated blow-up points and the bubbling behavior of the blow-up sequences.

In the similar way, we have in dimension n ≥ 3, with different methods, some a priori esti-

mates of the type sup× inf for equation of the type:

−∆u+
n− 2

4(n− 1)
Rg(x)u = V (x)u(n+2)/(n−2) on M.

where Rg is the scalar curvature of a riemannian manifold M , and V is a function. The

operator ∆ = ∇i(∇i) is the Laplace-Beltrami operator on M .

When V ≡ 1 and M compact, the previous equation is the Yamabe equation. T. Aubin and

R. Scheon solved the Yamabe problem, see for example [1]. Also, we can have an idea on

the Yamabe Problem in [15]. If V is not a constant function, the previous equation is called a

prescribing curvature equation, we have many existence results see also [1].

Now, if we look at the problem of a priori bound for the previous equation, we can see in

[2, 3, 4, 5, 11, 16, 20] some results concerning the sup× inf type of inequalities when the

manifold M is the sphere or more generality a locally conformally flat manifold. For these

results, the moving-plane was used, we refer to [9, 14, 19] to have an idea on this method and

some applications of this method.

Also, there are similar problems defined on complex manifolds for the Complex Monge-

Ampere equation, see [23, 24]. They consider, on compact Kahler manifold (M, g), the fol-

lowing equation:

{

(ωg + ∂∂̄ϕ)n = ef−tϕωng ,

ωg + ∂∂̄ϕ > 0 on M

And, they prove some estimates of type supM (ϕ−ψ)+m infM (ϕ−ψ) ≤ C(t) or supM (ϕ−
ψ) +m infM (ϕ− ψ) ≥ C(t) under the positivity of the first Chern class of M.

The function ψ is a C2 function such that:

ωg + ∂∂̄ψ ≥ 0 and

∫

M

ef−tψωng = V olg(M),
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Our main result is:

Theorem. Assume that, Vi is uniformly s−holderian with 1/2 < s ≤ 1, and,

∫

B1(0)

Vie
uidy ≤ 32π − ǫ, ǫ > 0,

then we have:

sup
Ω
ui ≤ c = c(b, C,A, s,Ω).

where A is the holderian constant of Vi.

2. PROOF OF THE RESULT:

Proof of the theorem:

Without loss of generality, we can assume that Ω = B1(0) the unit ball centered on the origin.

Here, G is the Green function of the Laplacian with Dirichlet condition on B1(0). We have

(in complex notation):

G(x, y) =
1

2π
log

|1− x̄y|

|x− y|
,

we can write:

ui(x) =

∫

B1(0)

G(x, y)Vi(y)e
ui(y)dy,

We assume that we are in the case of one blow-up point.

We set:

ri = e−ui(xi)/2,

we write, for |θ| ≤
δiǫ

′

ri
, 0 < ǫ′ < 1

4 ,

ui(xi + riθ) =

∫

Ω

G(xi + riθ, y)Vi(y)e
ui(y)dx =

=

∫

Ω−B(xi,2δiǫ′)

G(xi, y)Vie
ui(y)dy +

∫

B(xi,2δiǫ′)

G(xi + riθ, y)Vie
ui(y)dy =

We write, y = xi + riθ̃, with |θ̃| ≤ 2
δi
ri
ǫ′,

ui(xi + riθ) =

∫

B(0,2
δi
ri
ǫ′)

1

2π
log

|1− (x̄i + riθ̄)(xi + riθ̃)|

ri|θ − θ̃|
Vie

ui(y)r2i dy+

+

∫

Ω−B(xi,2δiǫ′)

G(xi + riθ, y)Vie
ui(y)dy

ui(xi) =

∫

Ω−B(xi,2δiǫ′)

G(xi, y)Vie
ui(y)dy +

∫

B(xi,2δiǫ′)

G(xi, y)Vie
ui(y)dy

Hence,

ui(xi) =

∫

B(0,2
δi
ri
ǫ′)

1

2π
log

|1− x̄i(xi + riθ̃)|

ri|θ̃|
Vie

ui(y)r2i dy+

+

∫

Ω−B(xi,2δiǫ′)

G(xi, y)Vie
ui(y)dy

We look to the difference,
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vi(θ) = ui(xi + riθ)− ui(xi) =

∫

B(0,2
δi
ri
ǫ′)

1

2π
log

|θ̃|

|θ − θ̃|
Vie

ui(y)r2i dy + h1 + h2,

where,

h1(θ) =

∫

Ω−B(xi,2δiǫ′)

G(xi + riθ, y)Vie
ui(y)dy −

∫

Ω−B(xi,2δiǫ′)

G(xi, y)Vie
ui(y)dy,

and,

h2(θ) =

∫

B(0,2δiǫ′)

1

2π
log

|1− (x̄i + riθ̄)y|

|1− x̄iy|
Vie

ui(y)dy.

Remark that, h1 and h2 are two harmonic functions, uniformly bounded.

According to the maximum principle, the harmonic functionG(xi+riθ, .) on Ω−B(xi, 2δiǫ
′)

take its maximum on the boundary of B(xi, 2δiǫ
′), we can compute this maximum:

G(xi+riθ, yi) =
1

2π
log

|1− (x̄i + riθ̄)yi|

|xi + riθ − yi|
≃

1

2π
log

(|1 + |xi|)δi − δi(3ǫ
′ + o(1))|

δiǫ′
≤ Cǫ′ < +∞

with yi = xi + 2δiθiǫ
′, |θi| = 1, and |riθ| ≤ δiǫ

′.

We can remark, for |θ| ≤
δiǫ

′

ri
, that vi is such that:

vi = h1 + h2 +

∫

B(0,2
δi
ri
ǫ′)

1

2π
log

|θ̃|

|θ − θ̃|
Vie

ui(y)r2i dy,

vi = h1 + h2 +

∫

B(0,2
δi
ri
ǫ′)

1

2π
log

|θ̃|

|θ − θ̃|
Vi(xi + riθ̃)e

vi(θ̃)dθ̃,

with h1 and h2, the two uniformly bounded harmonic functions.

Remark: In the case of 2 or 3 blow-up points, and if we consider the half ball, we have

supplemntary terms, around the 2 other blow-up terms. Note that the Green function of the half

ball is quasi-similar to the one of the unit ball and our computations are the same if we consider

the half ball.

We assume that, the blow-up limit is 0 and we take:

G(x, y) =
1

2π
log

|1− x̄y|

|x− y|
−

1

2π
log

|1− xy|

|x̄− y|
,

.

Asymptotic estimates and the case of one, two three blow-ups:

By the asymptotic estimates of Cheng-Lin, we can see that, we have the following uniform

estimates at infinity:

Lemma 2.1.

∀ ǫ, ǫ′ > 0, ∃ kǫ,ǫ′ ∈ R+, iǫ,ǫ′ ∈ N and Cǫ,ǫ′ > 0, such that for i ≥ iǫ,ǫ′ and kǫ,ǫ′ ≤ |θ| ≤
δiǫ

′

ri

(−4− ǫ) log |θ| − Cǫ,ǫ′ ≤ vi(θ) ≤ (−4 + ǫ) log |θ|+ Cǫ,ǫ′ ,

For the proof, we consider the three following sets:

A1 = {θ̃, |θ̃| ≤ kǫ}, A2 = {θ̃, |θ − θ̃| ≤
|θ|

2
, |θ̃| ≥ kǫ},

and,

A3 = {θ̃, |θ − θ̃| ≥
|θ|

2
, |θ̃| ≥ kǫ}.
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where kǫ is such that;

8π(1 − ǫ) ≤

∫

B(0,kǫ)

Vi(xi + riθ̃)e
vi(θ̃)dθ̃ =

∫

B(xi,kǫe−ui(xi)/2)

Vie
ui(y)dy ≤ 8π(1 + ǫ).

In fact, if we assume that we have one blow-up point:

∫

B(0,
δi
2ri

)

Vi(xi + riθ̃)e
vi(θ̃)dθ̃ =

∫

B(xi,
δi
2 )

Vie
ui(y)dy → 8π,

To have the uniform bounds Cǫ > 0, we need to bound uniformly the following quantity:

Ai =

∫

B(0,
δi
2ri

)

1

2π
log |θ̃|Vie

ui(y)r2i dy =

∫

B(0,
δi
2ri

)

1

2π
log |θ̃|Vie

vi(θ̃)dθ̃.

To obtain this uniform bound, we use the CC.Chen and C.S. Lin computations to have the

existence of a sequence li → +∞ such that:

∫

B(0,li)

1

2π
log |θ̃|Vie

vi(θ̃)dθ̃ ≤ C,

and, on the other hand, the computations of YY.Li and I. Shafrir to have, for li ≤ |θ̃| ≤
δi
2ri

:

evi(θ̃) ≤
C

|θ̃|2β+2
,

for some 0 < β < 1.

Finaly,

Ai ≤ C.

Remark that, in the estimate of CC.Chen and C.S Lin, we need the assumption that Vi is s−
holderian with 0 < s ≤ 1.

Now, we extend the previous asymptotic estimates to the first derivatives:

we have, after derivation under the integral:

∂jvi = ∂jh1 + ∂jh2 +

∫

B(0,2
δi
ri
ǫ′)

1

2π

θj − θ̃j

|θ − θ̃|2
Vie

ui(y)r2i dy,

In other words, we have:

∂jvi = ∂jh1 + ∂jh2 +

∫

B(0,2
δi
ri
ǫ′)

1

2π

θj − θ̃j

|θ − θ̃|2
Vi(xi + riθ̃)e

vi(θ̃)dθ̃,

Here, we use the fact that ∂jvi(0) = 0, because xi is a maximum of ui, and, we take the

difference ∂jvi − ∂jvi(0).
We can say that, we have the following:

|∂jvi(θ) − ∂ju0(θ)| ≤
ǫ

|θ|
+ C

(

ri
δi

)2

|θ|,

But if we consider directly the quantity, ∂jvi, we have the following:

Lemma 2.2. ∀ ǫ, ǫ′ > 0 ∃ kǫ,ǫ′ ∈ R+, iǫ,ǫ′ ∈ N, such that, for i ≥ iǫ,ǫ′ and kǫ,ǫ′ ≤ |θ| ≤
δiǫ

′

ri
,

∂jvi(θ) ≃ ∂ju0(θ)±
ǫ

|θ|
+ C

(

ri
δi

)

,

where u0 is the solution to:

−∆u0 = V (0)eu0 , in R
2.
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For the proof, we consider the three following sets:

A1 = {θ̃, |θ̃| ≤ kǫ}, A2 = {θ̃, |θ − θ̃| ≤
|θ|

2
, |θ̃| ≥ kǫ},

and,

A3 = {θ̃, |θ − θ̃| ≥
|θ|

2
, |θ̃| ≥ kǫ}.

where kǫ is such that;

8π(1 − ǫ) ≤

∫

B(0,kǫ)

Vi(xi + riθ̃)e
vi(θ̃)dθ̃ =

∫

B(xi,kǫe−ui(xi)/2)

Vie
ui(y)dy ≤ 8π(1 + ǫ).

Remark 1: In the case of 2 or 3 blow-up points, and if we consider the half ball, we have

supplemntary terms, around the 2 other blow-up terms. Note that the Green function of the

half ball is quasi-similar to the one of the unit ball. In the case of 3 blow-up points, we have

the following supplementary term ( xi is the principal blow-up point and yi and ti the 2 other

blow-up points):

C1

(

ri
d(xi, yi)

)

+ C2

(

ri
d(xi, ti)

)

.

We assume that, the blow-up limit is 0 and we take:

G(x, y) =
1

2π
log

|1− x̄y|

|x− y|
−

1

2π
log

|1− xy|

|x̄− y|
,

.

Remark 2: We have two possibilites, first, we estimate directly ∂jvi
we can write:

∂jvi ≃ ∂ju0(θ)±
ǫ

|θ|
+ C

(

ri
δi

)2

|θ|+m×

(

ri
δi

)

with, m 6= 0, ”the reste of the Green function and the regular part of the Green function, is

such that when we integrate the quantity:

lim
ǫ′

lim
ǫ

lim
i

∫

∂B(0,
δi
ri
ǫ′)

(

(∂1vi)
2

2
ν1 −

(∂2vi)
2

2
ν1 + (∂1vi)(∂2vi)ν2

)

dσi = m′ > 0,

Or, we take the difference ∂jvi − ∂jvi(0), but we need to estimate:

∫

B(0,2
δi
ri
ǫ′)

1

2π

θ̃j

|θ̃|2
Vi(xi + riθ̃)e

vi(θ̃)dθ̃,

In the previous computations, we have considered the unit ball, but by a conformal transfor-

mation , we can have the same estimates on the half ball, with a coefficient of the conformal

transformation. We can assume the estimates on the half ball.

Now, we consider the following term of the Pohozaev identity

Ji =

∫

B(xi,δiǫ′)

< xi1|∇(ui − u) > (Vi − Vi(xi))e
uidy,

We want to show that this term tends to 0 as i tends to infinity. We can reduce the problem,

after integration by parts, to the following integral:

J ′

i = δi

∫

B(xi,δiǫ′)

∂1uiVie
uidy = δi

∫

B(xi,δiǫ′)

∂1ui(−∆ui)

But, if we take y = xi + riθ, with, |θ| ≤
δiǫ

′

ri
, we have:
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J ′

i =
δi
ri

∫

B(0,
δi
ri
ǫ′)

∂1vi(−∆vi) =

=
δi
ri

∫

∂B(0,
δi
ri
ǫ′)

(

(∂1vi)
2

2
ν1 −

(∂2vi)
2

2
ν1 + (∂1vi)(∂2vi)ν2

)

dσi,

Thus, if we use the uniform asymptotic estimates, we can see that, we reduce the computation

to the Pohozaev identity for the limit blow-up function (which equal to 0), plus terms in ǫ|θ| and

|θ|. First, we tend i to infinity, after ǫ to 0 and finaly , we tend ǫ′ to 0 .

With this method we can have a compactness result for 3 blow-ups points. First, we can see

the case of 3 exteriors blow-up points, then by the previous formulation we have a compactness

result, it is the case for one of the following cases ( if we set δi, δ
′

i and δ′′i for the radii of each

exterior blow-up) :

d(xi, yi)

δi
→ +∞ and

d(xi, ti)

δi
→ +∞,

or,

d(yi, xi)

δ′i
→ +∞ and

d(yi, ti)

δ′i
→ +∞,

or,

d(ti, xi)

δ′′i
→ +∞ and

d(ti, yi)

δ′′i
→ +∞,

or,

the case when the distance to two exterior blow-up points is of order the radii. In this last case,

we divide the region in 3 parts and use the Pohozaev identity directly. In fact, we are reduced to

the case of two blow-up points.

In fact, in the case of 3 exterior blow-up points. By the previous formulation around each

exterior blow-up point we look to the one of the 3 first cases. For example, assume the first case.

Then we work around the first blow-up. In fact we have, for 3 blow-up points :

Lemma 2.3. ∀ ǫ > 0, ǫ′ > 0 ∃ kǫ,ǫ′ ∈ R+, iǫ,ǫ′ ∈ N and Cǫ,ǫ′ > 0, such that, for i ≥ iǫ,ǫ′

and kǫ,ǫ′ ≤ |θ| ≤
δiǫ

′

ri
,

(−4− ǫ) log |θ| − Cǫ,ǫ′ ≤ vi(θ) ≤ (−4 + ǫ) log |θ|+ Cǫ,ǫ′ ,

and,

∂jvi ≃ ∂ju0(θ)±
ǫ

|θ|
+ C

(

ri
δi

)2

|θ|+m×

(

ri
δi

)

+ C1

(

ri
d(xi, yi)

)

+ C2

(

ri
d(xi, ti)

)

(to understand this, it is sufficient to do the computations for the half ball directly by using the

Green function of the half ball directly).

We have after using the previous term of the Pohozaev identity:

o(1) = J ′

i = m′ + C1o(1) + C2o(1),

0 = lim
ǫ′

lim
ǫ

lim
i
J ′

i = m′,

which contradict the fact that m′ > 0.
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