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1. Introduction

Vibrations of structures may cause many problems such as structural fatigue, vibration transmission to other systems
and internal or external noises due to acoustic radiation. It is important to reduce these problems in order to increase the
lifetime of industrial structures. Vibration analysis is then an important issue which interests many fields in industry such
as aerospace and civil construction. This analysis leads to develop the techniques to control structural vibrations. One of
these techniques, called passive damping, is to add viscoelastic materials in structures in order to absorb vibration energy
thanks to its damping properties. It is an efficient technique to increase structural damping to control vibration modes in a
large band of frequencies. Indeed, viscoelastic layer is usually implemented as a constrained layer damping to provide an
efficient damping. This is due to its shear deformation, thus dissipating energy in a more efficient way. The other technique
to control structural vibrations is the active control of vibrations via electro/magneto-mechanical coupling. One can also
combine active and passive damping treatments which is called hybrid control. However, both controls which are efficient
at few vibration modes depend strongly on the electric energy provided by the coupling. This limits the control at few
modes. A detailed review on active, passive and hybrid solutions can be found in Trindade and Benjeddou [1].

Many interesting studies have been developed for linear vibration analysis of sandwich structures with viscoelastic
and/or piezoelectric layers. The first study has been carried out by Kerwin [2]. The main objective was to develop analytical
or numerical methods for determining the damping properties of these structures. Indeed, the viscoelastic and/or
piezoelectric constitutive laws lead to nonlinear and/or complex eigenvalue problems when dealing with free vibration of
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sandwich structures. Hence, since the determination of damping properties (modal frequencies and loss factors) is not
direct and it cannot be usually performed by commercial codes like ABAQUSs, several methods have been proposed, such
as the direct frequency response method [3], the complex eigenvalue method [4,5], the modal strain energy method [6],
the asymptotic method [7], the iterative order-reduction method [8] and the asymptotic numerical method (ANM) [9–11].
From these studies, one can note that the passive damping efficiency depends strongly on the viscoelastic core material
and the geometrical data of the sandwich structures. In order to improve this damping, the viscoelastic microstructures
can be considered in the core like in Refs. [12,13].

To give the macroscopic overall response of heterogeneous materials with complex microstructures in an averaged or
homogenized sense, various homogenization techniques are typically used. In the case of material multiscale modelling
and in homogenization in general, one usually proceeds from the lower scales upward, in order to obtain equivalent
material properties (e.g. [14–20]). Several homogenization techniques of viscoelastic materials have been developed.
Christensen [21] proposed an approximate formula for the effective complex shear modulus in the case of materials with
two viscoelastic phases by using the composite sphere model. Koishi et al. [22] developed a homogenization method for
composite materials in order to predict effective dynamic viscoelastic material properties in the frequency domain. Yi et al.
[23] applied the asymptotic homogenization into viscoelastic composites in order to determine the effective moduli.
An inverse homogenization problem based on the asymptotic homogenization for two-phase viscoelastic composites was
formulated as a topology optimization problem by Yi et al. [24]. Chung et al. [25] developed a micro/macro asymptotic
homogenization approach for the analysis of viscoelastic creep in heterogeneous materials. The size effect of the basic cell
upon the vibration performances of sandwich beams was studied by Dai and Zhang [26]. Finally, an extended finite
element method proposed (X-FEM) by Zhang and Li [27] allows modelling inclusions in viscoelastic materials.

In this paper, we propose a multiscale analysis of damping properties for sandwich structures with viscoelastic
inclusions. The main objective is to develop a numerical method for designing sandwich structures with optimized
damping properties. Moreover, since the proposed procedure is a numerical homogenization method contrary to the
analytical techniques, e.g. asymptotic homogenization, which are usually restricted to very simple microscopic geometries
and simple material models (see for example [15,19]), more complex microstructures can then be considered.
Furthermore, for simplicity, we consider in this study a simple viscoelastic behaviour with a constant complex modulus
like in references [3,7,9,11,28,29] and we suppose that the microscopic inertia effects can be neglected (see e.g. [12]).
The first assumption is certainly a simplest way to take account of the viscoelastic behaviour and the second one limits our
technique to the low or medium frequency range; but, the methodology can be extended to the more general viscoelastic
model by considering the microscopic inertia effects, using numerical techniques for extracting the damping properties
such as the ANM algorithms [9–11]. In this context, we present the multiscale formulation of the vibration problem in
Section 2. In Section 3, the strategy to solve the vibration multiscale problem is demonstrated. Section 4 is devoted to
numerical examples.

2. Multiscale formulation of the vibration problem

2.1. Problem at the macroscopic scale

We consider a domain O in RD, D being the domain dimension, with an external boundary qO, describing the structure
at the macroscopic level. We assume that the material is heterogeneous and characterized by a periodic microstructure.
The structure is subjected to prescribed displacements and forces on the disjoint complementary parts of the boundary
qOu (the Dirichlet boundaries) and qOf (the Neumann boundaries), respectively. In the following, the notation ð�Þ will be
used to denote macroscopic quantities. In the context of the infinitesimal strain theory, the problem to solve is defined as
follows, in the absence of body forces

= � r ¼ r q2u

qt2
in O, (1)

where r is the macroscopic Cauchy stress tensor and r indicates the material density. u denotes the macroscopic
displacement field. The boundary conditions are defined by

uðXÞ ¼ ûðXÞ on qOu,

r �N¼ f on qOf ,

(
(2)

where û are the prescribed displacements and X being the coordinates of a given point in the structure. In Eq. (2), N is the
outward unit normal vector to qO and f is a prescribed load. The weak form associated with Eqs. (1) and (2) is given by:

Find u 2 SðOÞ, u ¼ û, on qOu such thatZ
O
r : de dOþ

Z
O
r q2u

qt2
� du dO¼

Z
qOf

f � du dG 8du 2 S0ðOÞ, (3)

where SðOÞ denotes the space of sufficiently regular displacements and S0ðOÞ ¼ fdu 2 SðOÞ,du ¼ 0 on qOug is the
corresponding space of suitable variations with vanishing values on the Dirichlet boundary. Let e ¼ 1

2 ð=uþ t=uÞ



Fig. 1. Multiscale problem schema.
the macroscopic strain tensor. At this scale, the constitutive relationship between r and e is unknown. In the context of
multiscale analysis, the macroscopic stresses are extracted directly by solving a local finite element problem correspond-
ing to the periodic microstructure (Fig. 1).
2.2. Problem at the microscopic scale

We assume that the material is heterogeneous with a periodic microstructure, characterized by a representative
volume element (RVE) that occupies a domain o in RD with external boundary qo. The equilibrium equation is given in
the absence of body forces and the inertia effects by the following relation:

= � r¼ 0 in o, (4)

where r is the microscopic Cauchy stress tensor. Note that the inertia effects are neglected at the microscopic level like in
[12,22,24]. This assumption allows us to obtain the macroscopic constitutive relation, i.e. a numerical micro-to-macro
transition. However, it limits the present approach to vibration problem in which the microstructure size is smaller than
the wavelength. The weak form associated with the microscopic problem is then written as

Find u 2 SðoÞ, with respect to microscopic boundary condition, such thatZ
o
r : de do¼ 0 8du 2 S0ðoÞ, (5)

where e denotes the strain tensor at the microscopic scale and u is the microscopic displacement field.
2.3. Coupling relations and microscopic boundary conditions

Problems (3) and (5) are coupled through two main relations. First, as the constitutive relation is not explicitly given at
the macroscopic level, the effective stress tensor r is obtained by considering an average value of the microscopic stress
field over the RVE for a given point X of the macroscopic structure. This relation is expressed as follows:

r ¼/rS¼
1

9o9

Z
o
r do, (6)

where 9o9 represents the volume of the considered RVE.
The second relation concerns the mean value of the microscopic strain assumed in the following form:

e ¼/eS¼
1

9o9

Z
o

e do: (7)

This relation follows from the boundary conditions imposed on the RVE which depends on the macroscopic strain tensor e .
Different types of microscopic boundary conditions can be chosen such as linear deformations, uniform tractions, or periodic
constraints (see e.g. [30]). We consider, in this work, the periodic conditions on the boundary of the RVE:

uþ�u� ¼ e � ðXþ�X�Þ on qo (8)

The exponents þ and � are associated with nodes indices on opposite sides of the RVE (see Fig. 2). Note that the boundary
conditions depend on the macroscopic deformation tensor e .
2.4. Microscopic constitutive relations

At the microscopic scale, the constitutive relations are known for each phase of the RVE. For simplicity, we suppose that
each phase of the RVE is linear, homogeneous, isotropic and elastic or viscoelastic. So, the stress–strain law can be written
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Fig. 2. RVE with periodic boundary conditions.
in the following form:

s¼ 2meþlðe : IÞI,

m¼ E

ð1þnÞ
,

l¼
nE

ð1þnÞð1�2nÞ,

8>>>>><
>>>>>:

(9)

where E is a complex Young’s modulus, I being the second-order identity tensor and n denotes Poisson’s ratio which is
assumed to be constant, as in most analysis. The complex Young’s modulus usually depends on frequency and
temperature; but, here, to simplify the presentation, the following complex Young’s modulus is chosen:

E¼ E0ð1þ iZcÞ, (10)

where E0 is the real elastic modulus, Zc denotes the viscoelastic material loss factor and i2
¼�1. Note that, by setting

Zc ¼ 0, the classical Hooke’s law will be obtained.

3. Resolution strategy

We present in this section the strategy to solve the presented multiscale problems (Eqs. (3), (5), (6), (8) and (9)).
Because of the coupling conditions between macroscopic and microscopic problems, we start by solving partly the linear
microscopic problem. The obtained solution allows one to construct the localization tensor numerically and then, to obtain
the macroscopic tangent modulus.

In the context of vibration, there are usually two problem types: free and forced vibration problems. For the free
vibration problem, by using the obtained macroscopic tangent modulus, a macroscopic eigenvalue problem to solve is
obtained. This eigenvalue problem gives the macroscopic natural frequencies and their modes. In the case of forced
vibration, one can solve the macroscopic equilibrium problem to obtain the displacement field u. This displacement is then
used to compute the macroscopic strain e and to finish the computation of the variables at the microscopic level.

3.1. Localization tensors

We solve first numerically the linear microscopic problem by considering the coupling conditions. The solution of the
microscopic problem depends linearly on the imposed macroscopic strain. Hence, we can obtain the localization tensor,
which allows expressing the microscopic strain with respect to the macroscopic one. The microscopic problem can be
defined as follows: R t

o r : de do¼ 0,

r¼ CðrÞ : e ,

e ¼ 1
2ð=uþ t=uÞ,

8>><
>>: þB:C: : uþ�u� ¼ e � ðXþ�X�Þ on qo (11)

where CðrÞ is the fourth-order material constitutive tensor associated with phase (r). In this formulation, only the
displacement vector will be discretized in the context of the finite element method. Hence, the substitution of the
constitutive relation into the equilibrium one gives

Lðu,duÞ ¼ 0 in oþB:C: :

uþ�u� ¼ e � ðXþ�X�Þ on qo, (12)



where

Lðu,duÞ ¼
Z t

o
de : CðrÞ : e do: (13)

As the problem is linear, its solution, u, can be decomposed into modes associated with different microscopic boundary
condition responses. Hence, in the 2D case, we can write through the methodology which can be readily extended to a
three-dimensional case

u¼ E11 ~u
ð11Þ
þE22 ~u

ð22Þ
þ2E12 ~u

ð12Þ in o, (14)

where ~uðijÞ are the solutions of the following problems:

Lð ~uðijÞ,duÞ ¼ 0 in o,

~uðijÞ� ~uðijÞ ¼XðijÞ on qo,

(
(15)

with

Xð11Þ
¼

1 0

0 0

� �
ðXþ�X�Þ,

Xð22Þ
¼

0 0

0 1

� �
ðXþ�X�Þ,

Xð12Þ
¼

1

2

0 1

1 0

� �
ðXþ�X�Þ:

The exponents (ij) simply indicate that the sought response is related to the component Eij of the macroscopic strain
tensor. Finally, the solution u can be written as follows:

u¼A : e , (16)

where A is the third-order tensor defined by Aijk ¼ ~uðjkÞi . The introduction of Eq. (16) in the definition of microscopic strain
tensor, e , gives

e ¼A,X : e , (17)

where A,X ¼
1
2 ð=Aþ t=AÞ is the fourth-order tensor identified as the localization tensor.

3.2. Homogenization tensor and macroscopic problem to solve

To obtain the macroscopic homogenized stress–strain law, we consider Eq. (112):

r¼ CðrÞ : e : (18)

Substituting relation (17) into (18) gives

r¼ ðCðrÞ : A,XÞ : e : (19)

The effective stresses can be obtained by averaging Eq. (19)

r ¼ C : e (20)

where C is the fourth-order homogenization tensor defined as

C ¼
1

9o9

Z
o

CðrÞ : A,X do:

By introducing (20) into (3), we obtain the final form of the macroscopic problem:Z
O
de : C : e dOþ

Z
O
du � r q2u

qt2
dO¼

Z
qOf

f � du dG: (21)

The problem (21) can be solved by the finite element method. As mentioned before, here, the free and forced vibration
problems are considered. In the context of free vibration ðf ¼ 0Þ, after the finite element discretization of this problem, we
can obtain the classical complex eigenvalue problem at the macroscopic level

ðK�o2MÞu ¼ 0, (22)

where K is a complex macroscopic stiffness matrix and M denotes the macroscopic mass matrix. o represents the
structure natural frequency. The amplitude Eq. (22) leads to an approximate complex eigenfrequency that can be written
in the following classical form:

o2
¼O

2
ð1þ iZÞ, (23)



where O is the damped frequency and Z is the loss factor of each vibration mode. Furthermore, in the case of forced
vibration ðfa0Þ, the discretized problem may be given as follows:

ðK�l2MÞu ¼ Fðl,tÞ, (24)

where l is the excitation frequency and F denotes the prescribed force depending on l and time, t. Solution u of (24) and
Eq. (16) are used to finish the computation of the variables at the microscopic level for each integration point of the
macroscopic structure.

Box 1–Summary of the homogenization procedure.

(i): Expand u as a linear form of e (Eq. (16)) :

u¼A : e

(ii): Construct the localization tensors AX (Eq. (17)):

e ¼AX : e

(iii): Express r using the known constitutive relationship at the micro level (Eq. (19)):

r¼ ðCðrÞ : AX Þ : e

(iv): Average to find the effective constitutive law (Eq. (20)):

r ¼C : e
The layout of the homogenization procedure is summarized in Box 1.

4. Numerical examples

We study the accuracy and the efficiency of the proposed multiscale technique through several numerical examples.
The results are presented here through two free vibration examples. The first one concerns the vibration of a viscoelastic
heterogeneous beam. It is used to show the validity of the proposed multiscale algorithm. This approach is validated by
comparing it with a fully meshed model. In this latter, details of all heterogeneities are meshed. In the second example, we
applied the multiscale approach to the vibration analysis of a viscoelastic sandwich beam. The proposed problems have
been discretized using two-dimensional finite element in the plane stress framework.

4.1. Heterogeneous beam

To assess the validity of our multiscale approach for vibration analysis, free vibration of a cantilever beam is studied.
Dimensions and characteristics of the beam are given in Table 1. The beam is assumed to be heterogeneous and the
heterogeneities are represented by viscoelastic circular inclusions into an elastic matrix (Fig. 3a).

In this example, the obtained results with our multiscale procedure are compared to those of a fully meshed structure
involving the explicit mesh of all heterogeneities (see Fig. 3b). The full mesh of the beam involves a three-node triangular
element, while in the second method, we have used a three-node triangular element to mesh the microstructure and a nine-node
quadrangular element to mesh the macrostructure. This latter discretized using 80 elements (20�4). The inclusion represents 28
percent of the RVE. By considering the relation of the constitutive tensor in the context of the plane stress framework:

C¼
E

1�n2

1 n 0

n 1 0

0 0
1�n

2

2
664

3
775,

the effective constitutive tensor, C, is shown in Table 2. Moreover, natural frequencies and loss factors obtained from two
methods are presented in Table 3. Although the proposed multiscale procedure can reproduce with good accuracy the complete
detailed heterogeneous structure response, there is a little difference between the results of two methods. This difference may be
due to macroscopic boundary condition effects; i.e. near the macroscopic boundary condition, the periodic microstructure



Table 1
Material properties and beam dimensions for Example 1.

Matrix material properties

Young’s modulus Em¼1000 MPa

Poisson’s ratio nm ¼ 0:45

Density rm ¼ 1550 kg=m3

Inclusion material properties

Young’s modulus Ei¼17940 kPa

Poisson’s ratio ni ¼ 0:3

Density ri ¼ 968:1 kg=m3

Loss factor Zc ¼ 0:6

Beam dimensions

Length L¼200 mm

Thickness h¼40 mm

Fig. 3. (a) Biphasic RVE: inclusion volume fraction is 28% and (b) full mesh of the beam using this RVE.

Table 2
Constitutive parameters of cantilever beam for Example 1 (Zc ¼ 0:6).

CMatrix (MPa) 1253:92 564:26 0

564:26 1253:92 0

0 0 344:83

2
64

3
75

CInclusion (MPa) 19:71þ11:83i 5:91þ3:55i 0

5:91þ3:55i 19:71þ11:83i 0

0 0 6:90þ4:14i

2
64

3
75

C (MPa) 603:64þ11:48i 194:67þ6:37i 0

194:67þ6:37i 603:64þ11:48i 0

0 0 140:24þ5:44i

2
64

3
75

Table 3
Natural frequencies and loss factors of cantilever beam for Example 1 (Zc ¼ 0:6).

Fully meshed model Multiscale method Dif.% (f) Dif.% (Z=Zc)

f (Hz) Z=Zc f (Hz) Z=Zc

97.57 0.0296 97.00 0.0293 0.59 0.93

505.74 0.0389 502.62 0.0385 0.61 1.10

1174.68 0.0451 1166.68 0.0442 0.68 1.92

1914.61 0.0505 1901.02 0.0486 0.71 3.71



Fig. 4. Cantilever sandwich beam.

Table 4
Material properties and beam dimensions for Example 4.2.

Elastic layers

Young’s modulus E0¼69 GPa

Poisson’s ratio n¼ 0:3

Density r0 ¼ 2766 kg=m3

Thickness h0¼1.524 mm

Viscoelastic layer

Matrix elastic modulus E1¼1794 KPa

Inclusion elastic modulus E2 ¼ E1=r (r is the stiffness ratio)

Poisson’s ratio n¼ 0:3

Matrix and inclusion density r¼ 968:1 kg=m3

Inclusion loss factor Zc ¼ 0:1,0:6,1:5

Thickness hv¼0.127 mm

Whole beam dimensions

Length L¼177.8 mm

Thickness h¼3.175 mm

Table 5
Material properties and dimensions of the beam with no damping.

Extreme layers

Young’s modulus E0¼69 GPa

Poisson’s ratio n¼ 0:3

Density r0 ¼ 2766 kg=m3

Thickness h0¼1.524 mm

Core layer

Young’s modulus Ec¼1794 KPa

Poisson’s ratio n¼ 0:3

Density rc ¼ 968:1 kg=m3

Thickness hc¼0.127 mm

Whole beam dimensions

Length L¼177.8 mm

Thickness h¼3.175 mm
assumption is no more valid. Nevertheless, this test shows the validity of this approach since the results of these two approaches
are rather similar.
4.2. Sandwich beam

In this example, to demonstrate the efficiency of the multiscale approach to analyse the vibration of sandwich
structures, we consider a three-layer cantilever sandwich beam (elastic/viscoelastic/elastic). The macrostructure has been
discretized using a nine-node quadrangular element, while a three-node triangular element has been used to mesh the
microstructures. The mesh of the macrostructure involves six elements (two elements per layer) through the thickness and
30 along the length (see Fig. 4). The material properties and dimensions of the beam are given in Table 4.

We study the influence of different parameters such as the stiffness ratio (r), the volume fraction (v¼ V2=V; V2 and V

are the inclusion and the RVE volumes, respectively) and the inclusion morphology on the modal frequencies and modal
damping. In the first two cases, the computed results have been compared with the obtained results from the study of a
sandwich elastic beam with no inclusions; i.e. a beam with no damping (see Table 5). It allows understanding well the
influence of various parameters on the damping and also, showing the capability of this method to design damping
materials. The characteristics of the beam with no damping and different comparison results are displayed in Appendix A.



Moreover, in all examples, the variation of the loss factors and the frequencies of the first vibration mode according to the
different studied parameters are only shown since different vibration modes have qualitatively the same variation.

4.2.1. Influence of the stiffness ratio

A biphasic RVE with circular inclusion (inclusion volume fraction of 20 percent) is considered. Fig. 5 shows the loss
factors and the frequencies of the first vibration mode in function of the stiffness ratio for three values of the core loss
factor: 0.1, 0.6 and 1.5. In both cases, the modal damping and the natural frequencies vary significantly when the stiffness
ratio is between 0.1 and 10. When the core loss factor increases, the natural frequency increases and the modal damping of
the structure decreases. The computed modal frequencies have been compared to the modal frequencies of a sandwich
10−3 10−2 10−1 100 101 102 10350

55

60

65

70
1st vibration mode

Stiffness ratio E1/E2

Fr
eq

ue
nc

y 
(H

z)

ηc = 0.1

ηc = 0.6

ηc = 1.5

10−3 10−2 10−1 100 101 102 103
0

0.02

0.04

0.06

0.08

0.1

0.12
1st vibration mode

Stiffness ratio E1/E2

Lo
ss

 fa
ct

or
 η

/η
c

ηc = 0.1

ηc = 0.6

ηc = 1.5

Fig. 5. Variation of modal damping and natural frequencies of the first vibration mode with respect to the stiffness ratio. Volume fraction v¼20%.

Table 6
Comparison of natural frequencies and modal damping: influence of stiffness ratio.

Zc Beam with inclusions Sandwich elastic beam

with no damping

r¼0.1 r¼1 r¼10

f (Hz) Z=Zc f (Hz) Z=Zc f (Hz) Z=Zc f (Hz)

0.1 66.3 0.010 64.1 0.056 59.4 0.053 64.1

306.1 0.010 296.9 0.048 280.5 0.033 296.8

760.4 0.007 745.3 0.030 721.0 0.018 745.2

1414.6 0.004 1397.9 0.018 1372.4 0.009 1397.8

2287.3 0.003 2269.9 0.011 2243.6 0.006 2269.8

0.6 66.4 0.007 64.5 0.047 59.5 0.052 64.1

306.4 0.007 298.3 0.041 280.8 0.033 296.8

761.1 0.005 747.5 0.027 721.3 0.017 745.2

1415.2 0.003 1400.3 0.015 1372.7 0.009 1397.8

2288.0 0.002 2272.3 0.010 2243.9 0.006 2269.8

1.5 66.5 0.003 65.5 0.025 60.0 0.047 64.1

307.1 0.003 302.1 0.024 282.1 0.031 296.8

762.2 0.002 753.7 0.016 723.0 0.017 745.2

1416.5 0.001 1407.0 0.009 1374.4 0.009 1397.8

2289.4 0.001 2279.4 0.006 2245.6 0.006 2269.8



elastic beam with no damping. A comparison between the obtained results for three values of the stiffness ratio (0.1, 1 and
10), is also shown in Table 6 in Appendix A.

4.2.2. Influence of the volume fraction

Like the previous example, we consider a biphasic RVE with circular inclusion, but, with different inclusion volume
fractions: 20%, 40% and 60%. Fig. 6 displays the curves of variation of the modal damping and the natural frequencies of the
first vibration mode according to the stiffness ratio for three considered volume fractions. The inclusion loss factor is equal
to 0.6 for three volume fractions. The modal damping increases with the volume fraction, whatever the stiffness ratio value
is. When the inclusion is more rigid than the matrix, increasing the volume fraction increases the natural frequency;
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Fig. 6. Variation of modal damping and natural frequencies of the first vibration mode with loss factor Zc ¼ 0:6. Three values of volume fraction are

considered: 20%, 40% and 60%.

Table 7
Comparison of natural frequencies and modal damping: influence of the volume fraction—I.

Zc Beam with inclusions: r¼0.1 Sandwich elastic beam

with no damping

v¼20% v¼40% v¼60%

f (Hz) Z=Zc f (Hz) Z=Zc f (Hz) Z=Zc f (Hz)

0.1 66.3 0.010 68.4 0.019 71.1 0.033 64.1

306.1 0.010 316.9 0.022 333.5 0.049 296.8

760.4 0.007 779.5 0.019 811.5 0.041 745.2

1414.6 0.004 1436.2 0.010 1474.5 0.028 1397.8

2287.3 0.003 2310.4 0.007 2351.8 0.019 2269.8

0.6 66.4 0.007 68.6 0.014 71.4 0.026 64.1

306.4 0.007 317.7 0.017 335.4 0.039 296.8

761.1 0.005 781.1 0.013 815.3 0.032 745.2

1415.2 0.003 1438.1 0.008 1479.1 0.022 1397.8

2288.0 0.002 2312.3 0.005 2357.0 0.015 2269.8

1.5 66.5 0.003 68.9 0.006 72.0 0.011 64.1

307.1 0.003 319.3 0.007 339.4 0.018 296.8

762.2 0.002 784.0 0.006 823.4 0.016 745.2

1416.5 0.001 1441.5 0.004 1489.2 0.011 1397.8

2289.4 0.001 2316.0 0.002 2368.1 0.008 2269.8



however, when the inclusion is less rigid than the matrix, increasing the volume fraction decreases the natural frequency.
More results are shown in Tables 7–9 in Appendix A which display a comparison of natural frequencies and modal
damping between the studied beam and a sandwich elastic beam with no damping for different stiffness ratios and volume
fractions.

4.2.3. Influence of the morphology

We have studied three types of inclusion morphology: circular and, vertical and horizontal elliptical inclusions (see
Fig. 7). The volume fraction is v¼ 20% and the core loss factor is Zc ¼ 0:6. The ratio of the minor radius to the major one is
0.4 for the elliptical inclusions. Fig. 8 shows the curves of variation of the modal damping and natural frequencies for three
types of morphology. The results of the horizontal and vertical elliptical inclusions are similar and different to those from
circular inclusions. Indeed, the damping of three-layered sandwich structures with viscoelastic middle layer is mainly due
to the shear deformation in the viscoelastic core especially when the faces are stiff [7–11, 29]. Moreover, although the
effective stiffness tensors for two elliptical inclusions are anisotropic, with two different values along the principal
directions of the ellipsoids, the obtained shear effective moduli in two cases are identical. Hence, the shear energy
Table 8
Comparison of natural frequencies and modal damping: influence of the volume fraction—II.

Zc Beam with inclusions: r¼1 Sandwich elastic beam

with no damping

v¼20% v¼40% v¼60%

f (Hz) Z=Zc f (Hz) Z=Zc f (Hz) Z=Zc f (Hz)

0.1 64.1 0.056 64.1 0.112 64.2 0.168 64.1

296.9 0.048 296.9 0.096 296.9 0.145 296.8

745.3 0.030 745.3 0.061 745.3 0.092 745.2

1397.9 0.018 1398.0 0.035 1398.0 0.053 1397.8

2269.9 0.011 2269.9 0.023 2270.0 0.034 2269.8

0.6 64.5 0.047 64.9 0.093 65.2 0.141 64.1

289.3 0.041 299.5 0.084 300.2 0.130 296.8

747.5 0.027 749.2 0.055 749.9 0.085 745.2

1400.3 0.015 1402.1 0.032 1402.6 0.050 1397.8

2272.3 0.010 2274.2 0.020 2274.7 0.032 2269.8

1.5 65.5 0.025 66.8 0.049 68.0 0.078 64.1

302.1 0.024 307.2 0.051 311.0 0.088 296.8

753.7 0.016 761.7 0.035 767.0 0.063 745.2

1407.0 0.009 1415.6 0.021 1420.7 0.038 1397.8

2279.4 0.006 2288.3 0.014 2293.4 0.025 2269.8

Table 9
Comparison of natural frequencies and modal damping: influence of the volume fraction—III.

Zc Beam with inclusions: r¼10 Sandwich elastic beam

with no damping

v¼20% v¼40% v¼60%

f (Hz) Z=Zc f (Hz) Z=Zc f (Hz) Z=Zc f (Hz)

0.1 59.4 0.053 53.9 0.137 49.4 0.217 64.1

280.5 0.033 266.5 0.062 257.6 0.075 296.8

721.0 0.018 703.2 0.027 693.2 0.029 745.2

1372.4 0.006 1354.5 0.014 1344.8 0.014 1397.8

2243.6 0.006 2225.5 0.009 2215.9 0.009 2269.8

0.6 59.5 0.052 54.2 0.133 49.8 0.209 64.1

280.8 0.033 267.0 0.061 258.0 0.074 296.8

721.3 0.017 703.5 0.027 693.5 0.029 745.2

1372.7 0.009 1354.9 0.014 1345.0 0.014 1397.8

2243.9 0.006 2225.9 0.009 2216.1 0.009 2269.8

1.5 60.0 0.047 55.6 0.115 51.7 0.177 64.1

282.1 0.031 269.2 0.057 260.3 0.069 296.8

723.0 0.017 705.5 0.026 695.0 0.028 745.2

1374.4 0.009 1356.7 0.014 1346.4 0.014 1397.8

2245.6 0.006 2227.7 0.008 2214.4 0.009 2269.8



Fig. 7. Biphasic RVE with circular and, vertical and horizontal elliptical inclusions; volume fraction v¼20%.
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Fig. 8. Variation of modal damping and natural frequencies of the first vibration mode with loss factor Zc ¼ 0:6 for three considered morphologies for the

sandwich beam; volume fraction v¼20%.
developed by the biphasic RVEs with horizontal and vertical elliptical is the same and differs to that in the RVE with
circular inclusions. Note that a higher modal damping properties can be obtained from sandwich beam with circular
inclusions. The natural frequencies of circular inclusion are higher than those of elliptical inclusions when the inclusion is
more rigid than the matrix; but, when the rigidity ratio is increased, the natural frequencies of circular inclusion are lower
than those of elliptical inclusions.

To show well the influence of morphology, a heterogeneous beam like the first example is considered. The material
properties are the same as the viscoelastic core layer in the sandwich structure. Moreover, in our study, the ratio between
the minor and major radii of elliptical inclusion (b/a) (see Fig. 9) is taken into account by fixing the inclusion volume
fraction of v¼20%. Fig. 10 shows the loss factors and the frequencies of the first vibration mode in function of the stiffness



Fig. 9. Biphasic RVE with elliptical inclusion.
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Fig. 10. Variation of modal damping and natural frequencies of the first vibration mode with loss factor Zc ¼ 0:6 for different values of b/a for the

heterogeneous beam; volume fraction v¼20%.



ratio for different values of b/a. The beams with b=ao1 (horizontal elliptical inclusions) have always higher natural 
frequencies. The values of modal damping of the beams with b=a41 (vertical elliptical inclusions) are higher when the 
inclusion is less rigid than the matrix; but, when the rigidity ratio is decreased, the beams with b=ao1 (horizontal 
elliptical inclusions) have higher values of modal damping. The results of the circular inclusion (b/a¼1) are normally 
between ones of vertical and horizontal elliptical inclusions.

5. Conclusion

Based on the multiscale approach, a numerical method has been proposed for vibration analysis of sandwich structures 
with viscoelastic inclusions. It consists in computing numerically the effective properties by solving a finite element 
problem at the microscopic scale and the damping properties (loss factor and frequency) by solving a complex eigenvalue 
problem at the macroscopic scale. In this way, we can study the influence of different parameters on the passive damping of 
the structure such as the morphology, the stiffness ratio and volume fraction of the viscoelastic inclusion. However, this 
approach is limited to the low or medium frequency range because of neglecting inertia effects at the microscopic scale. 
Numerical examples have been presented to validate the approach and to estimate the loss factor in the case of sandwich 
structure with constant complex modulus for instance. This method can be very useful in the design of sandwich structures 
with optimized damping properties. Ongoing work concerns the development of a procedure in which the microscopic 
inertia effects and the more general viscoelastic models are taken into account.
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[19] P. Kanouté , D.P. Boso, J.L. Chaboche, B.A. Schrefler, Multiscale methods for composites: a review, Archives of Computational Methods in Engineering 16 

(2009) 31–75.
[20] S. Nezamabadi, H. Zahrouni, J. Yvonnet, M. Potier-Ferry, A multiscale finite element approach for buckling analysis of elastoplastic long fiber 

composites, International Journal for Multiscale Computational Engineering 8 (2010) 287–301.
[21] R.M. Christensen, Viscoelasticproperties of heterogeneous media, Journal of the Mechanics and Physics of Solids 17 (1969) 23–41.
[22] M. Koishi, M. Shiratori, T. Miyoshi, K. Kabe, Homogenization method for dynamic viscoelastic analysis of composite materials, JSME International 

Journal Series A 40 (1997) 306–312.
[23] Y.M. Yi, S.H. Park, S.K. Youn, Asymptotic homogenization of viscoelastic composites with periodic microstructures, International Journal of Solids and 

Structures 17 (1998) 2039–2055.
[24] Y.M. Yi, S.H. Park, S.K. Youn, Design of microstructures of viscoelastic composites for optimal damping characteristics, International Journal of Solids 

and Structures 37 (2000) 4791–4810.
[25] P.W. Chung, K.K. Tamma, R.R. Namburu, A micro/macro homogenization for viscoelastic creep analysis with dissipative correctors for heterogeneous 

woven-fabric layered media, Composite Science and Technology 60 (2000) 2233–2253.
[26] G. Dai, W. Zhang, Cell size effects for vibration analysis and design of sandwich beams, Acta Mechanica Sinica 25 (2009) 353–365.
[27] H.H. Zhang, L.X. Li, Modeling inclusion problems in viscoelastic materials with the extended finite element method, Finite Elements in Analysis and 

Design 45 (2009) 721–729.
[28] A. Arau´ jo, C.M. Soares, J. Herskovits, P. Pedersen, Estimation of piezoelastic and viscoelastic properties in laminated structures, Composite Structures 87 (2009) 168–

174.
[29] C. Johnson, D. Kienholz, L. Rogers, Finite element prediction of damping in beams with constrained viscoelastic layers, Shock and Vibration Bulletin 51 (1981) 71–81.
[30] C. Miehe, Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged 
incremental energy, Computer Methods in Applied Mechanics and Engineering 192 (2003) 559–591. 


	A multiscale approach for the vibration analysis of heterogeneous materials: Application to passive damping
	Introduction
	Multiscale formulation of the vibration problem
	Problem at the macroscopic scale
	Problem at the microscopic scale
	Coupling relations and microscopic boundary conditions
	Microscopic constitutive relations

	Resolution strategy
	Localization tensors
	Homogenization tensor and macroscopic problem to solve

	Numerical examples
	Heterogeneous beam
	Sandwich beam
	Influence of the stiffness ratio
	Influence of the volume fraction
	Influence of the morphology


	Conclusion
	Different result tables
	References




