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a b s t r a c t

This work deals with the issue of damage growth in thin woven composite laminates subjected to tensile

loading. The conducted tensile tests were monitored on-line with an infrared camera, and tested speci-

mens were analysed using Scanning Electron Microscopy (SEM). Combined with SEMmicrographs, obser-

vation of heat source fields enabled us to assess the damage sequence. Transverse weft cracking was

confirmed to be the main damage mode and fiber breakage was the final damage leading to failure.

For cracks which induce little variation of specimen stiffness, the classic ‘‘Compliance method’’ could

not be used to compute energy release rate. Hence, we present here a new procedure based on the esti-

mation of heat source fields to calculate the energy release rate associated with transverse weft cracking.

The results are then compared to those computed with a simple 3D inverse model of the heat diffusion

problem and those presented in the literature.

1. Introduction

The application of woven fabric composites in engineering

structures has been significantly increased due to attractive char-

acteristics, such as their excellent drapability over complex geom-

etries, or their high damage tolerance. Even for simple solicitations,

to predict the reliability by numerical modeling of woven struc-

tures is still tricky and requires assessing both the damage growth

and the dissipated energy involved. Consequently this study aims

to provide further information on the damage process of thin wo-

ven laminates and especially on the fracture toughness of trans-

verse yarn cracking.

Because of the complex inhomogeneous microstructure, the

weave architecture, and disparate meso-constituent properties,

the failure process of woven composites is complex and involves

a multitude of fracture modes (matrix cracking, inter-yarn and in-

tra-yarn cracking, inter-ply and intra-ply delamination). Over the

past decades, several authors have investigated the damage sce-

nario of different woven composite laminates under quasi-static

tensile loading [1–4]. For woven carbon and glass fiber-reinforced

composites, transverse yarn cracking is the first readily observable

type of damage occurring during tensile loading. As the strain in-

creases, damage develops on the meso-scale by intra-yarn cracking

and delamination, and on the micro-scale by local disbonding at

the fiber matrix interface as reported by John et al. [2]. The final

macro fracture is characterized by dense cracking, intersection of

several small cracks and fiber rupture.

In the case of woven laminates most conventional non-destruc-

tive techniques, such as X-ray radiography or ultrasonic C-scan, re-

main too inaccurate to detect damage such as transverse yarn

cracking. Classically, this kind of damage is identified using optical

micrography. Other techniques, such as acoustic emission, have also

been used for on-line damage detection as well as for tracking the

damage progression inwoven laminates [1,4]. These techniques en-

able to quantitatively estimate the damage initiation stress but can-

not provide accurate information on the damage location.

From the past 20 years, infrared thermography has thus been

widely used to study the dissipative phenomena during necking

localization in metal materials [5–8] or in semi-crystalline poly-

mers [9]. Using the framework of irreversible thermodynamics,

Chrysochoos et al. [10] have presented a methodology to estimate

the internal heat sources associated with the dissipative phenom-

enon from temperature measurement of the sample surface. Esti-

mation of these heat sources makes it possible to locate the

damage in time and space and to evaluate the dissipated thermal

energy. Nevertheless, the use of infrared thermography to study

dissipated thermal energy is quite recent in composite materials

and is essentially applied to fatigue loading. For example, Naderi

et al. [11] used infrared thermography to characterize damage

stage evolution by calculating the heat dissipated during fatigue

loading of thin woven laminates.
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In the case of cracks inducing small variations in specimen stiff-

ness, classic ‘‘Compliance’’ methods are inappropriate to compute

the energy release rate. Nevertheless, using crack tip contour inte-

gral analysis [12,13], Freund and Hutchinson [14] and Soumahoro

[15] have shown that the energy release rate is linked to dissipa-

tive work. In addition, since the early work of Taylor and Quinney

[16], it is well known that dissipative work is mainly converted

into heat in metallic [6,17] and polymeric materials [18–20].

Hence, in this study we propose linking the energy release rate

to the experimental heat sources. In this way, the energy release

rate can be computed even for experiments where the stiffness

variation remains small.

The paper begins with Section 2 where the thermomechanical

framework and the energy release rate equation are presented.

Section 3 describes the characteristics of the experimental proce-

dure, the woven laminate, and the image processing method.

Afterwards, in Section 4 the damage process is evaluated combin-

ing infrared measurement and SEM micrographs. The second part

of Section 4 describes the methodology leading to the energy re-

lease rate evaluation for transverse yarn cracking based on the esti-

mation of heat sources.

2. Theoretical framework

2.1. Thermo-mechanical background

Classical concepts and the results of Thermodynamics of Irre-

versible Processes are used to model the experimental results

[21,22]. We considered the material as orthotropic and assumed

that tensile testing can be described as a quasi-static process under

the small perturbations hypothesis. For woven composites, damage

develops at the microscopic scale into plasticity [23] and fiber/ma-

trix decohesion [4]. Then, as the strain increases, the combination

of these damage modes leads to matrix cracking as reported by

Okabe et al. [24]. The chosen state variables were thus the absolute

temperature T, the linearized strain tensor e, a scalar vector a of n

internal variables governing strain hardening and D the damage

tensor modeling decohesion plus any micro-fracture. Strain parti-

tioning of the thermoelastic part and plastic part is adopted [22]:

e = ee + ep. Introducing the specific Helmholtz free energy w = w
(T,e ÿ ep,a) and combining the first and the second principle of ther-

modynamics, the local heat diffusion equation is written as:

qCe;a
_T þ divq ¼ Uint þ qTw;Te :

_eþ qTw;Ta : _aþ re ð1Þ

where Ce,a denotes the specific heat capacity at e and a constant,

and re the external volume heat supply. q is the mass density and

q the heat flux vector. The right-hand side of Eq. (1) groups all types

of heat sources induced by the deformation process. The thermo-

mechanical coupling terms qTw;Te :
_e and qTw;Ta : _a respectively

represent the volume heat rate due to thermoelastic coupling and

the volume heat rate resulting from coupling between the internal

variable (a) and temperature T. The intrinsic dissipationUint charac-

terizes the volume rate of mechanical energy dissipated as heat and

can be expressed as follows [22]:

Uint ¼ r : _ep þ Y : _Dÿ Ai � _ai P 0 with Y ¼ ÿq
@w

@D
and Ai

¼ q
@w

@ai

ð2Þ

where r is the Cauchy stress tensor. Y denotes the thermodynamic

force associated with the damage tensor D classically called the

damage energy release rate, and Ai represents the hardening vari-

able. Finally, the determination of the left-hand side of Eq. (1) leads

to a local evaluation of the total volume heat sources throughout

the specimen.

2.2. Two-dimensional heat diffusion problem

The main problem is that thermal information given by the

infrared camera only concerns surface temperature fields. Hence

to deduce the distribution of heat sources evolved in the volume

of the sample from thermal field measurements involves to solve

the 3D inverse heat diffusion problem. However, the inverse prob-

lem remains ill-posed without additional information on heat

source distribution through the thickness [25]. Nevertheless, under

small thermal gradient conditions through the thickness, Eq. (1)

can be simplified to directly link local heat sources with the surface

temperature fields [5,6,9]. Indeed, in the case of a thin sample, a

homogeneous depth-wise distribution of temperature and internal

heat sources can be considered. Tested specimens were thus con-

sidered as thin orthotropic sheet samples. By noting x, y, and z,

respectively the spatial coordinates in the width, length and thick-

ness of the specimen, the following hypotheses were put forward

in accordance with our experimental conditions:

� the specific heat Ce,a and the mass density q are material con-

stants independent of the thermodynamic states (e,T,a) Ce,

a = C;

� the quantity of fiber being equal in the weft and warp direc-

tions, the longitudinal and transverse conductivities are sup-

posed to be the same. The thermal conductivity tensor which

is assumed to remain constant during testing is then expressed

as follows [26]:

k ¼

kxx 0 0

0 kyy ¼ kxx 0

0 0 kzz

0

B

@

1

C

A
ð3Þ

� the external heat supply re due to heat exchange by radiation is

time independent [5,10]. This implies that the initial equilib-

rium thermal temperature field T0 satisfies: ÿdiv(kgradT0) = re;

� considering low velocity displacement and small gradient tem-

perature amplitudes, the convective terms resulting from the

material time derivative are neglected [5];

� temperature variation induced by the occurrence of damage is

assumed to be too small to modify the internal state of the

material. In this context, couplings between temperature and

internal variables are thus insignificant, qTw;Ta : _a � 0;

Under these assumptions, the local heat diffusion Eq. (1) can be

rewritten as follows:

qC
@h

@t
ÿ kxx

@
2h

@x2
þ kxx

@
2h

@y2
þ kzz

@
2h

@z2

" #

¼ Uint þ sthe ¼ xhs ð4Þ

where h = T ÿ T0 represents the temperature variation between the

current state and the initial equilibrium state T0. sthe is the thermo-

elastic coupling term qTw;Te :
_e while xhs denotes the total volume

heat sources. Considering a homogeneous depth-wise distribution

of the volume heat sources, the measured surface temperature field

is assumed to be equal to the temperature averaged across the

thickness noted as �hðx; y; tÞ. In this context, integration of Eq. (4)

across the thickness under linear uniform Fourier conditions at

the specimen boundary [5], leads to the following 2D diffusion

problem:

qC
@�h

@t
ÿ kxx

@
2�h

@x2
þ
@
2�h

@y2

" #

þ
�h

sth
¼ Uint þ �sthe ¼ �xhs ð5Þ

where �xhs ¼ Uint þ �sthe are the overall depth-wise averaged volume

heat sources. sth represents a time constant characterizing the heat

losses due to radiation and convection through the sample surfaces

of normals �~z. This two-dimensional diffusion equation will



constitute the starting point of the experimental work presented

hereafter.

2.3. Energy release rate estimation from dissipated heat

During crack propagation, a fraction of the potential energy is

made available to the fracture process. This specific strain energy

release rate G is mainly converted into plastic work, specific sur-

face energy and kinetic energy [27]. The main part of the irrevers-

ible work is transformed into heat [16] while the rest of the energy

is used to modify the molecular structure of the material. The

authors observed that the proportion of irreversible work con-

sumed as heat is conventionally between 70% and 100% [6,17]

for metallic materials and between 50% and 90% for polymers

[18–20]. Moreover, [28,29] observed that even in brittle material

such as glass, the thermal energy was nearly as high as the energy

released.

Using the same approach as Griffith [30], in this section we

present an energy balance leading to a link between the energy re-

lease rate and the dissipated heat. We consider here a volume X

containing a macro crack. After quasi-static (i.e. stable, dWcin = 0)

crack growth of area d S, the variation of the external mechanical

energy d Wext is assumed to decompose into reversible (elastic)

and irreversible (anelastic) parts as follows:

dWext ¼ dWe þ dW irreversible ð6Þ

where dWext is defined as the double integral of wext over the cur-

rent volume of the sample and over the time dt corresponding to

the crack propagation dS:

dWext ¼

Z

t

Z

X

wext dV dt ð7Þ

wext is the mechanical power of the external forces. The irreversible

part dWirreversible can in turn be expressed as the sum of a dissipated

dWdiss and stored energy dWstored:

dW irreversible ¼ dWdiss þ dW stored ð8Þ

After a step of macro crack growth, the dissipated mechanical en-

ergy is supposed to be the sum of the energy dissipated as heat plus

the energy spent on the creation of new surfaces dWsurf (energy re-

quired to break atomic links). As mentioned by Griffith [30], this

rupture energy (dWsurf) is twice the specific surface free energy csurf
multiplied by the cracked surface: dWsurf = 2csurfdS. Using Eq. (2),

dWdiss and dWstored can be rewritten as follows:

dWdiss ¼

Z

t

Z

X

Uint dV dt þ dW surf and

dWstored ¼

Z

t

Z

X

Ai � _ai dV dt ð9Þ

At this point, let us introduce the ratio of mechanical energy con-

verted into heat defined by:

b ¼

R

t
Uint dt

R

t
½r : _ep þ Y : _D� dt

ð10Þ

In this study we assumed that beta is uniformly distributed

throughout the domain X. Then, combining Eqs. 6, 8, 9 and 10,

the energy release rate G can be calculated with the following

equation:

G ¼
dðWext ÿWeÞ

dS
¼ 2 � csurf þ

1

b � dS

Z

t

Z

X

Uint dV dt ð11Þ

In the following, we only deal with the case of transverse yarn

cracking in glass/epoxy woven laminates. In this context, during

the fracture process thermoelastic couplings are neglected com-

pared to the intrinsic mechanical dissipation sthe �Uint �xhs.

Moreover, assuming that the specific free surface energy is a small

part of the total energy released [15,28,29], Eq. (11) simplifies to:

G ¼
1

b � dS

Z

t

Z

X

xhs dV dt ð12Þ

Hence using Eq. (12), an estimation of the energy release rate asso-

ciated with transverse yarn cracking will be obtained from experi-

mental heat source measurements.

3. Experimental procedure

3.1. Material and manufacturing

The material studied is a glass/epoxy (913-45%-7781) woven

composite. The laminates are made of 8-harness satin balanced

woven fabric prepreg plies with a fiber volume fraction of 50%.

The yarn size is 0.5 mm wide and 0.1 mm thick. 8-harness satin

weaves exhibit ply asymmetry with one side predominately warp

and the other predominately weft, see Fig. 1. Mechanical [31] and

thermal properties of the laminate are summarized in Table 1. All

samples were made of two prepreg plies with aligned warp direc-

tion. They were all manufactured with the warp woven face of each

ply oriented upward the thickness. The top face is therefore a warp

side while the underside is a weft. In this paper, an orthotropic

laminate with the warp yarns of woven plies lined up with the ten-

sile direction will be noted as [0°]. As shown in Fig. 2b, the speci-

mens were 30 mm wide and 0.65 mm thick with an approximate

length between the tabs of 150 mm.

3.2. Test set-up

Tension tests were performed on an electromechanical tension

machine (INSTRON, capacity: 10 kN) at room temperature

(�293 K). The crosshead speed was set to 20 mmminÿ1 in order

to limit the overall size of the thermal data while keeping a suit-

able frequency to capture quick thermal variation. Comparison

with tests performed at lower speeds was made to ensure that

no dynamic effects appear. The tensile direction was lined up with

the warp direction of woven plies. An infrared camera (FLIR

SC7000 MW) was used to monitor the thermal response of the

sample surface during experiments. The infrared camera has a

maximum resolution of L0 � l0 = 320 � 256 pixels and a thermal

resolution of 0.025 K for relative temperature measurement. Only

a reduced fixed zone of Lx � ly = 325 � 215 pixels was chosen for

the computation of the heat source field, see Fig. 2b. The spatial

resolution (pixel size) determined by the focal distance is set at

0.16 mm (maximum magnification of the lens) in order to have

at least 3 pixels per yarn. Thermal images were recorded at a fre-

quency of 50 Hz. In order to avoid thermal perturbations arising

from the external environment, the specimens were enclosed in

a rectangular box made of expansive foam. This box was painted

black inside and covered with a black opaque fabric outside, as

illustrated in Fig. 2a.

The face of the sample monitored by infrared camera was cov-

ered with a thin layer of black mat paint to maximize the surface

emissivity. As previously mentioned, microfracturing of transverse

yarns is the main observable damage in satin woven composites

[1,3,4]. Hence, in this study, in order to accurately capture the tem-

perature changes induced by transverse yarn micro-cracking, the

sample face observed with the infrared camera was the weft face.

To estimate the strain, an extensometer was glued to the sample

warp face, as depicted in Fig. 2b.



3.3. Infrared image processing

The 2D local heat diffusion equation defined earlier (Eq. (5)) is

the starting point of the methodology. As previously described, this

equation directly links heat sources �xhs with the surface tempera-

ture variation of the sample �h. At any time t, for any pixel position

(x,y), the temperature variation field �hðx; y; tÞ was then computed

by subtracting the mean of the first ten measured thermal images

T0ðx; yÞ (corresponding to the initial thermal equilibrium) from the

current thermal image Tðx; y; tÞ. Using the left-hand side of Eq. (5),

the volume heat sources �xhsðx; y; tÞ were estimated for each pixel

(x,y) position at any time t. However, the estimation of heat

sources requires the evaluation of spatial and temporal differential

operators from noisy thermal images. Thus before any differentia-

tion, the thermal noise has to be reduced.

In this work noisy thermal images were locally fitted on square

frames of Nx � Ny pixels using a parabolic surface function (2D sec-

ond order polynomial) and a local least-squares fitting. The tempo-

ral derivative term was then estimated by centered finite

differentiation, whereas spatial derivative terms were theoretically

calculated from the parabolic surface function derivatives. As the

yarn scale represents a key scale for damage in woven materials,

the size of the approximation zone has to be close to the yarn scale

(�3 pixels) to avoid excessive smoothing of the damage

phenomenon in the yarn. Furthermore, the size of the approxima-

tion zone (Nx � Ny pixels) has to be large enough to filter the noise,

but small enough to detect small heterogeneous heat sources.

Numerical tests were conducted to get a good compromise be-

tween these two criteria, as a reasonable calculation time. Finally,

an approximation zone of Nx � Ny = 5 � 5 square pixels was chosen

to filter thermal data.

4. Results and discussion

4.1. Damage initiation and growth in an 8-harness weave composite

4.1.1. Characterisation of damage using SEM

Tensile tests were performed and stopped at different strain

levels to perform SEM micrograph analysis. A selected piece of

the tested laminate sample was observed as illustrated in Fig. 3b.

The stress–strain curves and corresponding micrographs are

respectively shown in Fig. 3a and Fig. 4. Transverse fracture of

the weft yarns was the first damage observed, as indicated in the

literature [1–4]. Initiation of the weft yarn fracture was considered

by Osada et al. [3] to be caused by the bending deformation of the

weft fiber bundle. Indeed as also observed by John et al. [2] under

pure tension the crimped yarn tends to maintain a straight position

and thus introduces stresses in the weft yarn. This leads to the

transverse micro-fracture of the yarn. Nevertheless, we observed

that first transverse cracks do not necessarily appear at the

crimped region. This could mean that the crack formation is a re-

sult of a complicated crack formation mode, depending on the local

stresses at the micro-scale.

Fig. 4 shows that weft yarn cracking occurred around the well-

known ‘‘knee point’’ identified around ey � 0.7%. This value is in

accordance with the results of Osada et al. [3] obtained on thin sa-

tin woven laminates. From the knee point, with the increasing

strain both the length and number of cracks extended in the weft

yarns. Besides, as shown in the magnification of micrography (C),

(B’) and (C’), cracks extended in the weft direction at the fiber/ma-

trix interface. Picture (A’) also shows that cracks followed the fiber/

Fig. 1. Unit cell of the 8-harness satin glass/epoxy prepreg ply. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

Table 1

Mechanical and thermal properties of a glass/epoxy woven laminate.

Young’s modulus in warp direction, Ey (GPa) 21.5

Young’s modulus in weft direction, Ex (GPa) 20.5

Shear modulus, Gxy (GPa) 3.5

Poisson ratio, mxy 0.15

Thermal conductivity in weft and warp direction, kxx, kyy (Wmÿ1 Kÿ1)-

[37]

0.55

Thermal conductivity in the transverse direction, kzz, (W mÿ1 Kÿ1)-

[37]

0.35

Specific heat, C (J kgÿ1 Kÿ1)-[38] 882

Density, q (kg mÿ3) 1730



matrix interface in the thickness direction, as observed by Gao

et al. [1]. In addition, magnification of micrography (C’) illustrates

the existence of local debonding at the fiber/matrix interface

around transverse cracks. As observed by Hobbiebrunken et al.

[32] and Okabe et al. [24], interfacial debonds are preferential

zones for macroscopic crack propagation. Indeed, the previous

authors observed that during loading, several interfacial cracks

grow and connect to a macroscopic crack when the load increases.

The post-mortemmicrograph D shows that after failure, transverse

micro-fractures extend toward the cross-over points of the woven

plies. Multiple fractures were also detected along the warp yarn fi-

bers on micrograph D’, which might be due to shock wave propa-

gation induced by the earliest fiber ruptures. Finally, as observed

by Osada et al. [3], Daggumati et al. [4], we also observed that

(a) (b)

Fig. 2. (a) Experimental setup; (b) Specimen geometry, location of the fixed processing area and position of the extensometer. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

(a) (b)

Fig. 3. (a) Stress–strain curves of tensile tests; (b) Location of the areas observed by SEM. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)



the final failure of the specimen was caused by the combination of

transverse crack densification, the intersection of several small

cracks and warp fiber ruptures.

4.1.2. Damage analysis from temperature field measurement

In order to obtain additional information on the damage sce-

nario, especially on the damage location, the temperature of the

sample weft face was monitored with an infrared camera (Fig. 2).

Fig. 5b shows the temperature variation field of the entire observed

zone at a strain level of 1.25%. The whole surface undergoes quasi

homogeneous cooling due to the thermoelastic effect induced by

the tensile deformation. Several small increases of temperature

are also clearly identifiable. Magnification of one of these thermal

patterns and the corresponding heat source field evolution are pre-

sented in Fig. 5c and d. As the weft face, the warp face of the lam-

inate undergoes homogeneous cooling due to the thermoelastic

effect. Because of the low thermal conductivity of the material

through the thickness, the small increases of temperature observed

on the weft face were barely visible on the warp face. This result

confirms that the yarn cracking occurs mainly in the weft yarns,

and thus that the warp face cannot be used to estimate the energy

release rate associated with transverse yarn cracking.

Comparison between Fig. 5c, d and micrography Fig. 5e show

that propagation of transverse yarn cracks induces temperature in-

creases in the weft yarns. As seen in Fig. 5d, during crack propaga-

tion into the weft yarn, a localized dissipative heat source expands

sharply in the weft tow (two images �0.04 s). The heat source ap-

pears one image (0.02 s) before the image of the temperature in-

crease due to the use of a centered finite difference scheme for

the time derivative term estimation (see Eq. (5)). The dissipative

heat sources represented in Fig. 5d illustrate that around the crack

irreversible work develops over a band slightly greater than the

yarn width (�0.8 mm).

Thereafter, a spatial cartography of all the transverse micro-

cracks can be obtained at any strain level by temporally accumu-

lating experimental heat sources calculated on each image pixel.

Fig. 6a presents the total cumulative volume energy Etot (J m
ÿ3)

cartography at three different levels of strain. The total amount

of dissipated energy by thickness unit throughout the observed

zone Wtot (J m
ÿ1) was plotted as a function of longitudinal strain

in Fig. 6b. Wtot and Etot were estimated using the following

equations:

Etotðx; y; tÞ ¼

Z ttot

0

xhsðx; y; tÞdt and

W totðtÞ ¼

Z ttot

0

Z Lx

0

Z ly

0

xhsðx; y; tÞdxdydt ð13Þ

Fig. 4. SEMmicrographs at different strain states, see Fig. 3a. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)



where ttot represents the total integration time, Lx and ly denoting

respectively the width and the length of the processing zone, see

Fig. 2b. As expected, transverse yarns cracking occurs firstly around

the knee point, see picture 330 in Fig. 6a. As we can observe, trans-

verse cracks develop close to the left edge of the specimen, which

might be due to a small misalignment of the sample between the

grips. According to SEM micrographs previously presented, image

N°448 shows that transverse yarn cracks accumulate in several weft

yarns as strain increases. Moreover, Fig. 6 illustrates that transverse

matrix crack densification occurs essentially between ey � 1% and

ey � 1.55%. Afterwards, magnifications of pictures N°448 to N°810

in Fig. 6a show crack extensions as crack intersections between

adjacent yarns. Fig. 6b presents the total amount of energy dissi-

pated by thickness unit Wtot. Until 1.55% of longitudinal strain,

Fig. 6b shows a strong increase in dissipated energy Wtot due to ra-

pid accumulation of transverse cracks. Then, as the strain increases,

a change in the damage mode was observed. Indeed after 1.55% of

longitudinal strain, we observed a decrease of the curve slope due

to a slower accumulation of dissipative work. This phenomenon is

attributed to the change of damage mode. Indeed, after 1.55% of

longitudinal strain, we detected crack extension rather than accu-

mulation of new transverse cracks as seen in Fig. 6a, although a

few new cracks were observed. The magnification of picture

N°810 shows that close to the final failure point, cracks between

adjacent yarns intersect. This result could explain the bifurcation

of cracks toward the cross-over points of adjacent yarns observed

Fig. 5. (a) Stress–strain curve indicating selected pictures. (b) Temperature variation fields of the entire observed zone. (c) Temperature variation fields and (d) corresponding

heat source fields with the weave pattern of the layered weft face. (e) SEMmicrograph C and schematic representation of the weft face. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)



on the post-mortem micrograph (D). Finally, as reported in the lit-

erature [1–4], image N°810 demonstrates that close to the final fail-

ure point, most of the weft yarns exhibit micro-cracks.

4.2. Energy release rate (G) by transverse yarn cracking

4.2.1. G estimation from the 2D heat diffusion equation

As previously mentioned, Eq. (12) is used to estimate the energy

release rate associated with transverse yarn cracking. Using the

experimental heat source power �xhs, Eq. (12) is rewritten as

follows:

G ¼
1

b
�

1

ec � lc

Z

t

Z

X

�xhs dV dt ð14Þ

where ec and lc respectively denote the depth and the length of the

cracked surface, as shown in Fig. 7. In order to capture the all the

dissipated thermal energy associated with the yarn cracking, the

area used to compute the energy release rate was chosen slightly

higher than the heat source size, see Fig. 7a. The computation of

the energy release rate also requires knowing the ratio of mechan-

ical energy converted into heat noted as b. However, for the mate-

rial used in this study no values are available in the literature. In

addition, the value of this ratio is both strain and strain-rate sensi-

tive [18,19,29]. With regard to values of b in the literature for poly-

mer materials, two cases were studied. In the first case, half of the

mechanical energy is dissipated as heat: b = 0.5 and in the second

the thermal dissipated energy represents 90% of the total work:

(a)

(b)

Fig. 6. (a) Temporally accumulated energy Etot; (b) Evolution of the total amount of dissipated energy Wtot as a function of longitudinal strain. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)



b = 0.9. The true value of G for intra yarn cracking should a priori be

included in this range. The energy release rates calculated with the

experimental procedure previously described are shown in Fig. 8.

These experimental values represent the mean of twelve energy re-

lease rates estimated on two different specimens. The dispersion

characterizes the minimum and maximum values of calculated G.

As illustrated in Fig. 8, the energy release rates estimated in both

cases (b = 0.5 and b = 0.9) are in the same range as those reported

in the literature for inter-laminar fracture toughness of glass/epoxy

woven laminates. Due to disparate material properties and different

cracking paths and modes for each woven fabric, these results are

difficult to compare. However even if inter-laminar and intra-lami-

nar fracture do not necessarily need to agree, they are both charac-

terized by matrix cracking and crack propagation at the fiber/matrix

interface. So it is not very surprising that the order of magnitude of

the energy release rate matches quite well.

Finally, the micro-fracture of one weft yarn represents the

cracking of approximately one quarter of the sample thickness.

Thus to associate homogeneous heat sources through the thickness

of the sample with transverse cracking may be unsuitable and may

lead to underestimating the dissipated heat. In addition, to assume

that cracks propagate as a straight line may lead to overestimating

the energy release rate. Indeed Figs. 4 and 7b clearly show that

cracks in the thickness direction follow fiber/matrix interfaces. As

observed in these figures, the crack length should be greater than

the estimated length, and consequently G should be lower. In order

to figure out the validity of these previous hypotheses, a three

dimensional heat diffusion problem was studied. The numerical

model is presented in the following section.

4.2.2. Comparison with a three-dimensional thermal analysis

For woven laminates which exhibit low thermal diffusivity

through the thickness, strong thermal gradients may occur and

thus quantitative estimation of heat sources via the 2D heat diffu-

sion equation (Eq. (5)) may introduce significant errors. As men-

tioned above, only one quarter of the sample thickness is cracked

during yarn crack propagation. Due to the low thermal conductiv-

ity of the laminate through the thickness, no temperature increases

were observed on the warp face during experiments. Hence, the

quantitative estimation of the associated energy release rate re-

quires solving the 3D thermal problem. However, as previously

stated, to solve the 3D heat diffusion inverse problem without

any information on the heat source volume distribution is an ill-

posed problem [25]. In this study, information from SEM observa-

tions and results from heat source fields calculated with Eq. (5), en-

abled us to assert the following hypotheses on the heat source

distribution:

� when a crack propagates into a transverse yarn, the whole yarn

thickness is cracked. The heat source depth accompanying weft

yarn cracking is thus assumed to be equal to the yarn thickness

(�0.1 mm);

� the heat source is assumed to be uniformly distributed across

the yarn thickness;

� the observation of heat source fields presented in Fig. 5e and

Fig. 7a enables us to postulate that the spatial distribution of

the heat source can be represented as a Gaussian function.

Considering these hypotheses, a representative function for

heat source fields induced by transverse yarn cracking is proposed:

xhsðx; y; z; tÞ ¼ xmax � e
ÿ

ðxÿx0 Þ
2

2�r2x
þ

ðyÿy0 Þ
2

2�r2y

� �

� e
ÿ
ðtÿt0 Þ

2

2�r2
t � ½Hðzÿ z0Þ

ÿ Hðzÿ z1Þ� ð15Þ

(a) (b)

Fig. 7. (a) Approximate area used to compute the surface integral of the 2D heat sources and estimation of the total crack length; (b) Estimation of the cracked thickness. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Comparison of the energy release rate G calculated from experimental 2D

heat source and from numerical modelling with the inter-laminar fracture

toughness of several woven laminates; (a): 8 Harness (HS) woven Glass/epoxy,

[34]; (b): 4 HS woven Glass/epoxy, [35]; (c): 5 HS woven Glass/epoxy, [36].



where xmax denotes the heat source’s peak. x0, y0 are respectively

the longitudinal and transversal positions of the peak center, while

t0 represents the temporal position of the peak. rx, ry and rt, clas-

sically called standard deviations, which in turn control the length,

width and temporal distribution of the heat source. H(z ÿ z0) -

ÿ H(z ÿ z1) is a rectangular function constructed with two Heavi-

side functions noted H. z0 and z1 are chosen in order to fit the

thickness of the yarn, see Fig. 9. The infrared camera resolution is

0.16 mm/pixel. Thus to be close enough to experimental conditions,

the in-plane spatial discretization parameters Dx and Dy are chosen

equal to the camera resolution: Dx = Dy = 0.16 mm. A thinner dis-

cretization was used in the thickness direction to accurately capture

the thermal gradient through the thickness:D z = 0.05 mm. The res-

olution of the 3D heat diffusion equation (Eq. (1)) was implemented

in MATLAB 2011b, using explicit programming and finite differenti-

ation [33]. The temporal resolution was set small enough to ensure

convergence: D t = 0.001 s and the material properties used are

summarized in Table 1.

The theoretical heat sources were calculated for three different

transverse cracks over three distinct areas, as shown in Fig. 5b. To

minimize the difference between experimental and theoretical

temperature fields of the weft face, optimum values of the param-

eters xmax, rx, ry and rt were estimated by dichotomy with the

numerical model described earlier. The spatio-temporal localiza-

tion parameters x0, y0, and t0 were set to match those of the exper-

imental heat sources. The sets of calculated parameters are

presented in Table 2. For each computed heat source, the numeri-

cal temperature field of the weft face was compared with the

experimental results. Typical results obtained after optimization

of the heat source parameters are shown in Fig. 10 (zone noted 1

in Fig. 5b). Fig. 10c shows the temporal evolutions of the mean weft

face temperature averaged over the rectangular surface drown in

Fig. 10b. Whereas Fig. 10d and e present respectively the spatial

temperature variation along the X–X and Y–Y lines at the temper-

ature peak. As it can be seen in Fig. 10, identical results were

obtained between experimental and numerical temperature fields

of the weft face. Particularly, Fig. 10c shows a good correlation be-

tween the experimental and the numerical cooling of the yarn after

cracking. Firstly, this confirms that the specific heat capacity, the

thermal conductivities and the mass density are slightly affected

by damage and can be chosen as constant. And secondly, this re-

sults means that the thermal properties of the composite laminate

can be used to model the thermal behaviour of the yarn. Then,

using the estimated theoretical heat source, the energy release rate

was computed with the following equation derived from Eq. (12):

G ¼
1

b
�

1

ec � lc

Z t

0

Z

X

�xhsðx; y; z; tÞ dX dt ð16Þ

where X denotes the entire damaged volume.

Approximation of the heat source integrals was calculated using

the symbolic integration function of MATLAB 2011b. Energy release

rates were hence evaluated with the crack length used for the

experimental calculations of G. Fig. 10d shows that the crack length

represents around 2.4 times the standard deviation rx. This esti-

mated crack length is in the same range as the experimental crack

length observed on SEM micrographs (Fig. 4). The mean value of G

computed for three different heat sources is shown in Fig. 8 (Num.

Model.). The results illustrate the underestimation of the energy

release rate with the two-dimensional experimental analysis of

heat sources. For b = 0.9 and b = 0.5, the energy release rate is

respectively underestimated by approximately 18% and 10%. How-

ever, numerically calculated G stays in the same range as inter-

laminar fracture toughness, as reported in the literature. Differ-

ences between experimental and numerical results could be linked

to several issues. The first issue is of course the consideration of

homogeneous heat source fields through the thickness which lead

to underestimation of the thermal dissipated energy in the case of

a strong thermal gradient through the thickness. The second issue

concerns the spatio-temporal resolution used in the experimental

study. Indeed, the pixel size at the maximum resolution of the

Fig. 9. Numerical spatial representation of the 3D heat source field xhs(x,y,z, t) arising from transverse yarn cracking. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Table 2

Values of the theoretical heat source parameters for the three zones shown in Fig. 5b.

N° Zone rx (mm) ry (mm) rt (s) xmax (W/mÿ3) lc (mm) ec (mm) Gb=0.9 (kJ mÿ2)

1 0.62 0.25 5.0 � 10ÿ3 4.4 � 107 1.49 0.1 0.56

2 0.62 0.25 5.0 � 10ÿ3 4.3 � 107 1.32 0.1 0.62

3 0.5 0.21 5.0 � 10ÿ3 4.5 � 107 0.99 0.1 0.57



infrared camera is about 0.16 mm, which is quite large compared

to the yarn size (3 pixels in the yarn width). Despite this low spa-

tial resolution Fig. 10e shows that the thermal gradient is still well

captured, even if the temperature pic may be underestimated. Thus

underestimation of spatial derivative terms may arise from the

spatial differentiation of thermal data, even with non-noisy data.

The same remark could be made for the evaluation of temporal

derivatives. However because the energy release rate estimation

requires to integrate these derivatives, the errors made on the en-

ergy evaluation induced by the differentiation were attenuated by

(a)

(b) (c)

(d) (e)

Fig. 10. (a) Experimental temperature field; (b) Numerical temperature of the weft face, and location of the zone over which numerical and experimental temperature fields

are compared; (c) Temporal evolution of the temperature averaged over the rectangular zone; (d) Evolution of the temperature along the X–X axis at the temperature peak;

(e) Evolution of the temperature along the Y–Y axis at the temperature peak. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)



the integration. Nevertheless, the experimental estimation of the

energy release rate remains close to numerical calculations, and

the depth-wise approximation remains suitable for a first approach

to qualitative damage analysis. Although in the case of non-homo-

geneous heat sources through the thickness, a 3Dmodel of the heat

diffusion problem is preferable for quantitative analysis of dissi-

pated energy.

5. Conclusion

A comprehensive damage analysis was conducted on [0°]2 8

harness satin woven laminates under uniaxial, quasi-static tensile

load. Damage scenario was investigated up to failure, combining

SEM micrographs and dissipative heat source fields calculated

from experimental thermal images. Afterwards, a methodology to

estimate the energy release rate by transverse micro-cracking

has been proposed and has shown high potential. The analysis of

the resulting experimental data led to the following conclusions:

� Transverse weft yarn fracture was confirmed to be the main

damage in harness satin woven composites, as reported in the

literature. These transverse cracks mainly accumulate between

ey � 1% and ey � 1.55%, afterwards extension and intersection of

transverse cracks represent the main damage modes.

� For woven materials which exhibit low thermal diffusivity

through the thickness, such as woven glass/epoxy composites,

strong thermal gradients may occur within the thickness during

testing. In this context, a 3D model of the heat problem would

be preferable to the 2D heat diffusion model for quantitative

analysis of heat source fields, even for thin laminates. The rele-

vance of the 2D approach depends on several parameters: the

diffusivity of the material, the thickness of the sample and the

distribution of heat sources.

� An experimental procedure has been proposed to estimate the

energy release rate in cases where classical compliance meth-

ods are inappropriate. The energy release rate obtained for

transverse yarn cracking is in the same order of magnitude as

typical values of inter-laminar fracture toughness of woven

glass/epoxy laminated composites. However inter-laminar and

intra-yarn cracks remain tricky to compare, particularly

because the crack path and the crack mode are quite different.

Moreover, in this study cracks were supposed to propagate as

straight lines; which is a disputable assumption considering

the SEM micrographs presented. This last point is still a general

issue for the experimental evaluation of energy release rates.

Hence, here we can only assert that energy release rates associ-

ated with transverse yarn cracking are about 1 kJ mÿ2 as typical

values of G for polymer materials.

To conclude, we can say that the experimental procedure pro-

posed employing infrared thermography has high potential to

monitor damage in time and space for thin woven laminates. With

this approach, accurate estimation of energy release rates associ-

ated with transverse crack propagation remains tricky, especially

without knowing the ratio of mechanical energy converted into

heat. Several studies are currently in progress to accurately evalu-

ate the ratio of mechanical energy dissipated as heat. Nevertheless,

this experimental method is clearly a relevant alternative to esti-

mate fracture toughness in experiments where classical techniques

remain unsuitable.
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