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The problem considered is the temperature control in a building equipped with UnderFloor Air Distribution (UFAD). Its 0-D model is derived from the energy and mass conservation in each room, and also presents discrete components to describe the disturbances from heat sources and doors opening. Using the monotonicity of this model, we can characterize two concepts of robust control, the Robust Controllability and the Robust Controlled Invariance introduced in this paper, and determine their limits for control design objectives. The validity of these results is then illustrated in a simulation of a two-room example.

I. INTRODUCTION

Since the introduction of the concept of intelligent buildings in the 1980s, this topic has been the source of a substantial amount of work [START_REF] Wong | Intelligent building research: a review[END_REF]. In the particular case of climate regulation in a building, research on modeling, simulation [START_REF] Trcka | Overview of HVAC system simulation[END_REF] and control [START_REF] Mirinejad | Control Techniques in Heating, Ventilating and Air Conditioning (HVAC) Systems[END_REF] of Heating, Ventilating and Air Conditioning (HVAC) systems leads to an improved comfort for the users and a reduction of energy consumption. Compared to traditional ceiling ventilation, the UnderFloor Air Distribution (UFAD) solution that we chose has shown some interesting results on these matters [START_REF] Bauman | Underfloor Air Distribution (UFAD) Design Guide[END_REF].

Various paths have already been explored for the control of HVAC systems in intelligent buildings. When the focus is mainly on control, numerous feedback strategies have been devised, based on simple PID or On/Off control, more robust controllers with the H ∞ approach [START_REF] Witrant | Limitations and performances of robust control over WSN: UFAD control in intelligent buildings[END_REF], or non-linear approaches [START_REF] Arguello-Serrano | Nonlinear control of a heating, ventilating, and air conditioning system with thermal load estimation[END_REF]. For more energy-efficient controllers, we can look for the optimal tradeoff between comfort and energy saving [START_REF] House | Optimal control of building and HVAC systems[END_REF], a model-predictive strategy [START_REF] Oldewurtel | Energy efficient building climate control using Stochastic Model Predictive Control and weather predictions[END_REF], or a fuzzy logic controller [START_REF] Hamdi | A fuzzy control system based on the human sensation of thermal comfort[END_REF].

The notion of Robust Controlled Invariance was initially introduced in [START_REF] Basile | On the robust controlled invariant[END_REF] for linear systems with time-varying parameters as the ability to control the system so that its state remains in a set. On the other hand, the Robust Controllability corresponds to reaching a given state with a robust controller. The goal of this paper is to extend the study of these notions to any system with disturbances satisfying the monotonicity property [START_REF] Angeli | Monotone Control Systems[END_REF] and to characterize their theoretical limits. The obtained results thus reflect the model properties and do not depend on any specific feedback control strategy.
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Emmanuel.Witrant@gipsa-lab.grenoble-inp.fr The paper is organized as follows. In Section II, we describe the 0-D UFAD model from [START_REF] Witrant | Limitations and performances of robust control over WSN: UFAD control in intelligent buildings[END_REF], for which we prove the monotonicity property in Section III. In Section IV, we introduce the notions and the main theorems on controllability and invariance. Finally, Section V gives a simulation example to illustrate the previous results.

II. SYSTEM DESCRIPTION

The system considered is equipped with UnderFloor Air Distribution (UFAD), and is based on the small-scale experiment of a flat1 sketched on Fig. 1. It has an underfloor plenum where the air is cooled down and sent into the rooms. The excess of air in each room is pushed into the plenum above the fake ceiling, and sent back to the underfloor plenum through a pipe outside of the building. The control of the individual room temperatures (our control objective) is done through the speed of the underfloor fans, sending cold air from the underfloor plenum to each room. This system is subject to the following disturbances: door opening between the rooms; heat sources in each room that can be on or off.

As in [START_REF] Witrant | Limitations and performances of robust control over WSN: UFAD control in intelligent buildings[END_REF], we consider a 0-D model for this ventilation system. Due to the reduced speed and mass of air, we assume that it is incompressible and its kinetic and potential energies can be neglected. We also consider the density and temperature in a room to be uniform. The model is based on energy and mass conservation in each room, expressed in (1) and [START_REF] Trcka | Overview of HVAC system simulation[END_REF].

dE i dt = Qi + k C p T k ṁk→i - k C p T i ṁi→k (1) 
Equation ( 1) is the first law of thermodynamics applied to the room i. E i = ρ i V i C v T i is the room energy, Qi the heat exchanges, ṁk→i and ṁi→k are the mass flow rates entering and leaving room i respectively, with k representing another room or a plenum. The mass flow rates in (1) are positive and associated with the temperature of the room from where the air flow is coming. T i , V i and ρ i are the temperature, volume and air density of room i. C v and C p are respectively the constant volume specific heat and constant pressure specific heat.

We describe the state of the discrete disturbances using two boolean inputs: δ dij = 1 when the door between rooms i and j is open; and δ si = 1 when the heat source in room i is active.

The heat exchanges considered in this model are of two kinds. The conduction between rooms i and j through a wall of conductivity k, surface A and thickness ∆ is given by:

Qcond = - kA ∆ (T i -T j ),
where T j may also represent the temperature of a plenum (T c for the ceiling; T u for the underfloor) or of the outside (T o ) [START_REF] Mcquiston | Heating, Ventilating and Air Conditioning Analysis and Design[END_REF]. The radiation in room i from a heat source s of emissivity , temperature T s and surface A s writes as follow:

Qrad = δ si σA s (T 4 s -T 4 i ),
where σ is the Stephan-Boltzmann constant [START_REF] Levermore | Building Energy Management Systems: Applications to low-energy HVAC and natural ventilation control[END_REF].

The energy transfer (±C p T a ṁa→b ) induced by a mass flow rate is positive only when the flow is entering the room considered in [START_REF] Wong | Intelligent building research: a review[END_REF]. For a given room i, these energy transfers can be of four types:

• C p T u ṁu→i : where the mass flow from the underfloor plenum to room i is forced by the fan, which is our controlled input; • -C p T i ṁi→c : where the mass flow rate corresponds to the air in room i pushed into the ceiling plenum; • C p T j ṁj→i : when the door between rooms i and j is open and T i < T j ; • -C p T i ṁi→j : when the door between rooms i and j is open and T i > T j .

If we note ṁdij the flow going through the door section A dij (always from the high to the low temperature room: ṁdij = ṁj→i when T i < T j ; ṁdij = ṁi→j when T i > T j ), its expression is derived from Bernoulli's equation

as ṁdij = ρA dij 2R|T i -T j |, with R = C p -C v .
The mass conservation in room i is expressed by the following equation:

ṁu→i -ṁi→c + j∈Ni δ dij sign(T j -T i ) ṁdij = 0, (2) 
where N i is the set of rooms adjacent to room i. The unknown flow going to the ceiling ṁi→c is replaced in (1) by its expression obtained from [START_REF] Trcka | Overview of HVAC system simulation[END_REF]. As a result, since ṁi→c is associated with T i and ṁdij with max(T i , T j ), the door heat transfer only appears in the equation of room i if T i < T j .

To simplify the notations, we introduce the continuously differentiable function h:

h(x) = 0 if x ≤ 0 x 3/2 if x > 0.
The temperature dynamics are thus finally obtained as:

ρV i C v dT i dt = -α ui (T i -T u ) -α ci (T i -T c ) - j∈Ni α i,j (T i -T j ) -α oi (T i -T o ) + C p ṁu→i (T u -T i ) + δ si σA si (T 4 si -T 4 i ) + j∈Ni δ dij C p ρA dij √ 2R * h(T j -T i ), (3) 
where

α x = k x A x /∆
x is a conduction factor with x representing the connection between a room and either another room, a plenum or the outside. Equation (3) describes a dynamical system of state T = [T 1 , . . . , T n ]. The inputs for this system are of three kinds. The controlled input u ∈ R n (where we note u i = ṁu→i ≥ 0 to simplify the notations) corresponds to the mass flow rates sent by the underfloor fans into each room. The vector of exogenous inputs is w ∈ R p (p = n + 3) and gathers T u , T c , T o and the surface temperature of the sources T si . These temperatures are considered as known exogenous inputs, controlled by external loops or measured. We assume that the underfloor temperature is controlled so that at all time, its value is set to T u ≤ min(T i ), otherwise we would not be able to cool down some of the rooms. To consider s i as a heat source, we also assume that its surface temperature is always T si ≥ T i . The last input vector δ ∈ R q contains all the boolean variables representing the disturbances: δ dij for the doors, and δ si for the heat sources.

III. MONOTONICITY

We consider the dynamical system of state x ∈ R n and input v ∈ R m defined by the differential equations ẋ = f (x, v). In the case of our UFAD problem, since the booleans δ can also be considered as taking their values in R q , we have x = T and v = [u, w, δ]. Let Φ(t, x 0 , v) be the state trajectory for the initial condition x 0 and input function v : R + → R m . An ordering x for the state is defined by a positive cone

K x ⊂ R n such that x x x ⇔ x -x ∈ K x .
We can take a similar ordering for the input functions:

v v v ⇔ ∀t ≥ 0, v(t) v v (t).
The system is monotone, as in [START_REF] Angeli | Monotone Control Systems[END_REF], if the following holds ∀t ≥ 0:

x x x , v v v ⇒ Φ(t, x, v) x Φ(t, x , v ).
Let the ordering be defined by an orthant of the state space:

x x x ⇔ ∀i ∈ {1, . . . , n}, (-1) εi (x i -x i ) ≥ 0,
with ε ∈ {0, 1} n . Similarly, we take γ ∈ {0, 1} m for the input space. This leads to a characterization of the monotonicity using the differential equations of the system, and without needing an explicit expression of its trajectories.

Proposition 1: [START_REF] Angeli | Monotone Control Systems[END_REF] The system defined by ẋ

= f (x, v) is monotone if and only if, ∀i ∈ {1, . . . , n}, ∀j = i, ∀k ∈ {1, . . . , m}, ∀x ∈ R n , ∀v ∈ R m ,      (-1) εi+εj ∂f i ∂x j (x, v) ≥ 0 (-1) εi+γ k ∂f i ∂v k (x, v) ≥ 0.
For our system (3), we consider the following four orderings:

T T T ⇔ ∀i, T i ≥ T i (4) u u u ⇔ ∀t ≥ 0, ∀k, u k (t) ≤ u k (t) (5) w w w ⇔ ∀t ≥ 0, ∀k, w k (t) ≥ w k (t) (6) δ δ δ ⇔ ∀t ≥ 0, ∀k, δ k (t) ≥ δ k (t). (7) 
Theorem 1: With the orderings ( 4) to ( 7), the dynamical system defined by ( 3) is monotone:

∀ T 0 T T 0 , u u u , w w w , δ δ δ , ∀t ≥ 0, Φ(t, T 0 , u, w, δ) T Φ(t, T 0 , u , w , δ ).
Proof: See the Appendix A.

IV. CONTROLLABILITY AND INVARIANCE

We want to study the possibility of controlling the system so that it has a given behavior. Depending on the desired behavior, the notion of controllability can have various forms. In this section, we see two of them: controlling the system on a given point; or keeping the state in an interval.

A. Robust Invariance

All the inputs are considered bounded. Either because of physical constraints (δ, u, T si ), because they are controlled (T u ), or due to observations (T c , T o ). For a given variable a ∈ R b , we define the b-dimension interval [a, a] according to the natural ordering (induced by the positive orthant (R + ) b ). For the corresponding function a : R + → R b , we also use

the notation a ∈ [a, a] instead of ∀t ≥ 0, a(t) ∈ [a, a]. Definition 1 (Robust Invariance): The system is said to be Robust Invariant in an interval [T r , T r ] if, ∀T 0 ∈ [T r , T r ], ∀w ∈ [w, w], ∀δ ∈ [δ, δ], ∀u ∈ [0, u], ∀t ≥ 0, Φ(t, T 0 , u, w, δ) ∈ [T r , T r ].
For all bounded external conditions (w and δ) and controlled inputs (u), the state cannot leave this interval. So this interval contains all the equilibria of the system. However, it does not mean that all points in the interval are reachable.

Proposition 2: If [T r , T r ] is defined by f (T r , u, w, δ) = 0 and f (T r , 0, w, δ) = 0, it is the minimal Robust Invariant interval.

Proof: See the Appendix B. In what follows, we use the notation [T , T ], for the interval in which we want to control the system.

B. Robust Controllability

We define the Robust Controllability with the states which are reachable by the system for all the external conditions (w and δ).

Definition 2 (Robust Controllability): The system is said to be Robust Controllable in a set S if,

∀T ∈ S, ∀T 0 ∈ S, ∀w ∈ [w, w], ∀δ ∈ [δ, δ], ∃u ∈ [0, u] , ∃t ≥ 0 | Φ(t, T 0 , u, w, δ) = T.
Using the monotonicity, we can obtain a new characterization of the Robust Controllability.

Theorem 2: The system is Robust Controllable in a set S, if

∀T ∈ S, ∀i ∈ {1, . . . , n}, f i (T, u i , w, δ) < 0 f i (T, 0, w, δ) > 0
Proof: See the Appendix C. Even though we do not prove what follows because it has no utility for this paper, we can note that we actually have an equivalence between Theorem 2 and (8) in Appendix C which leads to the following remark.

Remark 1:

If Definition 2' is Definition 2 restricted to the open control set (∃u ∈]0, u[ | Φ(t, T 0 , u, w, δ) = T ), and Theorem 2' is Theorem 2 with non-strict inequalities (f i (T, u i , w, δ) ≤ 0; f i (T, 0, w, δ) ≥ 0), Definition 2' ⇒ Theorem 2 ⇒ Definition 2 ⇒ Theorem 2'.
If the system is Robust Controllable at a state T , this result means that for all bounded external conditions w and δ, we can warm up and cool down the temperature of each room, or more precisely we can at least prevent the temperature from increasing and decreasing (since we are referring to the last implication of Remark 1).

C. Robust Controlled Invariance

This notion is less restrictive than the Robust Controllability, because here we only want to keep the state in a given interval

[T , T ]. Definition 3 (Robust Controlled Invariance): The system is said to be Robust Controlled Invariant in [T , T ] if, ∀T 0 ∈ [T , T ], ∀w ∈ [w, w], ∀δ ∈ [δ, δ], ∃u ∈ [0, u] | ∀t ≥ 0, Φ(t, T 0 , u, w, δ) ∈ [T , T ].
In a similar way than for Theorem 2, we can obtain new conditions for the Robust Controlled Invariance.

Theorem 3: The system is Robust Controlled Invariant in [T , T ] if and only if ∀i ∈ {1, . . . , n}, f i (T , u i , w, δ) ≤ 0 f i (T , 0, w, δ) ≥ 0.

Proof: See the Appendix D.

Theorem 3 thus states that if the extremal values of the controller allow us to keep the system in [T , T ] in the worst possible cases, then the invariance in the interval is verified for any other condition.

D. Controllable spaces

We consider the 2n conditions defined in Theorem 2. If we take them separately and replace the inequalities by equalities, each condition defines a manifold of dimension n-1 splitting the state space R n in two halves. The condition taken from Theorem 2 is satisfied only on one side of the manifold, and this manifold sets the controllability limit for the corresponding action (cooling down T i if u i = u i ; warming up T i if u i = 0). We define the controllable spaces as the half spaces induced by the (n -1)-manifolds.

Definition 4 (Controllable spaces): A controllable space C i (u i ∈ {0, u i }) ⊂ R n is the half space where the system is controllable with the input u i :

T ∈ C i (u i ) ⇔ f i (T, u i , w, δ) ≤ 0, T ∈ C i (0) ⇔ f i (T, 0, w, δ) ≥ 0.
An immediate consequence of this definition is a new result on the Robust Controllability.

Proposition 3:

The system is Robust Controllable in a set S if S ⊂ Interior i C i (u i ) ∩ i C i (0)
.

For the Robust Controlled Invariance, we can replace Theorem 3 by the corresponding conditions on the controllable spaces.

Proposition 4:

The system is Robust Controlled Invariant in [T , T ] if and only if    T ∈ i C i (0) T ∈ i C i (u i )
So Proposition 4 indicates where to choose the extremal values of our control interval [T , T ] for the system to be Robust Controlled Invariant.

If we also consider an interval for the Robust Controllability, then according to Propositions 3 and 4, we have the following result.

Proposition 5: V. RESULTS

If the system is Robust Controllable in [T , T ], then it is also Robust Controlled Invariant in [T , T ]; it is Robust Controllable in any [T , T ] ⊂ [T , T ].

A. Model and controller

We created a two-room model of this system using MATLAB and Simulink . While simplified, this model still covers all the important features of the system (conduction with the exogenous inputs and the other room; heat sources; door between the rooms) and it is easier to display the results in the state space. The building considered has an area of 12 × 4 m 2 and the rooms are 2.5 m high. Room 1 is a square of side 4 m, and room 2 covers the remaining surface, which is twice as big.

To avoid modeling the variations of the exogenous inputs, we consider them as constants in this simple model:

T u = 15 • C, T c = 30 • C, T o = 30 • C.
The heat sources represent human bodies as surfaces of 2 m 2 at T si = 37 • C. The maximal mass flow rate sent by the fans into each room is u i = 0.1 kg/s. Since we have three boolean inputs (one source in each room and the door), we run the simulations in order to meet all 8 possible combinations as in Fig. 2, and switch from one to the next every 2 hours to leave enough time for the system to stabilize.

All the definitions and results in the previous section are independent of the chosen control strategy. Our goal here is to establish the limits of what can be achieved for the robust control of the system. This is why, in order to use it as a point of comparison for more advanced control methods (to be developed), we choose the simplest robust controller to implement, even though it is probably far from being the most energy-efficient controller.

Definition 5 (Decentralized Bang-Bang Controller):

∀i ∈ {1, . . . , n},

T i ≥ T i ⇒ u i = u i T i ≤ T i ⇒ u i = 0
This is a Bang-Bang control strategy because we only use the extremal values of the controlled inputs, and it is decentralized since only the temperature T i has an influence on the choice of the corresponding input flow u i . In Definition 5, the 

B. Controllable spaces

The main results on the model previously described are displayed on Fig. 3, representing the state space T 1 -T 2 in Celsius degrees. The dashed rectangle is the minimal Robust Invariant interval [T r , T r ] as in Proposition 2.

As defined in IV-D, we consider the (n -1)-manifolds representing the controllability limits. Since we are in a 2dimensional example, these 1-manifolds are four curves. On Fig. 3, the manifolds are the four solid curves associated with a text box containing their name (using the same notation as the controllable spaces in Definition 4, M i (u i ∈ {0, u i })). According to the ordering of the boolean variables chosen for the monotonicity [START_REF] House | Optimal control of building and HVAC systems[END_REF], the coldest situation is when there is no disturbance. Therefore, the equations for the heating manifolds are linear (see the model equation ( 3)) and M 1 (0) and M 2 (0) are straight lines. On the other hand, M 1 (u 1 ) and M 2 (u 2 ) are non-linear, and there is a discontinuity in their slope when the curves cross T 1 = T 2 since the mass flow rate going through the door only appears in the equation of the coldest room.

On Fig. 3, the controllable spaces from Definition 4 are as following:

• C 1 (0): we can warm up T 1 on the left of M 1 (0); • C 2 (0): we can warm up T 2 below M 2 (0); • C 1 (u 1 ): we can cool down T 1 on the right of M 1 (u 1 );

• C 2 (u 2 ): we can cool down T 2 above M 2 (u 2 ).
Therefore, the region filled with squares ( ) is the intersection C 1 (0) ∩ C 2 (0) between both heating controllable spaces, and the region filled with circles (•) is the intersection C 1 (u 1 ) ∩ C 2 (u 2 ) between the cooling controllable spaces. Finally, the region filled with stars (*) is the intersection of both previous areas:

( i C i (u i )) ∩ ( i C i (0)).
According to Proposition 3, the system is Robust Controllable at any state of the region with stars. This result has been confirmed by running simulations on our Simulink model, using small control intervals centered on the target state. Proposition 4 also indicates that the system is Robust Controlled Invariant if the control interval [T , T ] is chosen such that its lower bound T is in the region with squares, and its upper bound T is in the region with circles.

C. Simulation examples

Even though Proposition 4 is written as two conditions, each is the intersection between two controllable spaces, so there are actually four constraints:

T ∈ C 1 (0); T ∈ C 2 (0); T ∈ C 1 (u 1 ); T ∈ C 2 (u 2 ).
Each of these conditions corresponds to being able to control one of the temperature in one particular direction (heating or cooling down). Here, we consider an example with

T = 21 19 T = 23 21 ,
where only three of the four conditions are verified: we can check on Fig. 3 that T / ∈ C 2 (u 2 ). Fig. 4 gives the results of the simulation of the system when we try to keep it in the control interval. The initial conditions for the room temperatures are taken at the center of the interval. As shown in Fig. 2, this simulation covers all eight possible combinations of the disturbances. The door is closed during the first half of the simulation, and it opens at 8 hours. The coldest situation of the disturbances (with regard to the monotonicity) is between 0 and 2 hours, and the hottest case between 10 and 12 hours.

If we look at the evolution of T 1 on the top-left graph of Fig. 4, we can see that for all disturbances, we can always control the system to keep T 1 ∈ [T 1 , T 1 ]. Also, we are able to keep T 2 above its lower bound T 2 , even in the coldest case. These remarks are consistent with the fact that the following three conditions are satisfied: T ∈ C 1 (0); T ∈ C 1 (u 1 ); T ∈ C 2 (0). On the other hand, we notice that when the disturbances are bringing too much heat (here, when the door is open), we cannot keep T 2 below T 2 , even with the maximal ventilation u 2 . This behavior is explained by the fact that the last condition is not verified:

T / ∈ C 2 (u 2 )
. Therefore, all the results of this simulation are consistent with the theoretical conditions to obtain a Robust Controlled Invariant system.

In the previous example, the system was not Robust Controlled Invariant in [T , T ] since one of the conditions (T ∈ C 2 (u 2 )) was not verified. This means that in some parts of the control interval, we were not able to maintain the state in the interval. However, with a simple operation we can modify [T , T ] to obtain a new interval (which is a subset of the initial control interval) in which the system is Robust Controlled Invariant. In our case, we want a new upper bound satisfying T ∈ C 2 (u 2 ) ∩ [T , T ]. The easiest way to obtain that is to reduce

T 1 to T 1 such that (T 1 , T 2 ) ∈ C 1 (u 1 ) ∩ C 2 (u 2 )
. We can see on Fig. 3 that the largest of such sub-interval is for T 1 ≈ 22.2.

We can consider another control strategy which is more realistic than the Decentralized Bang-Bang controller. For each room, the controlled input u i is set as proportional to T i , with saturations when u i reaches its boundaries u i and 0. Therefore, the controlled input follows the same behavior as the one described in Definition 5, with the additional condition:

T i ∈ [T i , T i ] ⇒ u i (T i ) = u i * T i -T i T i -T i .
Fig. 5 shows the simulation for this control strategy, with the same conditions as those used for Fig. 4. We can see that the variations of the temperatures and controls are much smoother, which improves both the comfort and the lifespan of the fans. Also, we can notice that even in the hottest case for the disturbances (between 10 and 12 hours), T 2 stays in its interval despite the missing condition for the Robust Controlled Invariance. This comes from the fact that these conditions consider the hottest case not only on the disturbances, but also on the temperature of the adjacent rooms. With this controller, the temperatures are not oscillating and in this case T 1 is far enough from its hottest value T 1 to allow T 2 to stay in the interval. Therefore, without making the system Robust Controlled Invariant, this new control strategy has more chances keeping the temperatures in their control intervals, even when some of the invariance conditions are not verified.

VI. CONCLUSION In this paper, we introduced a monotone model for the temperature evolution in a building equipped with Under-Floor Air Distribution. Using the monotonicity property, we then proposed characterizations for Robust Controllability and Robust Controlled Invariance, and we established the limits for the robust control of such system. Since this approach does not depend on the feedback control strategy, it leaves a large degree of freedom for the performance specification. Finally, we confirmed these results on a tworoom model using a Decentralized Bang-Bang controller.

Such simple robust controller was chosen in order to be used as a point of comparison for more advanced and energy-efficient methods, such as using a symbolic model associated with a discrete controller. We will also have the possibility to run experimental validations of the current and future methods on the already existing small-scale UFAD flat. Lastly, now that we have a characterization for the invariance, we need to ensure that the state can reach the chosen interval.

APPENDIX

A. Theorem 1 (Monotonicity)

Proof: Using Proposition 1, we show that the system is monotone for the chosen orderings. With respect to the state variables, the partial derivatives give, ∀i = j:

ρV i C v ∂f i ∂T j = α i,j + δ dij C p ρA dij √ 2R ∂h(T j -T i ) ∂T j ≥ 0,
so the only condition on the state ordering is that the chosen orthant is either (R + ) n or (R -) n . To keep it simple and consistent with the physics of our system, we take the natural ordering induced by the positive orthant [START_REF] Bauman | Underfloor Air Distribution (UFAD) Design Guide[END_REF]. With respect to the controlled input, we obtain for our ventilation problem:

∀i, ρV i C v ∂f i ∂u i = C p (T u -T i ) ≤ 0, ∀k = i, ∂f i ∂u k = 0.
With the ordering already chosen for the state (4), Proposition 1 implies that we choose the negative orthant (R -) n for the controlled input ordering, as in [START_REF] Witrant | Limitations and performances of robust control over WSN: UFAD control in intelligent buildings[END_REF]. We can note that for a heating problem (T u ≥ max(T i )), we should choose the natural ordering: ∀i, u i (t) ≥ u i (t). For the exogenous inputs, we have:

∀k, ∀i, ∂f i ∂w k ≥ 0.
So we need to choose the same orthant for T and w. With the state ordering (4) known, we also need to take the natural ordering (6) for the exogenous inputs. Since we are only interested in the extremal values 0 and 1, and it is not required in [START_REF] Angeli | Monotone Control Systems[END_REF] for the inputs to be continuous, we compute the partial derivatives with respect to the boolean inputs as if they were defined for some continuous variables δ ∈ R q . The partial derivatives obtained for both door and source booleans are always positive. Therefore, as for w, Proposition 1 implies that we choose the ordering defined by the positive orthant for [START_REF] House | Optimal control of building and HVAC systems[END_REF].

B. Proposition 2 (Minimal Robust Invariant interval)

Proof: The monotonicity of our system, in Theorem 1, implies that

∀T 0 ∈ [T r , T r ], ∀w ∈ [w, w], ∀δ ∈ [δ, δ], ∀u ∈ [0, u], ∀t, Φ(t, T r , 0, w, δ) T Φ(t, T 0 , u, w, δ) T Φ(t, T r , u, w, δ).
Since f (T r , u, w, δ) = 0 and f (T r , 0, w, δ) = 0, assuming the stability of the equilibria (intuitive in thermal systems) we have ∀t ≥ 0, Φ(t, T r , u, w, δ) = T r and Φ(t, T r , 0, w, δ) = T r . So ∀t ≥ 0, Φ(t, T 0 , u, w, δ) ∈ [T r , T r ], and [T r , T r ] is indeed a Robust Invariant interval. The boundaries T r and T r are equilibria of the system, so we cannot find a smaller Robust Invariant interval. f i (T, u i , w, δ) ≥ f i (T, u i , w, δ) ≥ f i (T, u i , w, δ).

Equation ( 8) implies that for any T 0 ∈ S in the neighborhood of T ∈ S, and for all bounded external conditions w and δ, we can force the vector field f to point in the direction of T , with f = 0. This implies the condition for the Robust Controllability given in Definition 2.

D. Theorem 3 (Robust Controlled Invariance)

Proof: We want our system to be invariant in a given set. Since the state T varies continuously and there is no delay in our model, it is enough to ensure that the vector field f points toward the interior when the state is on the boundary of the set. Our control set has the simple form of an interval [T , T ], so keeping f toward the interior can be split into its n components: if T i ∈ {T i , T i } we want to ensure that f i points toward the interior of the interval [T i , T i ]. This can be expressed in terms of scalar conditions: for each room i, we need f i ≥ 0 if T i = T i ; and f i ≤ 0 if T i = T i . According to (3), u i is the only controlled input with an influence on f i . With all these considerations, Definition 3 can be expressed as: ∀i ∈ {1, . . . , n}, ∀j = i, ∀T j ∈ [T j , T j ],

∀w ∈ [w, w], ∀δ ∈ [δ, δ], ∃u a i , u b i ∈ [0, u i ] | T i = T i ⇒ f i (T i , (T j ) j =i , u a i , w, δ) ≤ 0 T i = T i ⇒ f i (T i , (T j ) j =i , u b i , w, δ) ≥ 0.

Similarly to the proof of Theorem 2 implying (8), we can prove that the conditions in Theorem 3 imply (9) by taking the worst cases for w, δ and T j (since ∂f i /∂T j ≥ 0). For the converse, the existence of u a i and u b i (such that (9) is verified) is also true for particular combinations of ((T j ) j =i , w, δ): ((T j ) j =i , w, δ) and ((T j ) j =i , w, δ). With the the partial derivatives ∂f i /∂u i ≤ 0 computed in the proof of Theorem 1, given the other variables T , w and δ, we have ∀u i ∈ [0, u i ],

f i (T, 0, w, δ) ≥ f i (T, u i , w, δ) ≥ f i (T, u i , w, δ), which implies the conditions from Theorem 3.
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 1 Fig. 1. 4-room flat with UnderFloor Air Distribution

Fig. 2 .

 2 Fig. 2. Switching of the three disturbances.
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 31 Fig. 3. 1-Manifolds and controllable spaces.

Fig. 4 .

 4 Fig. 4. Simulation of the system with a Decentralized Bang-Bang controller.

Fig. 5 .

 5 Fig. 5. Simulation of the system with a linear controller with saturations.

C. Theorem 2 ( 8 )

 28 Robust Controllability)Proof: Firstly, we prove that the following equation is implied by the one involved in Theorem 2.∀i ∈ {1, . . . , n}, ∀w ∈ [w, w], ∀δ ∈ [δ, δ], ∃u a i ≥ u b i ∈ [0, u i ] | f i (T, u a i , w, δ) < 0 f i (T, u b i , w, δ) > 0 (The existence of u a i and u b i is a mere reformulation since we can take u a i = u i and u b i = 0. Then we obtain (8) by using the partial derivatives with respect to the exogenous or boolean inputs which are positive (see the proof of Theorem 1): given T and u i , ∀w ∈ [w, w], ∀δ ∈ [δ, δ],
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