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AMENABILITY AND RAMSEY THEORY IN THE METRIC SETTING

ADRIANE KAÏCHOUH

Abstract. In [M2], Moore characterizes the amenability of automorphism groups of countable
ultrahomogeneous structures by a Ramsey-type property. We extend this result to automorphism
groups of metric Fraïssé structures, which encompass all Polish groups. As an application, we prove
that amenability is a Gδ condition.

Introduction

In recent years, there has been a flurry of activity relating notions linked to amenability or
groups on one side, and combinatorial conditions linked to Ramsey theory on the other side. In
this paper, we extend a result of Moore ([M2, theorem 7.1]) on the amenability of closed subgroups
of S∞ to general Polish groups. A topological group is said to be amenable if every continuous
action of the group on a compact space admits an invariant probability measure.

Moore’s result is the counterpart of a theorem of Kechris, Pestov and Todorčević ([KPT]) on
extreme amenability. A topological group is said to be extremely amenable if every continuous
action of the group on a compact space admits a fixed point. In the context of closed subgroups
of S∞, which are exactly the automorphism groups of Fraïssé structures, Kechris, Pestov and
Todorčević characterize extreme amenability by a combinatorial property of the associated Fraïssé
class (in the case where its objects are rigid), namely, the Ramsey property. A class K of structures
is said to have the Ramsey property if for all structures A and B in K, for all integers k, there is
a structure C in K such that for every coloring of the set of copies of A in C with k colors, there
exists a copy of B in C within which all copies of A have the same color.

Thus, extreme amenability, which provides fixed points, corresponds to colorings having a
"fixed", meaning monochromatic, set. Amenability, on the other side, provides invariant mea-
sures. Since a measure is not far from being a barycenter of point masses, the natural mirror
image of the Ramsey property in that setting should be for a coloring to have a "monochromatic
convex combination of sets". Indeed, Tsankov (in an unpublished note) and Moore introduced a
convex Ramsey property and proved that a Fraïssé class has the convex Ramsey property if and
only if the automorphism group of its Fraïssé limit is amenable.

Besides, Kechris, Pestov and Todorčević’s result was extended to general Polish groups by
Melleray and Tsankov in [MT1]. They use the framework of continuous logic (see [BYBHU]) via the
observation that every Polish group is the automorphism group of an approximately homogeneous
metric structure ([M1]), that is of a metric Fraïssé limit (in the sense of [BY]). They define an
approximate Ramsey property for classes of metric structures and then show that a metric Fraïssé
class has the approximate Ramsey property if and only if the automorphism group of its Fraïssé
limit is extremely amenable.

In this paper, we "close the diagram" by giving a metric version of Moore’s result. We replace
the classical notion of a coloring with the metric one (from [MT1]) to define a metric convex

Ramsey property, and we prove the exact analogue of Moore’s theorem:

Theorem 1. Let K be a metric Fraïssé class, K its Fraïssé limit and G the automorphism group
of K. Then G is amenable if and only if K satisfies the metric convex Ramsey property.
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Note that this characterization makes mention of both the group and the Fraïssé class. In
the course of the proof, we provide several reformulations of the metric convex Ramsey property,
among which a property that only involves the group itself. Thus, as a corollary, we obtain the
following intrinsic characterization of the amenability of a Polish group.

Theorem 2. Let G be a Polish group and d a left-invariant metric on G which induces the
topology. Then the following are equivalent.

(1) The topological group G is amenable.
(2) For every ǫ > 0, every finite subset F of G, every 1-Lipschitz map f : (G, d) → [0, 1],

there exist elements g1, ..., gn of G and barycentric coefficients λ1, ..., λn such that for all
h, h′ ∈ F , one has

∣

∣

∣

∣

∣

n
∑

i=1

λif(gih)−
n

∑

i=1

λif(gih
′)

∣

∣

∣

∣

∣

< ǫ.

From these theorems, we deduce some nice structural consequences about amenability. The first
one follows directly from the previous theorem and the Riesz representation theorem (applied to
the Samuel compactification of G).

Corollary 3. Let G be a Polish group. Then the following are equivalent.

(1) G is amenable.
(2) For every right uniformly continuous function f : G → [0, 1], there exists a positive linear

form Λ of norm 1 on C(G, [0, 1]) such that for all g ∈ G, one has Λ(g · f) = Λ(f).

It constitutes an inversion of quantifiers in the definition of amenability, meaning that to check
that a Polish group is amenable, it suffices to verify it for one function at a time. Note that Moore
obtained a similar result for discrete groups. Besides, the same is true for extreme amenability
with multiplicative linear forms.

Another advantage of these theorems is to express amenability in a finitary way, which allows
us to compute its Borel complexity. In [MT2], Melleray and Tsankov use an oscillation stability
property (that resembles the Ramsey property, see [P]) to show that extreme amenability is a Gδ

condition; we prove that the same holds for amenability. From this, a Baire category argument
leads to the following sufficient condition for a Polish group to be amenable.

Corollary 4. Let G be a Polish group such that for every n ∈ N
∗, the set

Fn = {(g1, ..., gn) ∈ Gn : 〈g1, ..., gn〉 is amenable (as a subgroup of G)}

is dense in Gn. Then G is amenable.

This is a slight strengthening of the fact that a Polish group whose finitely generated subgroups
are amenable is itself amenable (see [G, theorem 1.2.7]).

1. The metric convex Ramsey property

We use the notations and conventions of [MT1]. In particular, we assume symbols of continuous
languages to be Lipschitz.

Definition 5. Let L be a relational continuous language, A and B two finite L-structures and M

an arbitrary L-structure.

• We denote by A
M the set of all embeddings of A into M. We endow A

M with the metric
ρA defined by

ρA(α, α
′) = sup

a∈A

d(α(a), α′(a)).

• A coloring of A
M is a 1-Lipschitz map from (AM, ρA) to the interval [0, 1].
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• We denote by
〈

A
M

〉

the set of all finitely supported probability measures on A
M. We will

identify embeddings with their associated Dirac measures.
• If κ : A

M → [0, 1] is a coloring, we extend κ to
〈

A
M

〉

linearly: if ν in
〈

A
M

〉

is of the form

ν =

n
∑

i=1

λiδαi
, we set

κ(ν) =

n
∑

i=1

λiκ(αi).

• Moreover, we extend composition of embeddings to finitely supported measures bilinearly.

Namely, if ν in
〈

A
B
〉

and ν ′ in
〈

B
M

〉

are of the form ν =

n
∑

i=1

λiδαi
and ν ′ =

m
∑

j=1

λ′

jδα′

j
, we

define

ν ′ ◦ ν =
m
∑

j=1

n
∑

i=1

λ′

jλiδα′

j◦αi
.

• If ν is a measure in 〈BM〉, we denote by
〈

A
M(ν)

〉

the set of all finitely supported measures

which factor through ν and by A
M(ν) the set of those which factor through ν via an

embedding. More precisely, if ν ∈
〈

B
M

〉

is of the form
n

∑

i=1

λiδβi
, we define

A
M(ν) =

{

ν ◦ δα : α ∈ A
B
}

and
〈

A
M(ν)

〉

=
{

ν ◦ ν ′ : ν ′ ∈
〈

A
B
〉}

.

Throughout the paper, K will be a metric Fraïssé class in a relational continuous language and
K will be its Fraïssé limit.

Definition 6. The class K is said to have the metric convex Ramsey property if for every
ǫ > 0, for all structures A and B in K, there exists a structure C in K such that for every coloring
κ : A

C → [0, 1], there is ν in 〈BC〉 such that for all α, α′ ∈ A
B(ν), one has |κ(α)− κ(α′)| < ǫ.

Intuition. In the classical setting, the Ramsey property states that given two structures A and
B, we can find a bigger structure C such that whenever we color the copies of A in C, we can find
a copy of B in C wherein every copy of A has the same color. Here, it basically says that we can
find a convex combination of copies of B in C wherein every compatible convex combination of
copies of A has almost the same color (see figure 1).

Remark 7. One can replace the assumption α, α′ ∈ A
B(ν) with the stronger one α, α′ ∈ 〈AB(ν)〉

in the above definition, as is done in [M2]. Indeed, the property is preserved by barycenter.

The following proposition states that the metric convex Ramsey property allows us to stabilize
any finite number of colorings at once.

Proposition 8. The following are equivalent.

(1) The class K has the metric convex Ramsey property.
(2) For every ǫ > 0, for all integers N ∈ N

∗ and all structures A and B in K, there exists a
structure C in K such that for all colorings κ1, ..., κN : A

C → [0, 1], there is µ in 〈BC〉 such
that for all j in {1, ..., N} and all α, α′ in A

C(µ), one has |κj(α)− κj(α
′)| < ǫ.
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A1

A′
1

A′′
1

A2

A′
2

A′′
2

2/3A1 + 1/3A2

2/3A′
1 + 1/3A′

2

2/3A′′
1 + 1/3A′′

2

(B1, 2/3) (B2, 1/3)

C

Figure 1. Black points are barycenters of two corresponding copies of A in B1 and
B2 with coefficients 2/3 and 1/3. The metric convex Ramsey property says that all
these points almost have the same color.

Remark. Condition (2) above is equivalent to the metric convex Ramsey property for colorings
into [0, 1]N , where [0, 1]N is endowed with the supremum metric. It follows that the metric convex
Ramsey property is equivalent to the same property for colorings taking values in any convex
compact metric space.

Proof. The second condition clearly implies the first. For the other implication, let N be a positive
integer, A and B structures in K and ǫ > 0. Put C−1 = A and C0 = B. By induction, we
find structures C1, ...,CN in K witnessing the metric convex Ramsey property for Ci−1, Ci and
ǫ, that is, such that for every j ∈ {1, ..., N}, if κ : A

Cj → [0, 1] is a coloring, then there exists
ν ∈

〈

Cj−1Cj

〉

such that for all α, α′ in A
Cj(ν), we have |κ(α)− κ(α′)| < ǫ.

Set C = CN . We show that C has the desired property. To this aim, let κ1, ..., κN : A
C → [0, 1]

be colorings.
By downward induction, we build µN , ..., µ0 such that

• µn = δidC
(we can identify µn with C),

• for every j < N , µi ∈
〈

CjC(µj+1)
〉

(in particular, µN−1 ∈
〈

CN−1C
〉

under the previous
identification),

• for every j < N , if α, α′ ∈ A
C(µj), then |κj(α)− κj(α

′)| < ǫ.

Suppose µj+1 has been constructed. We lift the coloring κj to κ̃j : A
Cj+1 → [0, 1] by putting

κ̃j(α) = κj(µj+1 ◦ δα). The map κ̃j we obtain is again a coloring.
Therefore, we may apply our assumption on Cj+1 to κ̃j : there exists ν ∈

〈

CjCj+1

〉

such that

for all α, α′ ∈ A
Cj+1(ν), |κ̃j(α) − κ̃j(α

′)| < ǫ. Then µj = µj+1 ◦ ν is as desired. Indeed, let
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α, α′ ∈ A
C(µj). There exist α̃, α̃′ ∈ A

Cj such that α = µj ◦ δα̃ and α′ = µj ◦ δα̃′ . Then

|κj(α)− κj(α
′)| = |κj(µj ◦ δα̃)− κj(µj ◦ δα̃′)|

= |κj(µj+1 ◦ ν ◦ δα̃)− κj(µj+1 ◦ ν ◦ δα̃′)|

= |κ̃j(ν ◦ δα̃)− κ̃j(ν ◦ δα̃′)|

< ǫ,

thus completing the construction.
Finally, put µ = µ0 ∈

〈

B
C
〉

. Then µ is as desired. Indeed, the construction of the µj’s gives
that for every j ∈ {1, ..., N},

µ ∈
〈

B
C(µ1)

〉

⊆
〈

B
C(µ2)

〉

⊆ ... ⊆
〈

B
C(µj)

〉

so that whenever α, α′ ∈ A
C(µ), they are in A

C(µj) too and the assumption on µj yields that
|κj(α)− κj(α

′)| < ǫ. �

We now give a infinitary reformulation of the metric convex Ramsey property which is the convex
counterpart of the classical infinite Ramsey property.

Remark 9. For the sake of simplicity, we state the results for only one coloring at a time; the
previous proposition will imply that we can do the same with any finite number of colorings.

Proposition 10. The following are equivalent.

(1) The class K has the metric convex Ramsey property.
(2) For every ǫ > 0, for all structures A and B in K and all colorings κ : A

K → [0, 1], there
exists ν in 〈BK〉 such that for all α, α′ in A

K(ν), one has |κ(α)− κ(α′)| < ǫ.

When we will prove, in theorem 16, that the metric convex Ramsey property is implied by
amenability, it will be in the guise of condition (2) above.

Proof. (1) ⇒ (2)] Fix ǫ > 0, A and B two structures in K and let C ∈ K witness the metric
convex Ramsey property for A, B and ǫ. We may assume that C is a substructure of K. Now
every coloring of A

K restricts to a coloring of A
C so, if ν is the measure given by C for a coloring

κ, then ν satisfies the desired property.
(2) ⇒ (1)] We use a standard compactness argument. Suppose that K does not satisfy the

metric convex Ramsey property. We can then find structures A, B in K and ǫ > 0 such that for
every C ∈ K, there exists a bad coloring κC of A

C, that is κC satisfies that for all ν ∈
〈

B
C
〉

, the

oscillation of κC on A
C(ν) is greater than ǫ.

We fix an ultrafilter U on the collection of subsets of K such that for every finite D ⊆ K, the
set {E ⊆ K finite : D ⊆ E} belongs to U . We consider the map κ = lim

U
κC on A

K defined by

κ(α) = t ⇔ ∀r > 0, {C ⊆ K finite : κC(α) ∈ [t− r, t+ r]} ∈ U .

Note that the assumption on U implies that for all α ∈ A
K, the set {C ⊆ K finite : α(A) ⊆ C} is

in U so κC(α) is defined U-everywhere and the above definition makes sense. Besides, since all the
κC are 1-Lipschitz, κ is too and is thus a coloring of A

K. We prove that κ contradicts property
(2).

Let ν ∈
〈

B
K
〉

and write ν =
n

∑

i=1

λiδβi
, with the βi’s in B

K. Then, for all i ∈ {1, ..., n}, the

sets {C ⊆ K finite : βi(B) ⊆ C} belong to U and so does their intersection Uν . Furthermore, the
set A

K(ν), which is also A
C(ν) for any C in Uν , is finite — note that this isn’t true of

〈

A
K(ν)

〉

(so choosing the definition of remark 7 for the Ramsey property would make the proof technically
harder). For every C in Uν , there exists α, α′ in A

C(ν) such that |κC(α)− κC(α
′)| > ǫ. So there
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exist α, α′ in A
K(ν) such that the set {C ⊆ K finite : |κC(α) − κC(α

′)| > ǫ} belongs to U . By
definition of κ, this implies that |κ(α) − κ(α′)| > ǫ, which shows that (2) fails for ν. As ν was
arbitrary, this completes the proof. �

2. The metric convex Ramsey property for the automorphism group

Let G be the automorphism group of K.
In this section, we reformulate the metric convex Ramsey property in terms of properties of G.

Definition 11. Let A be a finite substructure of K. We define a pseudometric dA on G by

dA(g, h) = sup
a∈A

d(g(a), h(a)).

We will denote by (G, dA) the induced metric quotient space.

Remark 12. The pseudometrics dA, for finite substructures A of K, generate the left uniformity
on G.

The pseudometric dA is the counterpart of the metric ρA on A
K on the group side. More

specifically, as pointed out in [MT1, lemma 3.8], the restriction map ΦA : (G, dA) → (AK, ρA)
defined by g 7→ g↾A is distance-preserving and its image ΦA(G) is dense in A

K. As a consequence,
every 1-Lipschitz map f : (G, dA) → [0, 1] extends uniquely, via ΦA, to a coloring κf of A

K, while
every coloring κ of A

K restricts to a 1-Lipschitz map fκ : (G, dA) → [0, 1].

Proposition 13. The following are equivalent.

(1) The class K has the metric convex Ramsey property.
(2) For every ǫ > 0, every finite substructure A of K, every finite subset F of G and every

1-Lipschitz map f : (G, dA) → [0, 1], there exist elements g1, ..., gn of G and barycentric
coefficients λ1, ..., λn such that for all h, h′ in F , one has

∣

∣

∣

∣

∣

n
∑

i=1

λif(gih)−

n
∑

i=1

λif(gih
′)

∣

∣

∣

∣

∣

< ǫ.

(3) For every ǫ > 0, every finite subset F of G, every left uniformly continuous map f : G →
[0, 1], there exist elements g1, ..., gn of G and barycentric coefficients λ1, ..., λn such that for
all h, h′ in F , one has

∣

∣

∣

∣

∣

n
∑

i=1

λif(gih)−

n
∑

i=1

λif(gih
′)

∣

∣

∣

∣

∣

< ǫ.

Remark 14. The finite subset F of G in condition (2) is the counterpart of the structure B in
the Ramsey property: by approximate ultrahomogeneity of the limit K, it corresponds, up to a
certain error, to the set of all embeddings of A into B.

Proof. (1) ⇒ (2)] We set B = A ∪
⋃

h∈F

h(A). Let κf be the unique coloring of A
K that extends

f . We then apply proposition 10 to A, B, ǫ and κf : there is ν in
〈

B
K
〉

such that for all α, α′ in
A
K(ν), we have |κf(α)− κf(α

′)| < ǫ.

Write ν =

n
∑

i=1

λiδβi
, with the βi’s in B

K. Since the structure K is a Fraïssé limit, it is approx-

imately ultrahomogeneous. This implies that for each i in {1, ..., n}, there exists an element gi
of its automorphism group G such that ρB(gi, βi) < ǫ. We show that the gi’s and λi’s have the
desired property.
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To that end, let h and h′ be elements of F . Note that, by definition of B, (the restrictions of)
h and h′ are in A

B so ν ◦ δh and ν ◦ δh′ belong to A
K(ν). In particular, we have

∣

∣

∣

∣

∣

n
∑

i=1

λiκf (βi ◦ h)−
n

∑

i=1

λiκf(βi ◦ h
′)

∣

∣

∣

∣

∣

= |κf(ν ◦ δh)− κf(ν ◦ δh′)| < ǫ.

We now compute:
∣

∣

∣

∣

∣

n
∑

i=1

λif(gih)−
n

∑

i=1

λif(gih
′)

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

n
∑

i=1

λif(gih)−
n

∑

i=1

λiκf (βi ◦ h)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n
∑

i=1

λiκf(βi ◦ h)−
n

∑

i=1

λiκf(βi ◦ h
′)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n
∑

i=1

λiκf(βi ◦ h
′)−

n
∑

i=1

λif(gih
′)

∣

∣

∣

∣

∣

.

We estimate the first piece as follows.
∣

∣

∣

∣

∣

n
∑

i=1

λif(gih)−

n
∑

i=1

λiκf (βi ◦ h)

∣

∣

∣

∣

∣

6

n
∑

i=1

λi|f(gih)− κf (βi ◦ h)|

=

n
∑

i=1

λi|κf (gih)− κf (βi ◦ h)|

6

n
∑

i=1

λiρA(gih, βi ◦ h) because κf is 1-Lipschitz

6

n
∑

i=1

λiρB(gi, βi) by definition of ρB

< ǫ.

Similarly, we obtain
∣

∣

∣

∣

∣

n
∑

i=1

λiκf(βi ◦ h
′)−

n
∑

i=1

λif(gih
′)

∣

∣

∣

∣

∣

< ǫ,

hence finally
∣

∣

∣

∣

∣

n
∑

i=1

λif(gih)−

n
∑

i=1

λif(gih
′)

∣

∣

∣

∣

∣

< 3ǫ.

(2) ⇒ (3)] We approximate uniformly continuous functions by Lipschitz ones. More precisely,
let f : G → [0, 1] be left uniformly continuous and ǫ > 0. There exists an entourage V in the left
uniformity UL(G) on G such that for all x, y in G, if (x, y) ∈ V , then |f(x)− f(y)| < ǫ. Besides,
remark 12 implies there exist A 6 K finite and r > 0 such that for all x, y in G, if dA(x, y) < r,
then (x, y) ∈ V .

Now, for k ∈ N
∗, we can define a mapping fk : (G, dA) → [0, 1] by fk(x) = inf

y∈G
f(y) + kdA(x, y).

It is k-Lipschitz as the infimum of k-Lipschitz functions. And for a big enough k, the fact that f
is bounded implies that for every x in G, |fk(x) − f(x)| < ǫ: we have obtained a good uniform
approximation of f by a Lipschitz function.

We then apply (2) to fk
k

, which is 1-Lipschitz, and to ǫ
k
: for every finite subset F of G, there

exist elements g1, ..., gn of G and barycentric coefficients λ1, ..., λn such that for all h, h′ ∈ F , we
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have
∣

∣

∣

∣

∣

n
∑

i=1

λi

1

k
fk(gih)−

n
∑

i=1

λi

1

k
fk(gih

′)

∣

∣

∣

∣

∣

<
ǫ

k

hence
∣

∣

∣

∣

∣

n
∑

i=1

λifk(gih)−
n

∑

i=1

λifk(gih
′)

∣

∣

∣

∣

∣

< ǫ.

Then, for all h, h′ ∈ F , the triangle inequality gives
∣

∣

∣

∣

∣

n
∑

i=1

λif(gih)−
n

∑

i=1

λif(gih
′)

∣

∣

∣

∣

∣

< 3ǫ.

(3) ⇒ (1)] We use the same compactness argument as in the proof of proposition 10: assume
that K does not have the metric convex Ramsey property. We can then find ǫ > 0, structures A

and B and a coloring κ : A
K → [0, 1] such that no measure ν in

〈

B
K
〉

satisfies |κ(α)− κ(α′)| < ǫ

for all α, α′ in A
K(ν).

Now consider the restriction fκ of the coloring κ to (G, dA). It is left uniformly continuous from
G to [0, 1]. Since K is approximately ultrahomogeneous, for every α in A

B, there is hα in G such
that ρA(hα, α) < ǫ. Let F be the (finite) set of all such hα’s. We show that fκ fails to satisfy
condition (3) for F and ǫ.

Indeed, towards a contradiction, assume that there exists elements g1, ..., gn of G and barycentric
coefficients λ1, ..., λn such that for all h, h′ in F , one has

∣

∣

∣

∣

∣

n
∑

i=1

λifκ(gih)−
n

∑

i=1

λifκ(gih
′)

∣

∣

∣

∣

∣

< ǫ.

Set ν =
n

∑

i=1

λiδgi ∈
〈

B
K
〉

. Now pick embeddings α and α′ of A in K; then ν ◦ δα and ν ◦ δα′ are

in
〈

A
K(ν)

〉

. Using similar arguments, we have
∣

∣

∣

∣

∣

κ(ν ◦ δα)−
n

∑

i=1

λifκ(gihα)

∣

∣

∣

∣

∣

< ǫ

and
∣

∣

∣

∣

∣

n
∑

i=1

λifκ(gihα′)− κ(ν ◦ δα′)

∣

∣

∣

∣

∣

< ǫ

so

|κ(ν ◦ δα)− κ(ν ◦ δα′)| < 3ǫ.

�

Notice that condition (3) does not depend on the Fraïssé class but only on its automorphism
group.

By virtue of remark 9, the metric convex Ramsey property is equivalent to condition (3) for any
finite number of colorings at once. It is that condition which will imply amenability in theorem
16.

Moreover, if G is endowed with a compatible left-invariant metric, Lipschitz functions are uni-
formly dense in uniformly continuous ones, so we can replace uniformly continuous maps by 1-
Lipschitz maps in condition (3).
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3. A criterion for amenability

Given a compact space X, we denote by P (X) the set of all probability measures on X. It
is a subspace of the dual space of continuous maps on X. Indeed, if µ is in P (X) and f is a

continuous function on X, we put µ(f) =

∫

X

fdµ. Moreover, if we endow P (X) with the induced

weak* topology, it is compact.
If G is a group that acts on X, then one can define an action of G on P (X) by

(g · µ)(f) =

∫

X

f(g−1 · x)dµ(x).

Definition 15. A topological group G is said to be amenable if every continuous action of G on
a compact space X admits a measure in P (X) which is invariant under the action of G.

We are now ready to prove the main theorem.

Theorem 16. Let K be a metric Fraïssé class, K its Fraïssé limit and G the automorphism group
of K. Then the following are equivalent.

(1) The topological group G is amenable.
(2) The class K has the metric convex Ramsey property.

Proof. (1) ⇒ (2)] Suppose G is amenable and let A, B be structures in the class K, ǫ > 0 and
κ0 :

A
K → [0, 1] a coloring. We show that there exists ν ∈

〈

B
K
〉

such that for all α, α′ ∈ A
K(ν),

we have |κ0(α)−κ0(α
′)| < ǫ, which will imply the metric convex Ramsey property (by proposition

10). We adapt Moore’s proof to the metric setting.

The group G acts continuously on the compact space [0, 1]
A
K by g · κ(α) = κ(g−1 ◦ α). Denote

by Y the orbit of the coloring κ0 under this action and by X its closure, which is compact. Note
that all the functions in X are colorings as well. We consider the restriction of the action to X:
since G is amenable, there is an invariant probability measure µ on X.

The invariance of µ implies that the map α 7→

∫

X

κ(α)dµ(κ) is constant on A
K. To see this, fix

α, α′ in A
K and s > 0. Since K is approximately ultrahomogeneous, we can find g in G such that

ρA(α
′, g−1 ◦ α) < s. Then

∣

∣

∣

∣

∫

X

κ(α′)dµ(κ)−

∫

X

κ(α)dµ(κ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

X

κ(α′)dµ(κ)−

∫

X

g · κ(α)dµ(g · κ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

X

κ(α′)dµ(κ)−

∫

X

κ(g−1 ◦ α)dµ(κ)

∣

∣

∣

∣

6

∫

X

|κ(α′)− κ(g−1 ◦ α)|dµ(κ)

6

∫

X

ρA(α
′, g−1 ◦ α)dµ(κ)

< s.

Since s was arbitrary,

∫

X

κ(α)dµ(κ) =

∫

X

κ(α′)dµ(κ). Let r denote this constant value.

Besides, Y being dense in X, the collection of finitely supported probability measures on Y is
dense in P (X). In particular, there exist barycentric coefficients λ1, ..., λn and elements g1, ..., gn

of G such that for all α in A
K, we have

∣

∣

∣

∣

∣

n
∑

i=1

λiκ0(g
−1

i ◦ α)− r

∣

∣

∣

∣

∣

< ǫ.
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Finally, we may assume that B is a substructure of K, and set βi = g−1

i ↾ B, for i in {1, ..., n},
and ν =

∑n

i=1
λiδβi

∈
〈

B
K
〉

. Then ν as is desired. Indeed, if α, α′ are in A
B, and thus in A

K, we
have

|κ0(ν ◦ δα)− κ0(ν ◦ δ′α)| =

∣

∣

∣

∣

∣

n
∑

i=1

λiκ0(βi ◦ α)−
n

∑

i=1

λiκ0(βi ◦ α
′)

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

n
∑

i=1

λiκ0(βi ◦ α)− r

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

r −
n

∑

i=1

λiκ0(βi ◦ α
′)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

i=1

λiκ0(g
−1

i ◦ α)− r

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

r −
n

∑

i=1

λiκ0(g
−1

i ◦ α′)

∣

∣

∣

∣

∣

< 2ǫ.

(2) ⇒ (1)] Conversely, suppose that K has the metric convex Ramsey property and let G act
continuously on a compact space X. We show that X admits an invariant probability measure.
Since P (X) is compact, it suffices to show that if f1, ..., fN : X → [0, 1] are uniformly continuous,
ǫ > 0 and F is a finite subset of G, there exists µ in M(X) such that for all j in {1, ..., N} and all
h in F , |h · µ(fj)− µ(fj)| < ǫ.

Fix x in X. For j in {1, ..., N}, we lift fj to a map f̃j : G → [0, 1] by setting f̃j(g) = fj(g
−1 · x).

Since the action of G on X is continuous and fj is uniformly continuous, the map f̃j is left uniformly
continuous.

We then apply proposition 13 to F ∪ {1}, ǫ and f̃1, ..., f̃N to obtain barycentric coefficients
λ1, ..., λn and elements g1, ..., gn of G such that for all j in {1, ..., N}, for all h in F (and h′ = 1),
we have

∣

∣

∣

∣

∣

n
∑

i=1

λif̃j(gih)−
n

∑

i=1

λif̃j(gi)

∣

∣

∣

∣

∣

< ǫ.

Then µ =
∑n

i=1
λiδg−1

i ·x is as desired. Indeed, let j ∈ {1, ..., N} and h ∈ F . We have

µ(fj) =

n
∑

i=1

λifj(g
−1

i · x) =

n
∑

i=1

λif̃j(gi)

and

h · µ(fj) =
n

∑

i=1

λi(h · fj)(g
−1

i · x)

=
n

∑

i=1

λifj(h
−1g−1

i · x)

=

n
∑

i=1

λif̃j(gih)

so finally

|h · µ(fj)− µ(fj)| =

∣

∣

∣

∣

∣

n
∑

i=1

λif̃j(gih)−

n
∑

i=1

λif̃j(gi)

∣

∣

∣

∣

∣

< ǫ,

which completes the proof. �

As a consequence of the remark following proposition 13 and of the fact that every Polish group
is the automorphism group of some metric Fraïssé structure ([M1, theorem 6]), we obtain the
following intrinsic characterization of amenability.
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Theorem 17. Let G be a Polish group and d a left-invariant metric on G which induces the
topology. Then the following are equivalent.

(1) The topological group G is amenable.
(2) For every ǫ > 0, every finite subset F of G, every 1-Lipschitz map f : (G, d) → [0, 1],

there exist elements g1, ..., gn of G and barycentric coefficients λ1, ..., λn such that for all
h, h′ ∈ F , one has

∣

∣

∣

∣

∣

n
∑

i=1

λif(gih)−

n
∑

i=1

λif(gih
′)

∣

∣

∣

∣

∣

< ǫ.

It implies that amenability is a Gδ condition in the following sense (see [MT2, theorem 3.1]).

Corollary 18. Let Γ be a countable group and G a Polish group. Then the set of representations
of Γ in G whose image is an amenable subgroup of G is Gδ in Hom(Γ, G).

Proof. Let π be a representation of Γ into G and d be a left-invariant metric on G which induces
the topology. Then, by virtue of theorem 17, π(Γ) is amenable if and only if for every ǫ > 0,
every finite subset F of π(Γ), every 1-Lipschitz function f : (π(Γ), d) → [0, 1], there exist elements
g1, ..., gn of π(Γ) and barycentric coefficients λ1, ..., λn such that for all h, h′ in F , one has

∣

∣

∣

∣

∣

n
∑

i=1

λif(gih)−

n
∑

i=1

λif(gih
′)

∣

∣

∣

∣

∣

< ǫ.

Using the same compactness argument as in proposition 10, one can show that the condition is
equivalent to the following.

∀ǫ > 0, ∀F ⊆ π(Γ) finite , ∃K ⊆ π(Γ) finite , ∀f : (KF, d) → [0, 1] 1-Lipschitz ,

∃k1, ..., kn ∈ K, ∃λ1, ..., λn, ∀h, h
′ ∈ F,

∣

∣

∣

∣

∣

n
∑

i=1

λif(kih)−
n

∑

i=1

λif(kih
′)

∣

∣

∣

∣

∣

< ǫ.

It is easily seen that this is again equivalent to the following.

∀ǫ > 0, ∀F ⊆ Γ finite , ∃K ⊆ Γ finite ,

(∗)











∀f : KF → [0, 1] such that ∀γ, γ′ ∈ KF, |f(γ)− f(γ′)| 6 d(π(γ), π(γ′)),

∃k1, ..., kn ∈ K, ∃λ1, ..., λn, ∀h, h
′ ∈ F,

∣

∣

∣

∣

∣

n
∑

i=1

λif(kih)−
n

∑

i=1

λif(kih
′)

∣

∣

∣

∣

∣

< ǫ.

We now prove that, if ǫ, F and K are fixed, the set of representations π satisfying condition (∗)
above is open, which will imply that the condition is indeed Gδ. We prove that its complement is
closed. To that aim, take a sequence (πk) of representations in the complement that converges to
some representation π. Let fk : KF → [0, 1] witness that πk is in the complement. Since KF is
finite, maps from KF to [0, 1] form a compact set so we may assume that (fk) converges to some
f . Since the Lipschitz condition is closed, f also satifies that for all γ, γ′ in KF , |f(γ)− f(γ′)| 6
d(π(γ), π(γ′)).

By the choice of fk, for all k1, ..., kn in K and all λ1, ..., λn, there exists hk, h
′
k in F such that

∣

∣

∣

∣

∣

n
∑

i=1

λifk(kihk)−
n

∑

i=1

λifk(kih
′

k)

∣

∣

∣

∣

∣

> ǫ.
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Since F is finite, we may again assume that there are h and h′ in F such that for all k, we have
hk = h and h′

k = h′. We then take the limit of the above inequality to get that
∣

∣

∣

∣

∣

n
∑

i=1

λif(kih)−
n

∑

i=1

λif(kih
′)

∣

∣

∣

∣

∣

> ǫ,

which implies that π does not satisfy condition (∗) either and thus completes the proof. �

This yields the following criterion for amenability, which can however be obtained without the
use of Ramsey theory.

Corollary 19. Let G be a Polish group such that for every n in N
∗, the set

Fn = {(g1, ..., gn) ∈ Gn : 〈g1, ..., gn〉 is amenable}

is dense in Gn. Then G is amenable.

Proof. We use a Baire category argument. By virtue of the above corollary, for all n, the set Fn is
dense Gδ in Gn. As a result, the set

F = {(gk) ∈ GN : ∀n, (g1, ..., gn) ∈ Fn}

is dense and Gδ too. Besides, the set of sequences which are dense in G is also dense and Gδ. Then
the Baire category theorem gives a sequence (gk) in their intersection. Thus, the group generated
by the gk’s is dense and amenable and so is G. �

Note that since compact groups are amenable, it implies in particular that a group in which the
tuples that generate a compact subgroup are dense is amenable.

Remark. The criterion of corollary 19 can also be proven directly using the following compactness
argument. Let G act continuously on a compact space X. For every finite subset F of G and every
entourage V in the uniformity on P (X), we approximate the elements of F by a tuple in some
Fn to find a measure µF,V in P (X) which is V -invariant by every element of F . Since P (X) is
compact, the net {µF,V } admits a limit point, which is invariant under the action of G.

Note that, in view of this direct argument, it is enough to ask that the set of tuples which
generate a subgroup that is included in an amenable one be dense.

The same argument works with extreme amenability as well and it allows to slightly simplify
the arguments of [MT2]: to show that the groups Iso(U), U(H) and Aut(X, µ), Melleray and
Tsankov use their theorem 7.1 along with the facts that extreme amenability is a Gδ property and
that Polish groups are generically ℵ0-generated. This is not necessary, as the core of their proof
is basically the above criterion: in each case, they prove that the set of tuples which generate a
subgroup that is contained in an extremely amenable group (some L0(U(m)), as it happens) is
dense.

4. Concluding remarks

One would expect the characterization of theorem 16 to yield new examples of amenable groups
or at least simpler proofs of the amenability of known groups. However, proving the convex Ramsey
property for a concrete Fraïssé class is quite technical and difficult. Indeed, we have no example of
a metric class which satisfies the metric convex Ramsey property but not the metric (approximate)
Ramsey property.

The only such example that we know of is discrete: it is the class of finite sets with no addi-
tional structure. It is well known that its automorphism group, S∞, is amenable but not extremely
amenable. In fact, the class of finite sets has the classical Ramsey property (it follows from the
Ramsey theorem), but since finite sets are not rigid (every permutation is an automorphism),
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Kechris, Pestov and Todorčević’s result does not apply. However, we can still use this classical
Ramsey property to recover the amenability: we circumvent the problem of non-rigidity by averag-
ing the colors of all permutations of the small structure A to obtain the convex Ramsey property.
We do not know if this technique generalizes to other nonrigid classes.

Maybe our characterization can be used the other way round, that is, to find new Ramsey-
type results. There is also hope that the criterion of corollary 19 may lead to (new) examples of
amenable groups.
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ance as well as for various improvements on this paper. I am also very grateful to Lionel Nguyen
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