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Receptor clustering affects signal transduction at the membrane level in the

reaction-limited regime.
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Many types of membrane receptors are found to be organized as clusters on the cell surface. We
investigate the potential effect of such receptor clustering on the intracellular signal transduction
stage. We consider a canonical pathway with a membrane receptor (R) activating a membrane-
bound intracellular relay protein (G). We use Monte Carlo simulations to recreate biochemical
reactions using different receptor spatial distributions and explore the dynamics of the signal trans-
duction. Results show that activation of G by R is severely impaired by R clustering, leading to an
apparent blunted biological effect compared to control. Paradoxically, this clustering decreases the
half maximal effective dose (ED50) of the transduction stage increasing the apparent affinity. We
study an example of inter-receptor interaction in order to account for possible compensatory effects
of clustering and observed the parameter range in which such interactions slightly counterbalance
the loss of activation of G. The membrane receptors spatial distribution affects the internal stages
of signal amplification, suggesting a functional role for membrane domains and receptor clustering
independently of proximity-induced receptor-receptor interactions.

I. INTRODUCTION

Signalling is the process by which a external chemical
signal is perceived by the cell via membrane proteins
called receptors. These receptors when activated trigger
a biochemical cascade inside the cell. Two important
families of signalling systems are associated with two
particular type of receptors: the Receptor Tyrosine
Kinase (RTK) [1] and the G-protein coupled receptor
(GPCR) [2, 3]. Both systems share the same common
functional features. In both cases, membrane receptors,
once activated by an external ligand molecule, acquire
the ability to activate directly several intracellular
membrane-bound proteins that relay the signal further
into the cytoplasm.
Contemporary cell biology acknowledges that, among
other membrane components, receptors of different
signalling pathways are not homogeneously dispatched
on the membrane but are oftentimes organized in
clusters [4–8], possibly due to the structuration of the
membrane in lipid rafts and caveolae [9–11]. According
to several recent works, receptor clustering seems to
play a important role in cell signalling, and influences
regulatory processes such as bacteria chemical sen-
sitivity, chemotaxis, or G-protein signalling [12–14].
Literature however does not come to a consensus
regarding the effect of clustering on receptor-ligand
binding dynamics and afterwards cell response. When
receptors are packed together, signal-enhancing phe-
nomena can occur, such as ligand receptor switching
[15], or improved ligand-receptor and receptor-effector
encounter probabilities [16–18]. Within the context of
diffusion-limited reactions, Goldstein [19] argues that
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clustering reduces the ligand-receptor binding forward
rate constant whereas Gopalakrishnan [17] proposes
that clustering increases the ligand-receptor rebinding
probability, and thus the cell response. However, in a
previous work using individual based-model, we showed
that receptor clustering induces an attenuating effect
on ligand-receptor binding and leads to a decreased
apparent receptor affinity [20, 21], in agreement with a
recent study [22]. However, the step further:the effect of
clustering on signal transduction at equilibrium, directly
downstream of the reception stage, remains relatively
unexplored.

In this work, we determine the impact of heteroge-
neous (and correlated) spatial receptors distributions
on the dynamics of a simple canonical pathway at the
transduction stage. Since such dynamics are generally
studied using mean-field models articulating averaged
densities of molecules using the law of mass action,
it rests on the well-mixed assumption [23, 24]. This
approach is not directly applicable when considering
clustering which, by definition, imposes heterogeneous
receptor distributions. We propose a simple individual-
based computational model to explore the dynamics of a
canonical signal transduction stage between a receptor R
and its downstream membrane-bound protein substrate
G, akin to RTK and GPCR signalling systems. This
computational framework allows for the simulation of
transduction by heterogeneously distributed receptors,
reproducing spatial distributions on the membrane
observed in living cells.
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II. MODELS

We consider a canonical transduction pathway, de-
scribed by the following reactions:

R
k+c

−−⇀↽−−
k
−c

C (1)

C +G
Ck+h

−−−⇀↽−−−
k
−h

C +H (2)

where G is a deactivated intracellular relay protein and
H its activated form. The activation of G is induced
by a activated receptor C whereas R is its deactivated
form.
In this simple model, receptor activation/deactivation
is performed by an implicit ligand at constant rates :
k+c and k−c respectively. This means that the model
only considers the phosphorylation state of the receptor
intracellular subunit, regardless of possible cooperation
mechanisms due to the dimeric structure of the receptor
[25, 26]. The response is evaluated by measuring the
number of activated G molecules (H). G molecules
activation follows a “hit and run” scheme, meaning that
a G molecule is activated by an activated receptor C to
become a activated molecule H, so the forward reaction
rate depends on ck+h. H molecules deactivation, on the
other hand, is assumed to be spontaneous (phosphatases
are excluded from the model), so the backward reaction
rate only depends on k−h.

A. ODE for transduction dynamics at equilibrium

The reaction set can be expressed as a system of ODE
describing the evolution of the amounts of species (de-
nominated as lowercase letters) using the law of mass
action [23, 26, 27]. The equilibrium of such system yield-
ing c⋆ of the number of activated receptor c to the total
receptor number r0 = r + c is well known

c⋆ =
c

r0
=

k+c

k-c + k+c

=
ρ

1 + ρ
(3)

with ρ =
k+c

k-c
.

The ratio ρ thus represents the implicit ligand stimulus
applied to the system.

Activation of G molecules occurs at a rate proportional
to k+hc, and deactivation at a constant rate k-h. The
fraction of activated h⋆ (ratio of h to g0 = g + h) is at
equilibrium

h⋆ =
h

g0
=

r0

r0 + (1 +
1

ρ
)κ

(4)

with κ =
k-h
k+h

.

Both Eq. (3) and (4) exhibit several measurable values

that relates to dose-responses curves. First let’s rewrite
Eq. 4 as

h⋆ =

r0
r0 + κ

ρ

ρ+
κ

κ+ r0

(5)

which expresses another Michaelian-like equation but
with a new saturation plateau h⋆

max – whenever ρ 7→ ∞ –
and the half maximal efficient ligand stimulation (often
referred to as the ED50) which is in our case the ratio
ρ50 that generates half of the maximal G activation –
namely h⋆

max/2. Assuming we can measure both values
from dose-responses, we can extract an equation for the
reaction affinity κ derived from either the maximal G
activation

κhmax = r0 (1/h
∗

max − 1) (6)

This relation is obtained from Eq. 5 by letting ρ 7→ ∞ and
rearranging to obtain κ from h⋆

max. The other options is
by measuring ρ50 the value of ρ that yields h⋆

max/2 that
is

ρ50 =
κ

κ+ r0
(7)

and with rearranging yields

κρ50 =
ρ50r0
1− ρ50

(8)

Note that both κ should be equal provided that the
reaction dynamics obeys Eq. 4. Please also note that, in
both cases, the greater the κ, the more ligand stimulation
needed to generate a given response, so the parameter
κ is inversely proportional to the transduction reaction
affinity.
Since ODE model is non-spatial it does not take into
account receptor clustering. However, we will compare
the theoretical dynamics of a well mixed transduction
pathway with the ones obtained in simulation for hetero-
geneous receptors distributions which should coincide.

B. Monte Carlo microscopic lattice model

We developed a computational model that recreates
the canonical transduction pathway described above, us-
ing a classical Monte Carlo microscopic lattice frame-
work. The membrane is modelled as a 2D square lattice
with periodic boundary conditions. We will assume that
receptors are fixed at specific discrete locations on the
lattice and do not impair the diffusion of G molecules.
Receptors are set at the start of the simulation either uni-
formly (homogeneous distribution), or arranged in hexag-
onal clusters located randomly on the lattice (clustering).
Additionally, crowding is ignored – several G molecules
can reside on the same lattice at any given time step, but
not receptors. These assumptions are imposed in order
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to restrict the study of receptor clustering to the effect
of spatial correlation only, and avoid the interference of
steric hindrance aspects such as macromolecular crowd-
ing and fractal diffusion [28, 29] in the observed effect of
clustering.
The diffusion is a discrete-time random walk on the
lattice. Within the Monte Carlo stochastic simulation
framework, Each G or H molecule has a probability pD
to jump to each of the four adjacent lattice node, and con-
versely a probability 1−4pD to stay on its current lattice
cell, at any time step. We set pD = 1/4, which gives a

simulated macroscopic diffusion coefficient D =
l2

4∆t
de-

pending on the lattice spacing l and time step ∆t.
A bimolecular reaction defined by a macroscopic rate k

expressed in M−1s−1 (such as C +G
k+h

−−→ C +H) must
be converted into a dimensionless probability p of reac-
tion whenever two potentially interacting molecules are
on the same lattice cell during a given time step. The
scaling from k to p is defined following the expression
[30] :

p =
k∆t

AVn

(9)

where A is Avogadro’s number,Vn is the volume of a lat-
tice node. The lattice spacing l and the time step ∆t
therefore define the range of macroscopic reaction rates
that can be simulated, so that p ≤ 1. For unimolecu-

lar reactions (such as H
k
−h

−−→ G), the macroscopic re-
action rate k expressed in s−1 is converted to a dimen-
sionless probability p following the expression p = k∆t.
Unimolecular reaction such as spontaneous receptor ac-
tivation / deactivation, and H molecule deactivation, oc-
cur independently of the molecule position. Notably, al-
though receptors are correlated in space, their activation
is a stochastic process independent of their position or
their neighborhood.
A simulation using an homogeneous receptor repartition
should yield doses-responses curves following Eq. 3 and
Eq. 4. The effects of clustering can then be measured by
positioning adequately receptors and relaunch the simu-
lations with identical parameters.

III. RESULTS

Parameters were defined considering a typical eu-
karyotic cell of radius 10µm (∼ 1.2 103µm2) with 104

receptors (yielding a concentration of 8 receptors per
µm2) [23], and 20 times more intracellular signalling
relay proteins, consistent with typical signalling systems
such as the insulin pathway [26] or the β-adrenergic
pathway [31]. Taking a smaller membrane patch of
800×800 2D-lattice, with a spacing l = 10nm close
to the typical membrane receptor diameter [32, 33],
which gives r0 ∼ 512 receptors – converted down to
r0 = 500 for simplicity – and g0 = 104 G molecules.

With ∆t = 10−6s and l = 10nm, we obtain a diffusion
coefficient D = 2.5 × 10−7cm2.s−1 consistent with the
fastest diffusion regime for GPI-anchored proteins on
the membrane [34, 35].

Receptor activation and deactivation occur for each
individual receptor at each time step with the respec-
tive probabilities p+c and p-c. Dose-responses curves
were obtained by simulating different levels of ligand
stimulation ρ = p+c/p-c, reproduced by varying the
parameter p-c and using a fixed value for p+c = 10−2.
The higher the value of the parameter ρ, the higher the
average number of activated receptors at equilibrium.
These parameters were used for each simulation used in
this work. The opposite approach for varying ρ, that is
changing p+c with a fixed value for p-c, was also tested
and led to identical results (data not shown).
The rate k+h for the reaction C+G → C+H was defined
so activation of G is in the reaction-limited regime to
limit the effect of diffusion on the reaction rates. The
transport rate kt of a G molecule to a C molecule was

calculated as kt =
2πD

ln(b/s)
[23, 36], where b is half the

mean distance between receptors molecules, and s is the
minimal reaction distance, equal to l in our model. The
regime of the reaction can be determined by comparing
the transport rate k+ to the forward reaction rate k+h :
in order to be in the reaction limited regime, one has the
condition r0k+h/kt ≥ 1. For our lattice spacing l and
time step ∆t, this gives the condition k+h ≥ 107M−1.s−1

for the forward reaction rate. Therefore we set the
activation reaction probability p+h = 0.1 (per ∆t) for
a G molecule located on the same lattice node as a C
molecule, which gives k+h = 6.107M−1.s−1. We repro-
duced different G activation affinities κ = k-h/k+h by
fixing k+h and varying k-h between 101s−1s and 103s−1,
which translates into probabilities of deactivation per
time step p−c between 10−3 and 10−5.

All receptors were initialized as deactivated. Cluster-
ing is achieved by assigning fixed position for the recep-
tors on the grid. First a number n of receptors per cluster
is defined, and the number of clusters is derived. Then
the center of all clusters are positioned randomly, for-
bidding overlap. When the center of the cluster is po-
sitioned, all receptors of this cluster are set in a hexag-
onal tiling, spiralling around the center, which imposes
an approximately disc-like shape although the lattice is
square. Each cluster is randomly rotated on itself so no
privileged orientation exists for non-symmetrical clusters.
Note that when the cluster size is 1 – no clusters – recep-
tors are positioned randomly on the membrane. On the
other hand, a cluster size of 500 is one disc whose center
is set randomly. Finally, initial positions for G molecules
are set randomly, each G in a initially deactivated state.
Simulations were performed for a minimum of 0.1 sec-
ond of real time. For dose-response curves, we checked
that steady-state was reached by veryfying the detailed
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FIG. 1. A. Dose-response curves obtained in simulation for
n=1 (no cluster, open squares), n=5 (clusters of 5 receptors,
open triangles) and n=10 (open circles), all simulation pa-
rameters remaining equal (p+h = 0.1, p-h = 10−4). Increasing
levels of receptor stimulation are achieved by tuning the value
of ρ = p+c/p-c, with fixed p+c = 0.01 and p-c varying. ρ 7→ ∞

was obtained by setting p+c = 1.0 and p-c = 0. Data points
were obtain by averaging h at equilibrium for the last 100
time steps of 10 simulation runs. Theoretical curves (dashed
lines) were obtained using Eq. 4 and κ = κhmax estimated
from the saturation plateau (Eq. 6). B. Values of κ computed
from the saturation plateau (κhmax) or from the half maximal
efficient dose (κρ50 as in Eq. 8). For each curve, values were
normalized on the estimate obtain for n = 1.

balance equilibrium of the number of molecules in each
state. 16 runs were performed with different pseudo-
random number generator seeds for each parameter set.
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FIG. 2. Effective forward reaction rate keff
+h estimated at equi-

librium for different stimulation levels ρ, and for different clus-
ter sizes n. keff

+h was obtained by measuring the number of G
molecule activation events per time step, normalized by h, c,
and expressed in M−1s−1 according to lattice spacing l and
∆t. The irregularly dashed-line correspond to the reaction-
limited theoretical rate k+h, expressed in M−1s−1 according
to simulation parameters p+h,l and ∆t.

A. Clustering decreases the activation of G.

For several values of ρ ranging from 0.01 to 20 and
for two cluster size (n = 1, n = 5 and n = 10 – see
Fig. 1 A) the equilibrium fraction of activated G – h⋆ –
was retrieved. At equal receptor stimulation, clustering
induces a dramatic decrease in G activation at equilib-
rium, for all values of ρ. Even when fully and constantly
activated, receptors distributed in clusters of 5 and 10 ac-
tivated less G than when randomly spread and separated.

This decreasing response effect is more pronounced
the higher the clustering. As a way of quantifying this
effect, we estimated the apparent affinity of the reaction
C + G → C + H by calculating the parameter κ using
the two different methods describe in Models. We first
obtain the information of the saturation plateau h⋆

max by
taking the equilibrium values for very high ρ, averging
the value of h for the last 100 time steps of 10 simulation
runs at equilibrium. We retrieved the half maximal
efficient ligand stimulation ρ50 by non-linear fitting of
the equation h = hmaxρ/(ρ50 + ρ) on doses-responses
curves that were obtained for 10 simulations runs. Using
Eq.6 we derive κhmax and using Eq. 8 we get κρ50 as in
to Fig. 1 B.

Surprisingly, although both estimation methods were
derived from Eq. 4, they exhibit an opposite behavior
with increased clustering : whereas κhmax increases up
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to 2 orders of magnitude, κρ50 decreases down to 2
orders of magnitude. This phenomenon can be seen on
doses-responses curves : they have a lower saturation
plateau, but it is reached sooner in terms of ligand
stimulation. Theoretical doses-responses curves using
Eq. 4 and κ = κhmax are compared to simulated doses-
responses in Fig. 1 A to illustrate this phenomenon. The
deterring effect of clustering is somewhat mitigated by an
apparent increase in sensitivity (less ligand stimulation
is required) compared to its respective maximal response
(which is lower than for the homogeneous case anyway).
In other words the overall response is blunted whereas
its sensitivity is increased. In order to confirm this effect,
we measured the effective forward reaction rate keff+h for
G activation, by tracking the number of reaction events
per time step. Fig. 2 shows keff+h versus different levels of
stimulation ρ, for different cluster sizes. When clustering
is introduced, the effective forward reaction rates does
not change compared to homogeneous distributions for
low stimulation levels. But when a stronger stimulation
is applied to the system, the effective rate dramatically
decreases. In the homogeneous case, the effective rate
stays relatively constant with respect to stimulation.
This shows that the response is more affected by cluster-
ing at high levels of stimulation, where keff+h is strongly
decreased, than at low stimulation levels, whereas in
the equations predicting the dose-response curve keff+h is
expected to be constant.

This impact of receptor clustering can be further as-
sessed by inspecting waiting times between activation
events of the same G molecule. In previous works with
ligand-receptor binding, it was shown that the rebinding
time decreased with clustering while the time before first
binding increased [20–22]. Due to the nature of the prob-
lem – most ligand bound then got back to the medium
– the time before first binding was a dominating feature.
As such, both effects countered themselves but the de-
pleting effect of clustering on the time before first bind-
ing was eventually stronger. In this case, the distribution
of the times between two activation events are displayed
on Fig. 3 A for various cluster sizes. Clustering induces
a redistribution of the times between consecutive acti-
vations events of the same G molecule. In the highly
clustered case, most reactivation events occur on a very
short time scale. The waiting times whose distribution
is plotted on Fig. 3 A include the time spent waiting for
deactivation. We detangle this combined waiting time
by measuring the time between deactivation and reac-
tivation of the same G molecule. Fig. 3 B shows the
empirical distributions of such times for different clus-
ter sizes. These events were also redistributed towards
short times at the expense of long times, showing that
randomization of molecule position by diffusing while re-
maining activated does not overcome the attenuating ef-
fect of clustering. We did not observe a modification of
the mean waiting time in either case, for any cluster size,
only a redistribution. At times near the average time
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FIG. 3. A. Empirical densities of times between consecutive
activation events of the same G molecule, using the same set
of parameters p+c = p-c = 0.01, p+h = 0.1, p-h = 10−4,
for various cluster sizes n. The mean activated time for G
molecules is 1/k-h = 10−2 s. B. Empirical densities of times
between deactivation and reactivation events of the same G
molecule, using the same set of parameters, for various cluster
sizes n.

before deactivation and larger, less reactivation events
occurred.This explains the impairment of the response
provoked by clustering: in this model, an activated parti-
cle can cover a lot of membrane area before deactivation.
Essentially, it means that after being activated, the posi-
tion where a molecule can be reactivated is anywhere on
the membrane, and decorrelated from the starting posi-
tion. This strongly favors the non-clustered case in terms
of signal amplitude, but the clustering case in terms of
response sharpness.
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FIG. 4. A. Fraction of activated G at equilibrium h⋆ for
ρ = 1 (squares) and ρ = 0.25 (triangles) versus various clus-
ter sizes and for different diffusion coefficients D – transac-
tivation is disabled (open symbols) or enabled (closed sym-
bols). Optimal cluster sizes were marked with *. Parameters
: pφ = p+c = 0.01 and p-h = 10−4, D = 1.0 (solid lines)
and D = 0.1 (dashed lines). B. Dose-responses curves from
simulation for n = 1 (squares), 5 (triangles) and 10 (circles).
Ligand stimulation was reproduced G activation probabili-
ties were p+h = 0.1 and p-h = 10−4, diffusion coefficient
D = 1.0. Open symbols are for simulations without trans-
activation whereas closed symbols are when transactivation
is enabled with pφ = p+c = 0.01.

B. Impact of transactivation as a compensatory

mechanism

The activation of an individual receptor was until
there decorrelated in time and space from the activation
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FIG. 5. Normalized number of activated G molecules h∗ ver-
sus normalized number of activated receptors c∗, for differ-
ent cluster sizes n, and diffusion coefficient D = 1.0 or D =
0.1. Filled symbols are for transactivation with probability
pφ = p+c = 0.01, open symbols are for regular reaction sys-
tem without transactivation. At equal fraction of activated
receptor c∗, the fraction of activated G molecules is the same
with or without transactivation for all cluster sizes tested.

of other receptors. We explored the effect of trans-
activation [37–40] as an example of receptor-receptor
interaction that introduces a spatio-temporal correlation
in receptor activation. Within this mechanism, an
activated receptor intracellular domain has the ability
to activate another receptor intracellular domain located
in its vicinity. It can be introduced naturally in the
computational model by setting a probability pφ to
activate a receptor located less than 2 lattice nodes
away from an activated receptor. With the hexagonal
tiling used for clusters, this amounts to only the 6 closer
receptors for the first step propagation.

In simulations, as expected, increasing cluster size
leads to an increasing activation of R, since larger clus-
ters make transactivation more efficient. Transactivation
can propagate itself to a larger number of receptors. In
the homogeneous case, the number of activated recep-
tors remained globally unchanged. Fig. 4 A shows the
impact of transactivation on G activation as a function
of the cluster size, for two distinct ligand stimulations
levels ρ. Compared to the unclustered case, the addition
of transactivation slightly compensates the deterring ef-
fect of clustering for small to intermediate cluster sizes.
Thus, for a given stimulation, there is an optimal clus-
ter size that maximizes G activation. However, since the
maximal receptor activation (at maximum stimulation)
remains unchanged via transactivation, for high ligand
stimulation clustering still strongly impairs the overall G
activation (see Fig. 4 B). However, the sensitivity (the
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stimulation needed to elicit half of the relative maxi-
mal response) is increased via transactivation, reshaping
doses-responses curves towards a more “on/off” profile.
One may notice that as more receptors are activated at
the same value of ρ when transactivation is enabled, the
dose-response relationship should be estimated at equal
receptor activation, so we also measured dose-response
curves as the fraction of activated G molecules h∗ versus
the fraction of activated receptors c∗, with and without
transactivation. Fig. 5 shows that at equal receptor ac-
tivation, transactivation does not increase the response.
This means that the compensatory effect of transacti-
vation is only due to a greater number of activated re-
ceptors at equal stimulation, and is not due to receptor
clustering. Our results indicated tha clustering induces
the redistribution of reactivations events towards short
times at the expense of long times. The introduction
of transactivation showed that having clusters of recep-
tors activated together in a correlated manner does not
increase the response, only the number of activated re-
ceptors matters. Fig. 5 also shows that diffusion does
not qualitatively change the effect of clustering, with or
without transactivation. The system became diffusion-
limited, and the effect of clustering scales with the loss
of response due to the diffusion limit.

IV. DISCUSSION

We developed a simple individual-based spatially-
resolved computational model in which heterogeneous
receptor distributions could be reproduced. The sim-
ulation of a canonical signalling pathway showed how
the heterogeneous distributions of signalling proteins
observed in cells can have an effect on the dynamics of
transduction. A divergence with classical ODE models
was observed without invoking complex protein-protein
interaction mechanisms, but simply by changing the
spatial distribution of receptors.
The activation of a membrane intracellular signalling
protein by receptors in clusters is dramatically decreased
whereas the number of available activated receptors
is the same. Although the maximal amplitude of
the signal was reduced, clustering decreased the half
maximal efficient ligand stimulation, producing steeper
doses-responses curves. This differential effect on the
response appeared in the effective forward reaction rate,
which becomes stimulation-dependent when clustering

is induced. Since spatial clustering is available in our
individual-base model framework, spatial inter-receptor
interactions such as transactivation can be naturally
introduced. Such correlating compensatory mechanism
in receptor activation did not recover the maximal re-
sponse, but accentuated the steepness of doses-responses
curves. The deterring effect of clustering was partially
explained by a redistribution of the waiting times
between consecutive activations of the same molecule,
which favored short-time reactivation at the expense of
mean-time reactivation.
To investigate the effect of clustering in the least favor-
able conditions, this work was done in the context of
the reaction-limited regime. However membrane-bound
intracellular proteins also exhibit a slow diffusion regime
[35]. Our previous results suggest that slower diffusion
regimes would reinforce the effect of clustering [20].
The model assumes that receptor diffusion is extremely
slow compared to membrane-bound intracellular protein
diffusion [41], so receptors are immobile throughout
simulation. Allowing receptor mobility would require
the use of a dynamical clustering mechanism, possibly
ligand-dependent or diffusion-dependent [42–44]
The observed transduction dynamics suggests that
clustering could be a simple, effective way of modulating
the response of a signalling pathway, as observed in
[45]. By adapting the distribution of receptors, the
dynamic range and the sensitivity can be adjusted. Our
results also support the possibility that clustering is
a pathway-tuning mechanism per se without invoking
complex protein-protein interactions such as oligomer-
ization, crosstalk or trafficking. The qualitative and
quantitative divergences between the classical ODE
system and the simulated doses-responses curves also
indicates that accurate estimations of reaction rates in

vivo could not be achieved without taking into account
the heterogeneous spatial distributions of reactants,
especially for signalling systems.
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A. Öst, J. Gustavsson, F. H. Nystrom, and P. Str̊alfors,
European Journal of Biochemistry, 271, 2471 (2004),
ISSN 1432-1033.

[5] S. J. Plowman, C. Muncke, R. G. Parton, and J. F. Han-
cock, Proceedings of the National Academy of Sciences of



8

the United States of America, 102, 15500 (2005), ISSN
0027-8424, PMID: 16223883.

[6] S. Lee, J. Mandic, and K. J. Van Vliet, Proceedings of
the National Academy of Sciences of the United States
of America, 104, 9609 (2007), ISSN 0027-8424, PMID:
17535923 PMCID: 1887608.

[7] M. Scarselli, P. Annibale, and A. Radenovic, The Jour-
nal of Biological Chemistry (2012), ISSN 1083-351X, doi:
10.1074/jbc.M111.329912, PMID: 22442147.

[8] A. N. Bader, E. G. Hofman, J. Voortman, P. M. P. v. B.
en Henegouwen, and H. C. Gerritsen, Biophysical Jour-
nal, 97, 2613 (2009), ISSN 1542-0086, PMID: 19883605.

[9] K. Simons and D. Toomre, Nature Reviews. Molecu-
lar Cell Biology, 1, 31 (2000), ISSN 1471-0072, PMID:
11413487.

[10] D. Lingwood and K. Simons, Science, 327, 46 (2010),
ISSN 0036-8075, 1095-9203.

[11] V. L. Reeves, C. M. Thomas, and E. J. Smart, Advances
in Experimental Medicine and Biology, 729, 3 (2012),
ISSN 0065-2598, PMID: 22411310.

[12] D. Bray, Annual Review of Biophysics and Biomolec-
ular Structure, 27, 59 (1998), ISSN 1056-8700, PMID:
9646862.

[13] B. A. Mello, L. Shaw, and Y. Tu, Biophysical journal,
87, 1578–1595 (2004), ISSN 0006-3495.

[14] M. Fallahi-Sichani and J. J. Linderman, PLoS ONE, 4,
e6604 (2009), ISSN 1932-6203.

[15] P. A. Mahama and J. J. Linderman, Biophysical Journal,
67, 1345 (1994), ISSN 0006-3495, PMID: 7811949.

[16] L. D. Shea and J. J. Linderman, Journal of Theoretical
Biology, 191, 249 (1998), ISSN 0022-5193.

[17] M. Gopalakrishnan, Biophysical Journal, 89, 3686
(2005), ISSN 00063495.

[18] S. Ghosh, M. Gopalakrishnan, and K. Forsten-Williams,
Physical Biology, 4, 344 (2008), ISSN 1478-3975.

[19] B. Goldstein and M. Dembo, Biophysical Journal, 68,
1222 (1995), ISSN 0006-3495, PMID: 7787014 PMCID:
1282020.
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