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�19 

Abstract�20 

Modelling the radio-induced effects in biological medium requires accurate physics models to 21 

describe in detail the main physical interactions induced by all the charged particles present in 22 

the irradiated medium (secondary as well as primary ones). These interactions include 23 

inelastic events like ionization and excitation processes as well as elastic scattering, the latter 24 

being the most important process in the low-energy regime. To check the accuracy of the 25 
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theoretical models recently implemented into the Geant4 toolkit for modelling the electron 26 

slowing-down in liquid water, the simulation of electron Dose Point Kernels remains the 27 

preferential test. In this work, normalized radial profiles of deposited energy at a distance 28 

from emissions point sources are then computed in liquid water by using the very low energy 29 

“Geant4-DNA” physics processes available in the Geant4 toolkit. We here report an extensive 30 

comparison with profiles obtained by a large selection of existing and well-documented 31 

Monte-Carlo codes, namely, EGSnrc, PENELOPE, CPA100, FLUKA and MCNPX. 32 
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1. Introduction 47 

Energy deposition functions from point isotropic sources - commonly denoted dose point 48 

kernel (DPK) functions - are of prime interest in many fields like dosimetry in particular for 49 

medical applications. To better understand the radiobiological effects resulting from the use 50 

of electron-emitting radiopharmaceuticals, it is necessary to have an appropriate knowledge of 51 

the cellular distribution of the radiopharmaceutical and then to model the microscopic 52 

distribution of energy deposited in irradiated matter [1]. Absorbed doses to targeted cancer 53 

cells play an important role in evaluating the relative merits of different radionuclides and 54 

pharmaceuticals. In this context, information on the bio-distribution at the tissue, cellular and 55 

sub-cellular levels can be obtained by autoradiography [2], micro-autoradiography [3], or 56 

alternative techniques such as secondary ion mass spectrometry [4]. Converting these data to 57 

absorbed dose distribution requires the use of analytic methods based on point-dose kernels or 58 

methods based on radiation transport calculations [5-7]. Indeed, Monte Carlo code event-by-59 

event simulations can be particularly suitable [7-11]. The latter consist in describing, step-by-60 

step, interaction after interaction, the history of each ionizing particle created during the 61 

irradiation of the biological matter. In this kind of numerical code, each projectile-target 62 

interaction is described either thanks to theoretical (differential as well as total) cross sections 63 

or by semi-empirical ones giving access to a more or less complete description of the 64 

kinematics before and after the collision.�65 

In fact, there are in the literature a large number of Monte Carlo electron track-structure 66 

codes in water, which have been developed independently to investigate the microscopic 67 

features of ionizing radiation, the ensuing chemical pathways and the molecular nature of the 68 

damages in bio-molecular targets (see [11] and references therein). The aim of the present 69 

study is to compare dose point kernels - for particular electron energies - calculated by using 70 

different Monte Carlo codes, namely, EGSnrc [12], PENELOPE [13], CPA100 [14], FLUKA 71 
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[15], MCNPX [16] and GEANT4-DNA [17]. To do that, the energy deposited by the emitted 72 

electrons as well as all the secondary particles produced along the primary trajectories are 73 

scored in spherical shells placed around an isotropic source for distances ranging from 0 to 74 

1.2 times the continuous slowing-down approximation range hereafter denoted RCSDA and 75 

provided by the different codes here studied. 76 

 77 

2. Methods�78 

The Monte Carlo numerical simulations used in the present study are well-documented and 79 

nowadays extensively used by many groups. Only a brief description is then hereafter 80 

reported and for more details we refer the interested reader to the corresponding literature 81 

whose examples are cited as references.�82 

 2.1 The GEANT4-DNA code�83 

The Geant4-DNA code is fully included in the general purpose Geant4 Monte Carlo 84 

simulation toolkit. It simulates track structures of electrons, hydrogen and helium atoms of 85 

different charge states (H0, H+) and (He0, He+, He2+) respectively, as well as C6+, N7+, O8+ and 86 

Fe26+ ions, in liquid water. The physical processes include ionization (for all particles), 87 

electronic excitation (for electrons, protons, hydrogen atoms and α-particles including their 88 

different charge states), charge exchange (for hydrogen and helium atoms with the above-89 

mentioned charge states), and, for electrons, elastic scattering, vibrational excitation and 90 

dissociative attachment. Electron interactions cover the 7.4eV - 1MeV energy range, whereas 91 

proton and hydrogen interactions are simulated from 100eV to 100MeV while helium ions of 92 

different charged states are followed from 1keV up to 400MeV. These processes are further 93 

described in [17]. �94 

2.2 The EGSnrc code�95 
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EGSnrc is a general-purpose package for the Monte Carlo simulation of the photons and the 96 

electrons transport from a few keV up to 100GeV. EGSnrc uses a condensed history approach 97 

based on the formalism developed by Kawrakow and Bielajew to sample angular distributions 98 

from the any-angle form of the screened Rutherford cross section [18]. The Möller inelastic 99 

cross-sections are used for the generation of secondary electrons. For this study, the 100 

simulations were based on the user-code EDKnrc developed by Mainegra et al. [19]. We 101 

applied the PRESTA II electron-step algorithm and the EXACT boundary crossing algorithm 102 

to switch to single scattering when a particle comes closer to a boundary. The “skin depth” 103 

parameter was set to 3: it represents the number of elastic mean free paths to the next 104 

boundary at which the simulation switches into single scattering mode. We set the cut-off 105 

parameter ECUT to 1 keV in order to track primaries and secondaries until they leave the 106 

geometry or their energy falls below 1 keV. We produced a PEGS4 data set describing cross 107 

sections and stopping powers adapted for this low cut-off value. 108 

2.3 The PENELOPE code �109 

PENELOPE (2006 version) is a general-purpose Monte Carlo code for the coupled simulation 110 

of electron and photon transport. The cross sections database used in PENELOPE covers a 111 

wide range of elements (Z = 1-99) and various materials useful for medical applications in the 112 

energy range of 50 eV - 1 GeV. This code has the flexibility to generate electron and positron 113 

histories on the basis of a mixed procedure, which combines detailed simulation of hard 114 

events with the continuous slowing down approximation for soft interactions. The level of 115 

detail of electron transport processes is controlled in PENELOPE by specifying values for 116 

several parameters, C1, C2, WCC and WCR. The C1 and C2 parameters are associated to the 117 

condensation of electron and positron elastic scattering processes. WCC and WCR, respectively, 118 

represent the cut-off energy losses for hard inelastic collisions and for hard Bremsstrahlung 119 

emission. A detailed description of the algorithms used in PENELOPE can be found in its 120 
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manual [20]. These simulations were done with detailed event-by-event transport setting 121 

C1 = C2 = 0, WCC = WCR = 50 eV and using 50 eV as the lower absorption energy allowed in 122 

this code. 123 

2.4 The CPA100 code 124 

CPA100 is an event by event Monte Carlo track structure code, developed in Toulouse 125 

(France), for understanding fundamental aspects of radiation track interaction [14]. It 126 

simulates complete electron/photon transport in liquid water for energy range from 10 to 127 

200 keV. It generates all the electronic and photonic cascades occurring after a particle 128 

passage in the volume of interest (Auger electron, X-Rays, atomic reorganization). It is also 129 

able to describe the various stages of the particle transport not only the early physical stage, 130 

but also the physico-chemical and the chemical ones, during the very early passage of 131 

particles in matter say up to one microsecond. Primary physical and chemical damages not 132 

only in liquid water but also in complex DNA targets and its higher order structures can be 133 

calculated to estimate the radio-induced damage to the DNA molecular scale (DSB, SSB, 134 

base lesion). 135 

2.5 The FLUKA code 136 

FLUKA is a multi-purpose Monte Carlo particle transport code that considers all particle 137 

interactions including electromagnetic interactions, nuclear interactions of the primary or 138 

incident particles and the generated secondary particles, energy loss fluctuations and Coulomb 139 

scattering [15]. The version 2011.2.15 with the default configuration ‘PRECISION’ was used, 140 

with an energy cut-off lowered at 1 keV for electrons and 0.1 keV for photons. To reach a 141 

good accuracy, the single scattering model through the ‘MULSOPT’ option was activated, 142 

because the Moliere multiple scattering model could be unreliable with thin shells, disturbing 143 

the propagation of electrons between the boundaries [21]. 144 

2.6. The MCNPX code 145 
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MCNPX is a general-purpose Monte Carlo code for modelling the interaction of radiation 146 

with matter [16]. MCNPX stands for MCNP eXtended and transports electrons, photons, 147 

neutrons and several particle types, like nearly all energies. It utilizes the latest nuclear cross 148 

section libraries and covers various materials useful for medical applications. The tallies have 149 

extensive statistical analysis and the convergence is enabled by a wide variety of variance 150 

reduction methods. For this work, the version 2.7.0 was used with the F8* energy deposition 151 

tally in coupled electron-photon mode. The photon and electron cut-off energies were set 152 

above 1 keV. A specific consideration was focused on electron transport conditions, through 153 

the ITS option and the ESTEP parameter, due to the very narrow shells. The ITS energy 154 

indexing algorithm was used to have a better definition of the energy group and their 155 

boundaries [22] and the ESTEP parameter was increased in order to divide the major electron 156 

energy step into smaller sub-steps [23]: ESTEP = 10 for 100 keV and ESTEP = 100 for 10, 30 157 

and 50 keV.�158 

 159 

3. Results and discussion�160 

To obtain the dose point kernel (DPK) around an isotropic point source, the geometry 161 

here used consists in a spherical water phantom divided into 120 spherical shells of thickness 162 

RCSDA/100, where RCSDA stands for the continuous-slowing-down-approximation range whose 163 

values calculated by the different codes here studied are reported in Table 1. Note that for the 164 

EGSnrc, the CPA100, the FLUKA and the MCNPX codes, the corresponding values are taken 165 

from the NIST web database ESTAR [24], what generates stopping powers and ranges for 166 

electrons which are the same as those tabulated in ICRU Report 37 [25]. Besides, let us 167 

remind that the present GEANT4-DNA version transports electrons down to an energy 168 

threshold of 7.4 eV contrary to the other codes studied which use higher energy cut-off, what 169 

undoubtedly affects the RCSDA values.�170 



8 
 

Finally, the GEANT4-DNA DPK distributions have been compared to those obtained 171 

with the other Monte Carlo codes by using Kolmogorov-Smirnov statistical tests. Thus, we 172 

found that the GEANT4-DNA simulations are statistically compatible with EGSnrc and 173 

PENELOPE simulations (p-value > 0.05) with a maximum distance (D) between distribution 174 

functions less than 0.2. On the contrary, much smaller p-values (< 0.05) and larger D 175 

distances were obtained when comparing GEANT4-DNA simulations with the MCNPX and 176 

CPA100 simulations.�177 

The DPK distributions also obtained by the different numerical codes are reported in 178 

Figure 1 for four particular electron energies, namely, 10 keV, 30 keV, 50 keV and 100 keV. 179 

These quantities are defined as the fraction of the emitted energy absorbed (per unit mass) at a 180 

certain distance from the point source and are usually reported by means of scaled 181 

distributions defined as 
CSDA

CSDA Rr

ErE
RrF

/

/)(
)/( 0

δ
δ=  where r is the distance from the point source, 182 

δE(r) stands for the energy absorbed in the spherical shell sited at a distance r from the point 183 

r/RCSDA source, E0 being the initial kinetic energy of the electron and δr the shell thickness 184 

(here RCSDA/100). The obtained distributions will be hereafter reported as a function of r/RCSDA 185 

and refer to scoring of the deposited energy at the mid-radius of the shell.�186 

In Figure 1, we observe that the shape of the dose point kernels generated by the 187 

different codes is very similar. However, we note that the CPA100 code exhibits a peak closer 188 

to the source in comparison to the other codes (r/RCSDA ≅  0.53 vs 0.58), the amplitudes being 189 

all of the same order of magnitude - from 1.45 to 1.55 - except for the MCNPX which largely 190 

overestimates the other results.� When the incident electron energy increases, these 191 

observations are confirmed with in particular an improvement of the agreement between the 192 

CPA100 and the other simulations. Thus, from Fig.1b) to Fig.1d) all the curves tend to 193 

converge except again the MCNPX simulation which provides higher DPKs (of about 20%).�194 
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Besides, for the four energetic cases here reported, the GEANT4-DNA DPK 195 

distributions have been compared to those obtained with the other Monte Carlo codes by 196 

using Kolmogorov-Smirnov statistical tests. Thus, we found that the GEANT4-DNA 197 

simulations are statistically compatible with EGSnrc, PENELOPE and FLUKA simulations 198 

(p-value > 0.05) with a maximum distance (D) between distribution functions less than 0.3. 199 

On the contrary, much smaller p-values (< 0.05) and larger D distances were obtained when 200 

comparing GEANT4-DNA simulations with the MCNPX (for the four incident energy 201 

values) and CPA100 (for 30 keV and 50 keV) simulations. 202 

 203 
4. Conclusions�204 

Normalized radial profiles of deposited energy - commonly referred to as dose point kernels - 205 

have been here reported by using the very low energy “Geant4-DNA” physics processes 206 

available in the Geant4 toolkit. In comparison with profiles obtained by a large selection of 207 

existing and well-documented Monte-Carlo codes, namely, EGSnrc, PENELOPE, CPA100, 208 

FLUKA and MCNPX, we have here emphasized evident discrepancies undoubtedly relied to 209 

the physics models implemented into the different codes. In this context, the Geant4-DNA 210 

code has been shown to provide accurate dose point kernels for incident electron energies 211 

ranging from 10 keV to 100 keV. 212 

 213 
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Figure 1: 220 

(Color online) Comparison between the scaled dose point kernel distributions obtained by the 221 

different numerical track-structure codes studied in the present work: GEANT4-DNA (red), 222 

EGSnrc (green), PENELOPE (blue), CPA100 (cyan), MCNPX (magenta) and FLUKA 223 

(orange). Panel a) E0 = 10 keV. Panel b) E0 = 30 keV. Panel c) E0 = 50 keV. 224 

Panel d) E0 = 100 keV. 225 
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Table 1: 228 

Comparison between the continuous-slowing-down-approximation range RCSDA (µm) obtained 229 

by the different numerical track-structure codes studied in the present work.  230 

E0 
RCSDA 

(GEANT4-DNA) 

RCSDA 

(PENELOPE) 

RCSDA
* 

(EGSnrc, CPA100, KLUKA, MCNPX) 

10 keV 2.76 2.52 2.52 

30 keV 18.16 17.57 17.56  

50 keV 44.07 43.21  43.20  

100 keV 144.12 143.06 143.10  

*Note that the EGSnrc, CPA100, FLUKA and MCNPX values have been taken from the NIST 231 

web database ESTAR [24] contrary to the other data here reported. 232 

 233 



12 
 

References 234 

[1] A.I. Kassis, Radiobiologic principles in radionuclide therapy, J. Nucl. Med. 46 (2005) 235 

4S12S. 236 

[2] E.D. Yorke, L.E. Williams, A.J. Demidecki, D.B. Heidorn, P.L. Roberson, B.W. Wessels, 237 

Multicellular dosimetry for beta-emitting radionuclides: autoradiography, thermoluminescent 238 

dosimetry and three-dimensional dose calculations, Med. Phys. 20 (1993) 543-550. 239 

[3] M.R. Puncher, P.J. Blower, Radionuclide targeting and dosimetry at the microscopic level: 240 

the role of microautoradiography, Eur. J. Nucl. Med. 21 (1994) 1347-1365. 241 

[4] F. Chehade, C. de Labriolle-Vaylet, N. Moins, M.F. Moreau, J. Papon, P. Labarre, 242 

P. Galle, A. Veyre, E. Hindié, Secondary ion mass spectrometry as a tool for investigating 243 

radiopharmaceutical distribution at the cellular level: the example of I-BZA and 14C-I-BZA, 244 

J. Nucl. Med. 46 (2005) 1701-1706. 245 

[5] W.E. Bolch, L.G. Bouchet, J.S. Robertson, B.W. Wessels, J. A. Siegel, R.W. Howell, 246 

A.K. Erdi, B. Aydogan, S. Costes, E.E. Watson, A.B. Brill, N.D. Charkes, D.R. Fisher, M.T. 247 

Hays, S.R. Thomas, MIRD Pamphlet No. 17: the dosimetry of nonuniform activity 248 

distributions-radionuclide S values at the voxel level. Medical Internal Radiation Dose 249 

Committee, J. Nucl. Med. 40 (1999) 11S-36S. 250 

[6] L. Strigari, E. Menghi, M. d’Andrea, M. Benassi, Monte Carlo dose voxel kernel 251 

calculations of beta-emitting and Auger-emitting radionuclides for internal dosimetry: a 252 

comparison between EGSnrcMP and EGS4, Med. Phys. 33 (2006) 3383-3389. 253 

[7] W.B. Li, W. Friedland, E. Pomplun, P. Jacob, H. Paretzke, M. Lassmann, C.H.R. Reiners, 254 

Track structures and dose distributions from decays of 131I and 125I in and around water 255 

spheres simulating micrometastases of differentiated thyroid cancer, Radiat. Res. 156 (2001) 256 

419-429. 257 



13 
 

[8] C. Champion, Theoretical cross sections for electron collisions in water: structure of 258 

electron tracks, Phys. Med. Biol. 48 (2003) 2147-2168. 259 

[9] C. Champion, A. L’hoir, M.F. Politis, P.D. Fainstein, R.D. Rivarola, A. Chetioui, A 260 

Monte Carlo code for the simulation of heavy-ion tracks in water, Radiat. Res. 163 (2005) 261 

222-231. 262 

[10] C. Champion, C. Le Loirec, Positron follow-up in liquid water. I. A new Monte Carlo 263 

track-structure code, Phys. Med. Biol. 5 (2006) 1707-1723. 264 

[11] S. Uehara, H. Nikjoo, D.T. Goodhead, Comparison and assessment of electron cross 265 

sections for Monte Carlo track structure codes, Radiat. Res. 152 (1999) 202-13. 266 

[12] I. Kawrakow, Accurate condensed history Monte Carlo simulation of electron transport : 267 

I. EGSnrc, the new EGS4 version, Med. Phys. 27 485-98 (2000). 268 

[13] S. Salvat, J.M. Fernandez-Varea, J. Sempau, PENELOPE-2006, A Code System for 269 

Monte Carlo Simulation of Electron and Photon Transport, OECD ISBN 92-64-02301-1 270 

(2006). 271 

[14] M. Terrissol and A. Baudre, A simulation of space and time evolution of radiolytic 272 

species induced by electrons in water, Radiat. Prot. Dosim. 31 (1990) 175-177. 273 

[15] FLUKA: A Multi-Particle Transport Code. Geneva: CERN European organization for 274 

nuclear research; 2005. 275 

[16] MCNPX User’s Manual, Version 2.5.0, Laurie Waters, ed., LA-CP-05-0369 (2005). 276 

http://mcnpx.lanl.gov/documents.html. 277 

[17] S. Incerti, A. Ivanchenko, M. Karamitros, A. Mantero, P. Moretto, H.N. Tran, B. 278 

Mascialino, C. Champion, V.N. Ivanchenko, M.A. Bernal, Z. Francis, C. Villagrasa, G. 279 

Baldacchino, P. Guèye, R. Capra, P. Nieminen, C. Zacharatou, Comparison of GEANT4 very 280 

low energy cross section models with experimental data in water, Med. Phys. 37 (2010) 4692-281 

4708. 282 



14 
 

[18] I. Kawrakow and A.F. Bielajew, On the representation of electron multiple elastic-283 

scattering distributions for Monte Carlo calculations, Nucl. Instrum. Methods Phys. Res. B 284 

134 (1998) 325-35. 285 

[19] E. Mainegra-Hing, D.W.O. Rogers, I. Kawrakow, Calculation of photon energy 286 

deposition kernels and electron dose point kernels in water, Med. Phys. 32 (2005) 685-699. 287 

[20] F. Salvat, J. Sempau, and J.M. Fernandez-Varea, Tech. Rep., Universitat de Barcelona, 288 

2006. 289 

[21] F. Botta, A. Mairani, G. Battistoni, M. Cremonesi, A. Di Dia, A. Fassò, A. Ferrari, M. 290 

Ferrari, G. Paganelli, G. Pedroli, M. Valente, Calculation of electron and isotopes dose point 291 

kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy, Med. 292 

Phys. 38 (2011) 3944-3954. 293 

[22] D.R. Schaart, J.T.M Jansen, J. Zoetelief, P. De Leege, A comparison of MCNP4C 294 

electron transport with ITS 3.0 and experiment at energies between 100 keV and 20 MeV: 295 

Influence of voxel size, substeps and energy indexing algorithm, Phys. Med. Biol. 47 (2002), 296 

1459-1484. 297 

[23] H. Koivunoro, T. Siiskonen, P. Kotiluoto, I. Auterinen, E. Hippeläinen, S. Savolainen, 298 

Accuracy of the electron transport in MCNP5 and its suitability for ionization chamber 299 

response simulations: A comparison with the EGSNRC and PENELOPE codes, Med. Phys. 300 

39 (2012) 1335-1343. 301 

[24] ESTAR, National Institute of Standards and Technology, « Stoping powers and Range 302 

table for electrons », http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html. 303 

[25] ICRU, « Stopping powers for electrons and positrons », ICRU Report 37, ICRU, 304 

Washington, DC, 1984. 305 


