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Hervé V.J. Le Meur

CNRS, Laboratoire de Mathématiques d’Orsay,
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Abstract

It is proved in [9] that the problem of minimizing a Dirichlet-like functional of
the function uh discretized with P1 Finite Elements, under the constraint that uh

be convex, cannot converge to the right solution at least on a very wide range of
meshes. In this article, we first improve this result by proving that non-convergence
is due to a geometrical obstruction and remains local. Then, we investigate the
consistency of various natural discretizations (P1 and P2) of second order constraints
(subharmonicity and convexity). We also discuss various other methods that have
been proposed in the literature.

subjclass: 26B25, 49M25, 65K10
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1 Introduction

This paper is devoted to the numerical discretization of optimization with constraints on
the second order derivative, namely problems of the form

{

inf J(u),
D2u ∈ K,

(1)

where J is a functional and K is a subset of the symmetric matrices set. Such problems
appear in various contexts, in particular in physics and economics.

Since Newton, the shape of minimal resistance has been a topic of interest. It is called
the Newton’s problem. With some additional assumptions, it amounts to looking for
a concave function that minimizes a nonlinear functional. See for instance the original
book [17], the historical survey in [11], more recent theoretical results in [3, 13, 15] or a
numerical result [12].

The underlying problem of discretizing convex functions or bodies is indeed wider
than expected. For instance, the Alexandrov’s problem (see [4] and [12]), the Cheeger’s
constant [12, 5] and the Newton’s problem [12] can be numerically studied.
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In economics, it suffices to remember that utility functions are concave to see the very
wide applicability of these problems. For instance, in [18], the authors are interested
in finding the minimum of a convex and quadratic functional J over the set of convex
functions

min
u∈K

J(u) for J(u) =

∫

Ω

(

1

2
∇uT C∇u− x.∇u+ (1− α)u

)

dx, (2)

where 0 ≤ α ≤ 1 and C is a (2,2) symmetric positive definite matrix and K is given by

K = {u ∈ H1(Ω), u ≥ 0, ux ≥ 0, uy ≥ 0, u convex }. (3)

So J is strictly convex and the set K is convex. It is then easy to check that there exists
a unique minimizer of J over K. The regularity of the solutions is studied in [6].

Note that, when α = 1, the problem degenerates: an exact solution exists, up to an
additive constant by a convex function

∇u(x) = C−1x ⇒ u(x) = x′C−1x/2− Cst. (4)

In [9], Choné and Le Meur extensively use this explicit solution to prove both the-
oretically and numerically an obstruction to the convergence of the mere discretization
of this problem through conformal P1 Finite Element (FE) method on a wide range of
meshes. Here conformal means that the discretized function is supposed to satisfy exactly
the continuous constraint. As a consequence of this result, no optimization process that
would use such conformal P1 discretization of both the functional and the constraint may
converge for any solution on these meshes.

A possible approach to circumvent the mesh problem is, first, to test whether a sample
of values on given points (and not mesh) may be associated to a convex function or
body. Then one must construct the associated mesh (so, function dependent !) so as
to interpolate. This was done in [14] for C1 FE by Leung and Renka. But such a
regularity is too restrictive for us. This article [14] reviews other papers, some of them
being commented as false. It proves that the issue is not so simple.

The H1
0 projection of a given function is addressed in [7] through saddle-point prob-

lems. In this article, the authors even weight the convexity constraint to enable the
existence of a saddle-point. The computations appear to be more robust than expected
by theory. An attempt of explanation is given in [16].

In [8], the authors describe and implement an algorithm that optimizes not in the set
of discretized and convex (i.e. conformal) functions but in the set of the convex functions
after discretization (so that they may be non-convex). More precisely they characterize,
for a specific structured set of cartesian points, the image through the P1 discretization
of a (continuous) convex function. This yields such a huge number of constraints on the
function that it may not be recommended.

Last in [12], Lachand-Robert and Oudet address the problem of discretizing a convex
body. They use the parametric generalization in order to discretize convex function’s
graphs. In the functional, they isolate the dependence on the point x, the unit normal ν
at x and the signed distance φ = ν.x. Although they notice that the three variables are
“somehow redundant”, they implement a gradient like method, based on the variation of
only φ = x.ν. They address both the Alexandrov’s problem, the Cheeger’s sets and the
Newton’s problem. This was revisited since in [5].
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Separately, Aguilera and Morin [1] prove convergence of a Finite Difference (FD)
“approximation using positive semidefinite programs and discrete Hessians”. In [2], the
same authors prove even convergence of a Finite Element (FE) discretization of the weak
Hessian.

Since FD are included in FE for convenient meshes, these two articles seem to contra-
dict both [9] and the present article. We will discuss them below (section 5).

More recently, in [10], Ekeland and Moreno propose a non-local discretization that
relies on the representation of any convex function as the supremum of affine functions
(its minorants). So their “discrete” representation of continuous functions is conformal
but non-local. The major drawback is that the complexity increases drastically with
dimension, due to the nonlocality, but it works.

The present article deals with two main types of non-convergence results. On the one
hand, the non-convergence in L2 for conformal P1 Finite Element (FE) is revisited after
[9] from a theoretical point of view. On the other hand, the consistency of discretized
linear optimization over second order constraints is investigated for various discretizations
(P1 and P2) and various constraints: linear (subharmonicity) or nonlinear (convexity).

In Section 2, first we restate some already known results, then we prove that non-
convergence is purely local. In Section 3, we investigate the consistency of various P1 FE
discretizations of our model problem. Section 4 is devoted to the consistency of P2 FE
discretizations (strong or weak convexity). We discuss the articles [1, 2] that could seem
to contradict [9] in Section 5 and we conclude in Section 6.

2 The P1 FEM

In the present section, we first recall some already known results and make them more
explicit. Symbolic computations were done through a MAPLE worksheet available on the
web page of the author.

2.1 Already known results

In [9], various results are proved. Since the goal in the present subsection is to extend
this study, we need to remind the reader of these results. The Lemma 3 of [9] states:

Lemma 1 A function uh, P1 in the rectangle [a, b]2, is convex if and only if, for any pair
of adjacent triangles

(q2 − q1).n ≥ 0, (5)

where q1 (resp. q2) is the (constant) gradient of uh inside triangle 1 (resp. 2) and n is
the unit normal pointing from triangle 1 to 2.

As reminded in [9], convexity of u can be defined dually as − < ∇u⊗∇v >� 0 where
A � 0 means the matrix A is semidefinite positive (SDP) and v is a test function in C∞

0 .
This definition is strong since the test functions are in C∞

0 . One can easily check that
the strong definition of convexity (with C∞

0 test functions) implies the weak definition
of convexity (with only the basis functions in P1 associated to interior points as test
functions). Yet, they are not equivalent. Such a weak P1 convexity is the same as the
“FE-convexity” defined by [2] (for P1 FE).
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The proof of Lemma 1 is based on the following formula written for uh, a P1 discretiza-
tion of u:

<
∂2uh

∂a∂b
, ϕ >=

∑

e

(q2 − q1).n (n.a)(n.b)

∫

e

ϕ(s)ds, (6)

where the summation is taken over all interior edges e of the mesh, a and b are two unit
vectors, ϕ is a C∞ function with compact support in Ω, q1 and q2 designate the two
(constant) gradients of uh in the two triangles that share the edge e and n is the unit
normal from triangle 1 to triangle 2. This formula is right thanks to the property that
the gradient of a continuous function across the edge has its tangential derivative along
the edge continuous. Namely (q2 − q1).t = 0 where t is the unit tangent vector.

The proof relies also on the fact that (a,b) 7→ (n.a)(n.b) is a bilinear form which
quadratic form is semidefinite positive, whatever n.

Through a proof very similar to the one of Theorem 4 in [9], one may prove a wider
Theorem:

Theorem 2 Let Ω be an open subset of R2 and Th a triangulation of Ω. If there exists
an open subset Ω′ ⊂ Ω such that the following property is satisfied in Ω′ and for the mesh
Th:

(PM)

{

∃(a,b) two independent unit vectors such that (n.a)(n.b) ≥ 0
for all n unit normal to an edge of Th

⋂

Ω′ (7)

then any function uh convex and P1 will satisfy the following equation in the sense of
distributions on Ω′:

∂2uh

∂a∂b
≥ 0. (8)

The proof relies on the fact that if a function uh is convex (in a dual definition with
C∞
0 test functions), then by Lemma 1, the gradient’s jumps are non-negative. As a

consequence, in Formula (6), if uh is convex, the scalar coefficients (q2 − q1).n will be all
non-negative. But separately, if condition (PM) is satisfied, (n.a)(n.b) ≥ 0 and so even
the non-diagonal terms of the hessian (∂2uh/(∂a∂b)) will be sign-constrained !

Notice first that property (PM) only depends on the geometry of the mesh and not
on any function. Notice then that the property (PM) is at given h but, if it remains
for a sequence of h → 0 in Ω′ ⊂ Ω, then the associated sequence of function uh given
by Theorem 2 will satisfy (8) even at the limit in Ω′ ⊂ Ω. Yet such a property (8) is
contradictory with the property of convexity. This is the key of the obstruction to the
convergence stated in [9]. The next subsection is devoted to discussing the generality of
(PM).

2.2 Is property (PM) frequent ?

In this subsection, we start from some elementary observations on particular meshes, then
we argue on whether such meshes are frequent and state a Theorem. Four types of meshes
may be considered that are depicted in Figure (1).

Concerning mesh 1, three different unit normals (up to a multiplicative factor−1) exist
in all the domain: {(0, 1); (1, 0); (−1/

√
2, 1/

√
2)}. If we choose a = (−1, 0) and b = (0, 1),

the values taken by (n.a)(n.b) are {0; 0; (1/
√
2)(1/

√
2)}. They are all nonnegative.
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mesh 1 mesh 2 mesh 3 mesh 4

Figure 1: Four meshes.

Concerning mesh 2, three different unit normals (up to a multiplicative factor−1) exist
in all the domain: {(0, 1); (1, 0); (−1/

√
2,−1/

√
2)}. It suffices to choose a = (1, 0) and

b = (0, 1) to have the three values taken by (n.a)(n.b) among {0; 0; (−1/
√
2)(−1/

√
2)}.

They are all nonnegative.
Concerning mesh 3, four types of unit normals can be found in all the domain: {(0, 1);

(1, 0); (−1/
√
2, 1/

√
2); (1/

√
2, 1/

√
2)}. If we choose a = (1, 0) and b = (1/

√
2,−1/

√
2),

the values taken by (n.a)(n.b) are {1/
√
2; 0; (−1/

√
2)(−1); 0}. They are all nonnegative.

Any structured mesh like mesh 1, 2 or 3, if it is refined while keeping the same
structure, will satisfy (PM) with the very same a and b for any h. But what can be
stated about a more general mesh like mesh 4 ?

We are going to prove the following Theorem.

Theorem 3 Let Ω be an open set of R2, Ω′ ⊂ Ω an open subset and Th a triangulation
of Ω.
For any given h and Ω′, there exist (a,b) such that (PM) is true in Ω′ and for Th.
Moreover, if the refinement process does not enrich the edges’ directions of Thn

in Ω′, then
the property (PM) will be true for any Thn

in Ω′.

Proof of Theorem 3
First, one must notice that the condition (n.a)(n.b) ≥ 0 is invariant through changing n
into −n. So, it does not depend on the choice of the normal to the hyperplane.

Let us take a very general mesh like mesh 4 for which we may isolate a single triangle.
Then, for each of the three unit normals (up to the multiplicative coefficient -1), having
(n.a)(n.b) ≥ 0 is equivalent to having a and b in the same closed half plane whose
normal is n. Equivalently, we can take either a and b on the same side as n or on the
opposite side. Gathering the conditions associated to each of the three edges, we are led to
choosing a and b in the same half cone that contains none of the three hyperplane. Such
a configuration is depicted on Figure (2). The three unit normals are drawn and called
n1, n2, n3 and their associated hyperplanes are called P1, P2, P3 and are bold. Then one
may choose the pair (a,b) both in any of the six half cones. So, one may easily find such
a couple (a,b) for any given triangle.

Even better, whatever might be the finite number of edges for a larger Ω′ and a given
Th, one sees obviously that such a choice of a and b is easy since there will always be a
finite number of hyperplanes. As a consequence, a and b can be choosen to be both in
any of the cones which partition the whole space. So the property (PM) is true even on
any given and potentially unstructured mesh of a subdomain of Ω.

Could a refinement process let the property (PM) be true for a given couple (a,b), a
given Ω′ and any h → 0 ?

In case of any general given mesh Th we have just proved that one may find a and b,
should they suit the property only in Ω′. Then, for instance, if the refinement process is
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Figure 2: Unit normals and the associated hyperplanes in case of a triangle.

such that every triangle in Ω′ is refined into four homothetic subtriangles, it is obvious
that no more direction of edges will be provided. As a consequence, the very same a and
b will then suit property (PM) in Ω′ for any refined mesh and any h. As stated in the
Theorem, if the refinement process does not enrich the edges, the (a,b) will suit and the
proof is complete.

In a sense to be defined, the set of refinement processes that enable (PM) is open
and non-empty. For those interested in refinement processes, we conjecture a sufficient
condition although we do not know whether there could exist a refinement process sat-
isfying this property. It means that any segment has a normal unit vector which can
be approximated by normals of successive edges of the mesh’s triangles (for space step
sufficiently small).

Conjecture 4 Let Thn
and its refinement process of the open set Ω in R

2 be such that

∀[b0, b1] ⊂ Ω′ ⊂ Ω and its unit normal n, ∀V0 ∈ V(b0), ∀V1 ∈ V(b1), ∀V ∈ V([b0, b1]),
∀ε > 0, ∃N ≥ 0, ∀n ≥ N, ∃γn, a continuous union of edges from the mesh Thn

such that

γn(0) ∈ V0, γn(1) ∈ V1, γn(t) ∈ V for all t and
∫ 1

0
|< n,n(t) >| dt ≥ 1− ε,

where n(t) is a unit normal to the path γn.
Then there exists no (a,b) such that property (PM) be true for any hn.

2.3 More precision in non-convergence

In [9], the authors state that the ”conformal method may not converge for some limit
function” because the second derivative of the limit is forced to satisfy an unnatural
condition. In this subsection, we give a more precise result in L2 and still use our Lemma
1 that enables to identify the convexity of uh and the non-negativity of its gradients’
jumps (for P1 FE). This enables us to state our main Theorem:

Theorem 5 Let Ω be an open domain in R
2, Ω′ an open subdomain of Ω and a family

of meshes (Th)h→0+. If the property (PM) is satisfied in Ω′ and for the meshes (Th)h→0,
then there exists ε > 0 and a C∞ convex function uexact such that

min
uh ∈ P1 and uh convex

| uh − uexact |L2≥ ε.
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This Theorem uses that if Property (PM) is satisfied in a domain Ω for a family of
meshes (Th)h→0+, should it be only locally in Ω′, there will be two unit vectors a,b such
that (8) holds. Given those a,b, there exists a function uexact that may not be the limit
in L2 of any sequence of functions both P1 and convex (in a strong definition) on this
family of meshes.

We need some more preliminary results and definitions before proving our result con-
cerning P1 FE.

Definition 1 Let Ω be an open subset of R2, and u ∈ C0(Ω). For any x = (x, y) ∈ Ω and
(a,b) two independent unit vectors, there exists (α0, β0) ∈ R

+∗2 such that

∀α, 0 ≤ α ≤ α0, ∀β, 0 ≤ β ≤ β0,
x+ αa+ βb = (x+ αa1 + βb1, y + αa2 + βb2) ∈ Ω.

For such (α0, β0, a,b), one defines:

φ(α0,β0,a,b)(u) = (u(x+ α0a+ β0b)− u(x+ α0a)− u(x+ β0b) + u(x)) /(α0β0).

If α0 = β0 → 0+, then φ(α0,β0,a,b)(u) → ∂2u/(∂a∂b). Then φ(α0,β0,a,b)(u) may be con-
sidered as a kind of double integral of ∂2u/(∂a∂b). We are going to prove that such a
quantity φ(α0,β0,a,b)(u) will be overconstrained by the mere discretization and the limit u
will not satisfy the right sign of the second derivative.

We want now to define an explicit solution depending on some parameters. A well-
chosen combination of these parameters will trigger a non-approximable function. Let
Ω =]1, 2[2 and the problem (2, 3) for a positive symmetric definite matrix C be such that:

C =

(

µ2 ρ
ρ µ1

)

. (9)

Then there exists an exact solution thanks to (4):

uexact = 1
µ1µ2 − ρ2

(µ1(x
2 − 1)/2 + µ2(y

2 − 1)/2− ρ(xy − 1)) in Ω. (10)

The function uexact is such that it is zero at the corner (1, 1) of the domain Ω chosen but
it can easily be generalized to other domains. Simple computations prove the following
formula:

φ(α0,β0,a,b)(uexact) =
1

µ1µ2 − ρ2
(µ1a1b1 + µ2a2b2 − ρ(a1b2 + a2b1)) = a′C−1b, (11)

where a1, a2, b1, b2 are the components of a,b. It is then useful to state the following
Lemma.

Lemma 6 Let a,b be two given independent unit vectors in R
2. Let Ω ⊂ R

2 and η > 0
given. Then, there exists (µ1, µ2, ρ) such that µ1 ≥ 0, µ2 ≥ 0, µ1µ2 − ρ2 ≥ 0 and

φ(α0,β0,a,b)(uexact) = a′C−1b ≤ −η in Ω, (12)

provided (α0, β0) ∈ R
+∗2 are such that there exists φ(α0,β0,a,b)(uexact).
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Roughly speaking, Lemma 6 claims that for any independent a,b, one may find a
positive definite matrix C−1 such that the associated uexact satisfies

φ(α0,β0,a,b)(uexact) = a′C−1b < 0.

Proof of Lemma 6
From the formula (11), one sees that it is sufficient to find a positive symmetric bilinear
form (C−1) such that, for independent a,b given, a′C−1b < 0. We will build up C−1

from its eigenvalues and eigenvectors.
Let e1 be a unit vector between a and b (normalized mean for instance). Then let e2

be a unit vector normal to e1. With the same notations for a and b in this new basis as
above, a1b1 > 0 and a2b2 < 0.

Let now C−1 be a matrix in the canonical basis with the eigenvectors e1, e2 and
the associated positive eigenvalues λ1, λ2. Obviously, C is positive semidefinite. Then
a′C−1b = λ1a1b1 + λ2a2b2 which may be less than −η given, for an appropriate choice
of λ1, λ2. Then the (µ1, µ2, ρ) are the coefficients of the matrix C in the canonical basis
given by (9).

We have now proved all what is needed to start the following proof.

Proof of Theorem 5.
Since we assume (PM) is satisfied for (Th)h→0 and (a,b) in Ω′, Theorem 2 enables us to
claim that any P1 function uh satisfies (8) in the sense of distributions in Ω′:

0 ≤ <
∂2uh

∂a∂b
,Ψ >Ω=< uh,

∂2Ψ

∂a∂b
>Ω, (13)

for any nonnegative Ψ ∈ C∞
0 (Ω′). This property obviously remains for open subdomains

of Ω′.
Should it be needed, one could decrease α0, β0 > 0 and find a subdomain Ω′′ ⊂ Ω′

such that for any nonnegative ϕ ∈ C∞
0 (Ω′′), the function

Ψ : x 7→
∫ 1

0

∫ 1

0

ϕ(x− tα0a− t′β0b) dt dt
′, (14)

be nonnegative and in C∞
0 (Ω′). So the function Ψ is eligible for equation (13). The second

derivative of Ψ may be computed:

∂2Ψ
∂a∂b

= (ϕ(x− α0a− β0b)− ϕ(x− β0b)− ϕ(x− α0a) + ϕ(x)) /(α0β0)

= φ(α0,β0,−a,−b)(ϕ).

So we have, for any nonnegative ϕ ∈ C∞
0 (Ω′′):

0 ≤< ∂2uh

∂a∂b
,Ψ >Ω =< uh,

∂2Ψ
∂a∂b

>Ω

=< uh, φ(α0,β0,−a,−b)(ϕ) >Ω′′

=< φ(α0,β0,a,b)(uh), ϕ >Ω′′ .

(15)

Separately, given a,b, η > 0, Lemma 6 enables us to claim there exists a convex
quadratic function uexact such that (12) is true for η > 0 given. Moreover, because
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of (15), since the open set Ω′′ ⊂ Ω′ is of non-zero measure, and φ(α0,β0,a,b)(uexact) is a
constant known by (11), we have

< φ(α0,β0,a,b)(uh − uexact), ϕ >Ω′ ≥ −φ(α0,β0,a,b)(uexact)

∫

Ω

ϕ.

As a consequence, for convenient Ω′′, we are led to

< φ(α0,β0,a,b)(uh − uexact), ϕ >Ω′′≥ η

∫

Ω

ϕ, (16)

for any nonnegative ϕ ∈ C∞
0 (Ω′′) and uh convex and P1. This last inequality contradicts

any possible convergence in L2(Ω′′) of a sequence uh of convex functions P1 in (Th)h to
uexact given by Lemma 6.

The previous Theorem adds one more argument to the need for convenient numerical
tools to discretize the constraint of convexity.

3 The P1 FEM

First we study a strong discretization of convexity then a weak one.

3.1 Use of the gradients’ jumps for convexity

The non-convergence of the convexity problem (2, 3) discretized by conformal P1 Finite
Elements is proved and numerically illustrated in [9] and is made more precise in the
subsection 2.3. We give here a different argument.

1
2

3

4

5

6

x=h

y
=h

x 1

1
y u

uu

u

u u

u 2

34

5

6 7

1

Figure 3: Local shape of the mesh close to (x1, y1).

Given a function u, one may interpolate it in P1 FE as uh =
∑N

i=1 uhiφi(x). If the
mesh is structured like in Figure 3, should it be local, one may compute the gradients’
jumps accross the edges as functions of the values at the various involved nodes. Then one
may compute the series expansion of the sampled values ui from the exact initial function
u. The jumps between triangles 1 and 2, 2 and 3 and last 3 and 4 are respectively:

Jump(1/2) = −u6+u7+u1−u2

h
= (uxx + uxy)h+O(h2),

Jump(2/3) = −u1+u7+u3−u2

h
= (uxy + uyy)h+ O(h2),

Jump(3/4) = −u1+u2+u4−u3

h
= −

√
2 ∗ (uxy)h +O(h2).

(17)

When h → 0, instead of forcing the solution of a problem to be convex, we force it to some
mesh-dependent combination of its second order derivatives to have a sign or another. In
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addition, this combination is meaningless since for the convex limit function, it may have
whatever sign. We will say that such a discretization is not consistent.

h

h

x

y
1

u 2

34

5

6
7

1
2

3

4
5

6
1

1

Figure 4: Local shape of the second mesh close to (x1, y1) and global numbering.

One could also study the use of gradients’ jumps on the very different mesh like in
Figure 4. With similar computations available on the web site of the author, one may
prove the following Proposition.

Proposition 7 The gradients’ jumps on a mesh given in Figure 4 between triangles 1
and 2, 2 and 3 and last 3 and 4 are respectively:

Jump(1/2) = −u1+u5−u6+u7

h
= (uxx − uxy)x=x1,y=y1h +O(h2),

Jump(2/3) = (u6−u7−u1+u2)
√
2

h
= uxy

√
2h+O(h2),

Jump(3/4) = u7−u2−u1+u3

h
= (uyy − uxy)x=x1,y=y1h +O(h2).

(18)

Such a discretization of convexity is not consistent.

Below, we investigate the consistency of various other discretizations.

3.2 Use of a weak version

We use here a weak P1 definition of convexity which is identical to the one of [2] which is
fully discussed in Section 5.

3.2.1 The subharmonicity constraint

A weak definition of subharmonicity (∆u ≥ 0) is, for any test function φi in the discrete
basis:

< ∆uh, φi >= Tr < D2uh, φi >= −Tr < ∇uh ⊗∇φi >≥ 0. (19)

One may then prove the following Proposition:

Proposition 8 The weak P1 discretization of the subharmonicity constraint on a mesh
like in Figure 3 is consistent:

< ∆uh, φi >= −4u1 + u2 + u5 + u7 + u4 = (uxx + uyy)(x=x1,y=y1)h
2 +O(h3), (20)

where i is the node at the center of the cell’s group (x1, y1).
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The proof is very easy and left to the reader. Indeed, it is only the discretization of
the Laplacian which is known to be consistent and even convergent !

In order to test this discretization, we used the Matlab package optim to minimize
the functional

∫

Ω
|∇u|2/2+fu, where f = ∆uexact, over the set of subharmonic functions.

The exact solution of this H1
0 projection is uexact. The convergence with the procedure

quadprog of quadratic programming can be seen on Figure 5. It is quite satisfactory.
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Figure 5: convergence of P1 FE in case of a subharmonicity constraint.

3.2.2 The convexity constraint

One may give a weak definition of convexity:

Tr < D2uh, φi >≥ 0 and det < D2uh, φi >≥ 0, (21)

for any φi, basis function of the FEM at the node i. One may then prove the following
Proposition:

Proposition 9 The weak P1 discretization of the convexity constraint (21) on a mesh
like in Figure 3 is consistent as can be seen from (20) and

det < D2uh, φi >= det < ∇uh ⊗∇φi >=
= (−2u1 + u2 + u5)(u7 + u4 − 2u1)− (−u7 + u3 − u4 + u6 − u5 − u2 + 2u1)

2/4
= (uxxuyy − uxyuyx)h

4 +O(h5).
(22)

where i is the node at the center of the cell’s group.

This discretization (21) for the convexity contraint appears to be consistent although
the numerical treatment of the linear and nonlinear constraints should raise inaccuracies
since they are of very different orders of magnitude.

4 The P2 FEM

In the present section, we investigate successive discretizations through P2 FEM of two
second order contraints: subharmonicity and convexity.

First, we interpolate a continuous function u to a P2 function uh =
∑

i uiφi(x) in a
domain Ω meshed with triangles. Here, the index i denotes both vertices and edge mid-
points. Then we compute the discretized version of the second order term constrained
to be nonnegative (various versions are treated) and compute its series expansion. If

11



forcing it to be nonnegative amounts to forcing the continuous limit function to the cor-
rect constraint, then we claim the discretization is consistent. Otherwise it is inconsistent.

For the whole section, we assume the mesh is (at least locally) structured around the
point of coordinates (x1, y1). The local numbering of triangles is depicted in Figure 6.
The node (x1, y1) is localy numbered 1 in every triangle and the local numbering of nodes
is depicted in triangle 3 of Figure 6.

Figure 6: Local shape of the mesh close to (x1, y1). Local numbering in triangle 3.

4.1 Gradients jumps for the convexity constraint

We use here a strong definition of convexity. In a way similar to the P1 case, one may
prove for P2 functions uh:

<
∂2uh

∂a∂b
, ϕ >=

∑

e

∫

e

(q2(s)− q1(s)).nϕ(s)ds (n.a)(n.b) +
∑

K

∂2uh

∂a∂b
|K
∫

K

ϕ,

for any e interior edge of the mesh, a and b are two unit normal vectors, ϕ is a C∞

function with compact support in Ω. By taking ϕ localized along the edge e, one may
state that this strong convexity (with C∞

0 test functions) implies the non-negativity of the
gradients’ jumps at least in an integral form. This strong definition implies the weak P2

definition where one takes the P2 basis functions associated to the edge midpoints as test
functions (as do [2]).

In order to test the consistence of such a discretization, we computed the gradients’
jumps accross the edges common to triangles 1 and 2, 2 and 3 and last 3 and 4. Of
course, they are not constant as they are P1 FE. After an exact computation and a series
expansion (details may be found on a MAPLE worksheet available on the web page of
the author), one may state the following Proposition

Proposition 10 The discretization of the convexity constraint with the jump of the gra-
dients between triangles 1 and 2, 2 and 3, 3 and 4 on a mesh like in Figure 6 gives
terms

Jump(1/2) = (uxxy + uxyy)(x1, y1)(y − y1)h/2 +O(h2); y ∈ [y1 − h, y1]
Jump(2/3) = (uxxy + uxyy)(x1, y1)(x− x1)h/2 +O(h2); x ∈ [x1, x1 + h]

Jump(3/4) = −(uxxy + uxyy)(x1, y1)(x− x1)
√
2h/2 +O(h2); x ∈ [x1, x1 + h].

(23)

Such a discretization is non-consistent.

12



One deduces from (23) that forcing the non-negativity of the gradient’s jumps forces
the limit function to satisfy the non-natural equality condition uxxy + uxyy = 0 ! So the
P2 discretization of the strong definition of convexity (C∞

0 test functions) implies the non-
negativity of gradient’s jumps which is non-consistent and so must be rejected. This does
not enable to reject the weak P2 definition of convexity with the basis functions associated
to the edge midpoints as test functions because it is only implied by the strong one. We
will check below that the weak definition is consistent (subsection 4.3).

4.2 Weak version of the second derivative at a vertex

We define the weak (with P2 test functions like in [2]) version of the Hessian at vertex i
as:

< D2uh, φi >= −
(

∫

Ω
∂uh

∂x

∂φi

∂x

∫

Ω
∂uh

∂x

∂φi

∂y
∫

Ω
∂uh

∂y

∂φi

∂x

∫

Ω
∂uh

∂y

∂φi

∂y

)

. (24)

Strictly speaking, this may not provide a correct weak version of non-negativity since
φi changes sign. In addition, using only the vertices functions as test functions would
provide a (too ?) small number of constraints. Anyway, one may state the following
Proposition which proof is left to the reader:

Proposition 11 The discretization of the linear part of the convexity constraint according
to (24) on a mesh like in Figure 6 (h = ∆x = ∆y) gives:

Tr (< D2uh, φi >) = −(uxxxx + uyyyy)(x1, y1) ∗ h4/48 +O(h5). (25)

Such a discretization is non-consistent.

It appears that such a discretization is not even consistent for the linear part of
the constraint. More precisely, while one could believe one forces the solution to be
subharmonic, indeed, one forces it to be such that uxxxx + uyyyy ≤ 0 ! The full nonlinear
convexity constraint on the same vertices may only work worse. This proves that the
proof of convergence of FE methods by [2], which fails if the test functions change sign,
maynot be improved on that point.

One must notice that the fourth order of the expansion in (25) is meaningful. Indeed,
on the one hand the three midpoints quadrature is exact for P2 functions in a triangle. On
the other hand the basis function for a vertex vanishes on these midpoints. As a result,
the order two term is identically zero. So the first non-zero term is the fourth one and
the constraint is of fourth order too.

4.3 Weak version of the second derivative at an edge midpoint

We define the weak version of the second derivative at an edge midpoint (denoted by
index j) in a way very similar to (24). Indeed, the function φi in (24) is replaced by the
basis function φj associated to an edge midpoint indexed by j.

Unlike in subsection 4.2, the basis functions (of the edge midpoints) are non-negative.
So it is a priori an admissible weak formulation of semidefinite positiveness.
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4.3.1 The subharmonicity constraint

Let us assume we discretize the constraint ∆u ≥ 0 by

∫

Ω

∇uh.∇φj ≤ 0, (26)

for all j index of an edge midpoint interior to Ω. One may then state a Proposition (which
proof is left to the reader):

Proposition 12 The discretization of the linear part of the convexity constraint according
to (26) on a mesh like in Figure 6 (h = ∆x = ∆y) gives the same series expansion,
whether the edge is vertical, horizontal or diagonal:

Tr (< D2uh, φj >) = ∆u(x1, y1)h
2/3 +O(h3), (27)

for any j index of an edge midpoint interior to Ω. Such a discretization is consistent.

One question remains: if we discretize the subharmonicity (or the convexity) constraint
only at edge midpoints, is it enough constraints or not ?

4.3.2 The convexity constraint

Like in the subharmonic case, we take a weak version of the continuous nonlinear con-
straint det D2u ≥ 0 with (nonnegative) test functions associated to every edge midpoint
j in the interior. One may then prove easily the following Proposition:

Proposition 13 The discretization of the nonlinear part of the convexity constraint on
a mesh like in Figure 6 (h = ∆x = ∆y) gives:

det(< D2uh, φj >) = (
∂2u

∂x2

∂2u

∂y2
− ∂2u

∂x∂y

∂2u

∂y∂x
)(x1, y1)h

4/9 +O(h5), (28)

for any j index of an edge midpoint interior to Ω. Such a discretization is consistent.

So the linear constraint is of order two while the nonlinear is of order four for conver-
gence. Such a discrepancy should be managed in numerical simulation.

5 Discussion on the Aguilera and Morin’s articles

Let us notice that [9] seems not to have been known of the authors of [1, 2].
Roughly speaking, the first article [1] proves convergence of the FD discretization of

problems like ours. The second [2] proves convergence of the FE discretization of the
same problems if it is at least P2 (and some more assumptions that will prove to be
contradictory). So, the proof for FE does not include P1 FE as a by-product, and so, in
a sense, nor the FD. But this is not sufficient to claim the proof of FD is wrong.
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5.1 Finite Differences

In [1], Aguilera and Morin deal with FD and “prove convergence under very general con-
ditions, even when the continuous solution is not smooth”. But since FD discretizations
trigger the very same matrices as the P1 FE for a mesh like our mesh 1 on Figure 1
(except boundary conditions irrelevant here), there seems to be a contradiction with [9].
This forces to study further.
We could not find any error in their proof, which relies on approximation theory. So we
looked over the numerical experiments. While they claim the error in the L∞ norm on the
monopolist problem “is smaller or approximately equal to h”, their table of convergence
is reproduced in a loglog scale in the left part of Figure 7. It is not convincing.
Moreover, they provide also the error table for the 3D monopolist problem which can be
seen on the right part of Figure 7. As they notice, “the L∞ error is not converging to zero
with order O(h)” and even does not converge at all. Moreover the execution time grows
faster than polynomialy.

The next article [2] gives one example of P1 discretization and a weak definition of
convexity (with P1 test functions) that does not converge neither (3.7 p. 3150).
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Figure 7: L∞ error versus space step h

5.2 Finite Elements

In [2], Aguilera and Morin prove convergence of the discretization of the full problem:
not only the approximation of the Hessian, but also of the functional together, but under
some (contradictory) conditions.

Especially, they define uh (interpolated on a given mesh) to be FE-convex (with respect
to the test-functions basis {φh

s}s) if and only if the discrete Hessian satisfies

Hh
s uh = −

(

< ∂iuh, ∂jφ
h
s >
)

i,j
� 0,

for all φh
s in the test-functions basis, where they denote A � 0 if A is semidefinite positive

(SDP). Indeed, in their proof ((3.1) or the equation before (3.2) for instance), they extend
this definition to a u (and not a uh) that only needs to be H1 and not in the discrete space
Vh. It amounts to assuming that the continuous operator u 7→ Hvu = − < ∇u,∇v >
for v in H1

0 (or C∞
0 as defined in their (2.3, 2.4)) and the discrete operator (on a given

mesh !) uh ∈ P1 7→ − < ∇uh,∇φh
s > are identical. Of course there is no difference on

the u or uh since they are H1. But the test functions are different. This difference will be
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highlighted in the next subsection 5.3. Then their main result states convergence of the
discretization once one assumes at least (p. 3147):

C.2 There exists a linear operator Ih with values in the discretization space Vh (the
interpolant), an integer m ≥ 2, and a constant C independent of u and h such that

‖ u− Ihu ‖H1(Ω)≤ Chm−1 ‖ u ‖Hm(Ω),

C.3 The basis test-functions are such that

φh
s (x) ≥ 0 for all x ∈ Ω, all h > 0, and all s.

In their article, they split the proof of convergence of the constraint from the proof
of convergence of the functional. An analogy could be done with the incompressibility
condition (div u = 0) on Navier-Stokes equations. Separately, the Navier-Stokes and the
incompressibility equations can be discretized and converge. Yet, there are compatibility
conditions (Babushka-Brezzi condition) for the discretization of all the fields together,
namely velocity and pressure. We do believe one could find such a compatibility condition
when minimizing a functional under convex constraint.

In addition to C.2 and C.3, the proof requires m > 2 (even if one improves the proof
by a L2 − L2 instead of L∞ − L1 duality in their (3.3)). Then, condition C.2 forces to
use at least P2 FE (and higher). But then, since some test functions of the associated
basis change sign (as seen by the authors p. 3150), assumption C.3 forces to use at most
P1 FE ... So the theorem is right but unusable since the assumptions never may occur
together.
This is seen by the authors who say they “need to elaborate” on the condition m > 2. On
their p. 3150, they notice the FE discretized Hessian expands into the FD scheme (for
one specific mesh !) at first order and so they refer to their FD article to conclude that
their Theorem “also holds for m = 2” (or P1 FE).

The very next example they provide is P1 and they state “since u is convex, the pro-
jection uh should converge to u as h → 0, but this is not the case in this example.”.
They summarize this result by saying “although there is some sort of super-convergence
for some meshes, for general meshes[...] FE-convex piecewise linear function may not
suffice”. We do not share this analysis and consider this example as a counter-example.
This non-convergence weakens also [1].

All this is even complexified when the authors cope with numerical experiments of
P2 FE discretization. They notice the FE basis functions are not all nonnegative. So
they “considered the usual piecewise linear nodal basis for the vertices” (p. 3152). In
other words, they replace some P2 basis functions with P1 basis functions with space
step divided by two. But the P1 FE basis being not proved to converge, and even numeri-
cally proved not to converge in some cases, the proof does not apply to these experiments.

Their tables of convergence are transformed into loglog graphics in Figure 8. One may
not conclude the discretization converges.
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5.3 Are [1, 2] contradictory with [9] ?

The answer is no. But it deserves to be explained.
Both [2] and [9] use a dual definition of convexity and have conclusions that could

seem to be contradictory. The only difference is that [2] uses the discretized basis as test
functions:

− < ∇uh ⊗∇φh
s >� 0,

while [9] uses C∞
0 as test functions:

− < ∇uh ⊗∇φ >� 0.

The difference appears when [9], and us in the present article, take φ ∈ C∞
0 localized on

an edge e of the mesh, use (6) for P1 FE and then, forcing convexity amounts to forcing
the matrix

(q2 − q1).n

(

n2
1 n1n2

n1n2 n2
2

)

,

to be SDP, where n = (n1, n2) is the unit normal to the edge e from triangle 1 to triangle
2 and q1 (resp. q2) is the (constant) gradient of uh in triangle 1 (resp. 2). But since
the n components matrix is SDP whatever the normal, forcing the semidefiniteness of
− < ∇uh ⊗∇φ > forces the scalar (q2 − q1).n to be nonnegative on this localized edge
e (in P1). Then, [9] and the present article prove that this strong convexity will prohibit
convergence for P1 FE discretization of some given u on some given meshes (not all !)
since uh (the P1 interpolation of the sampled u) is overconstrained.

By using only a test function in the finite basis, Aguilera and Morin may not localize
as Choné and Le Meur [9] and so do not fall on their obstruction. In the formula (6), a
φ = φh ∈ P1 associated to any vertex has various edges in its support. So the informations
on various edges are melted if the test functions are P1 (weak convexity) while they are
isolated if the test functions are C∞

0 (strong convexity).
We proved in subsection 4.2 that some weak P2 definition of convexity is not even

consistent if the test functions do no satisfy condition C3. So the result of [2] maynot be
improved on that assumption. Anyway, the proof of convergence for FE maynot be used
since the assumptions never may occur together. We are still annoyed at the numerical
results of [1] for FD discretizations that do not match the claim of convergence although
the proof is not contradictory with [9].
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6 Conclusion

In this article we prove, from a point of view complementary to [9], that the P1 discretiza-
tion of a function that satisfies a strong definition of convexity (with C∞

0 test functions),
which is equivalent to the gradients’ jumps positivity (for P1 FE), leads to an additional
constraint on the limit function. The error of such a discretization of the constraint does
not vanish with the space step. We justify it is localized where the additional constraint on
the limit function is not satisfied. The condition for existence of such a counter-example
requires information both from the mesh and its refinement.

In addition, such a P1 discretization of strong convexity is not even consistent. The
definition of consistency is very similar to the one of partial differential equations and it
has been used here to discriminate likely discretizations and unlikely ones. But this does
not guarantee good numerical results even when the discretization is consistant. We also
prove the P1 discretization of weak convexity to be consistent.

We also test the gradients’ jumps in P2 and various weak P2 discretizations. Some of
them are consistent and not others. We also discuss thoroughly the literature.

The author wants to thank G. Carlier for drawing his attention to the problem of
subharmonicity approximation.
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