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Abstract

The aim of this work is to characterize the Ultra Soft X-ray (USX, 1.5 keV, Al Kα)
photon beam of a customized lab bench cold cathode generator. Within this generator,
the electron beam is slowed down in a thin aluminium foil (16 µm) supported by an
easily exchangeable anode. It is shown that the thickness of the foil and the anode
configuration determine the spatial distribution and the fluence rate of the photon beam,
whereas accelerating voltage determines both fluence rate and energy spectrum feature.
It is shown also that under specific operation parameters (i.e. accelerating voltage),
a Gaussian energy distribution of the beam can be generated which is centred on the
energy of the Al Kα line (1.5 keV). Dosimetric films of GAFCHROMIC®HD-810 were
used to estimate the photon fluence rate distribution of the beam. Its variation, when
the generator acts as a monoenergetic source, was characterized with the two different
configurations of the anode assembly. Finally, it is verified that one of both anode
assemblies acts as a simple point-source.

Keywords: Ultra-soft X-rays (USX), USX Cold cathode generator, Gafchromic
dosimetry, Aluminium Kα line.

1. Introduction1

Due to their nanometer-scaled spatial energy depositions, comparable to the dimen-2

sions of critical structures within the cell, Ultrasoft X-rays (USX: photon energy< 5 keV)3

provide a unique tool in the study of the mechanisms of radiobiological action (inacti-4

vation, mutation, chromosome aberrations and cell transformation) [1]. USX, however,5

pose significant problems in dosimetry and experimental design, due to their considerable6

attenuation in matter [2, 3].7

Putting aside the synchrotron radiation sources, USX beams can be produced at the8

laboratory level by means of commercial or tailor-made X-ray sources. If commercially9

available X-ray sources are generally based on hot cathode tubes, cold-cathode discharge10
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tubes are the most frequently used sources of USX for radiobiological studies [4–6].The11

main advantages of those tubes are their good spectral purity due to self-absorption in the12

target, simplicity in design and operation as well as minimal maintenance requirements.13

In addition such sources do not operate in high vacuum, a primary vacuum is sufficient to14

create the discharge. However, cold-cathode tubes are limited to targets available under15

the form of very thin self-supporting films [1].16

Using such sources to expose biological samples to USX and/or secondary low-energy17

photoelectrons [4, 5] requires a whole characterization of the photon beam with respect18

to the tubes operating parameters and geometry.19

The main objective of this study is to investigate the USX beam emission from a20

cold cathode gas discharge generator with a transmission anode (thin foil of aluminium).21

The energy spectrum was measured in dependence of the operating parameters of the22

generator as well as for two different configurations of the anode assembly configura-23

tion. The USX photon spatial distribution of fluence rates were determined by using 2D24

radiochromic (gafchromic) films with an appropriate calibration.25

2. Materials and methods26

2.1. Irradiation27

2.1.1. Cold cathode X-ray generator28

The conception of the generator is based on a design first proposed by Solomon29

and Baun in the early sixties [7] and revisited in the eighties by Hoshi et al [2]. Briefly30

described, the USX source is composed of a metallic (brass) chamber containing the elec-31

trodes, maintained at a low pressure (∼ 5×10−2 mbar, i.e. 5 Pa) of dehydrated air using32

a mechanical pump. In this device, the anode foil (target), in which accelerated electrons33

are slowed down to produce USX (Al Kα), constitutes the window that separates the34

chamber from the outer part of the generator at atmospheric pressure. The cold cathode35

made up of aluminium is machined so that it has a concave shape (Fig. 1). Insulated36

from the chamber by a surrounding ceramic cylinder, the cathode electrical contact is37

put at a negative potential, the chamber and the target are at the ground. When high38

voltage is applied, under given internal pressure conditions, an electric discharge appears39

between the electrodes and the electric current can be stabilized. A Townsend discharge40

is sustained by multiplication of electron flow through ion impact on the cathode when41

a critical value of the electric field strength is reached that depends on the gas density.42

Electrons interact with the atoms of the aluminium foil giving rise to the emission of43

characteristic Kα (1.5 keV) USX accompanied by the emission of bremsstrahlung radi-44

ation. These radiations are transmitted through the foil and emerge outside the tube.45

Concave metal cathodes are generally used to focus the electrons on a small area of the46

anode target in order to increase the production of X-rays. Special efforts were made47

in the design of the generator in order to be easily dismantled and upkeep (cleaning the48

chamber).49

In the present study, two different anodes were used, a first one where the aluminium50

foil is supported by a grid and a second one where the aluminium foil is set down on a51

metallic support through which a 8 mm diameter hole is drilled (so-called flat washer,52

see Figure 2 for more details).53

2
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Figure 1: A photograph and a schematic cross-sectional view of the USX cold-cathode generator: (1)
aluminium foil (see Figure 2 for more details), (2) Concave aluminium cathode, (3) USX in the outer
atmosphere, (4) to vacuum gauge, (5) high electric voltage supply, (6) ceramic support insulation.

2.1.2. γ ray irradiation54

60Co (1173.2 and 1332.5 keV) irradiations were performed at the Laboratoire National55

Henri Becquerel (LNHB, the French National Reference Laboratory for Metrology of Ion-56

izing Radiation) of the French Atomic Agency (CEA) in Saclay, France. This laboratory57

is the national reference laboratory for 60Co Kerma in air, especially for radiotherapy.58

2.2. Gafchromic dosimetry59

The commercially available dosimetric films (HD-810, ISP Technologies Inc., Wayne,60

NJ), that are originally transparent, become bluer proportionally to the energy deposited61

by ionizing radiation. The film is composed of three layers: a gelatin surface layer (0.7562

µm, ρ = 1.08 g.cm−3), an active layer AL (6.5 µm, ρ = 1.2 g.cm−3) and a transparent63

polyester support layer (97 µm, ρ = 1.35 g.cm−3). Absorbance in the visible spectrum64

for different absorbed doses in HD-810 was recorded using a Varian, Cary 100 Scan, UV-65

visible spectrophotometer. Films were scanned in color at 300×300 dpi, using a document66

scanner (Canon PCL6 Driver Generic), and then processed by the image processing67

software (Image J). Image J is a public domain, Java-based image processing program68

developed at the National Institutes of Health of the USA (http://rsbweb.nih.gov/ij/).69

2.3. X-ray spectra measurements70

X-ray spectra have been measured using a semiconductor type detector AMTEK,71

Model XR-100CR (Si-PIN photodiode). XR-100CR is a high performance X-ray detector72

mounted on a thermo-electric cooler (Peltier type) together with the input FET to the73

pre-amplifier. These components are kept at -55°C and are enclosed in a hermetic package74

with a Beryllium window [8]. It can be operated in air or in vacuum with a 149 eV FWHM75

resolution at 5.9 keV. At high USX flux (i.e. a short source-detector distance) pulse pile-76

up arises and radiation damage to the detector can occur. Therefore, the spectra where77

measured only at distances greater than 5 mm.78

3
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(a) the aluminium foil is sup-
ported by a copper grid

(b) the foil is partially auto-
supported and mechanically
maintained using a flat washer
with an aperture of 8 mm di-
ameter.

Figure 2: Anode assembly configurations.

3. Results and discussion79

3.1. Anode configuration80

During operation of the X-ray tube, the inner pressure has an order of magnitude of81

10−2 mbar. Optimizing the thickness of the aluminium foil used depends on two separate82

parameters: auto-absorption of USX and mechanical resistance owing to the fact that it83

has to resist to the pressure difference.84

The maximum penetration range of electrons in aluminium can be estimated by means85

of Kanaya and Okayama semi-empirical expression [9]. Table (1) shows that for electrons86

at 5 keV the maximum range in aluminium does not exceed 0.5 µm, any supplementary87

thickness added will therefore act as a filter (absorber), whose size must be minimized88

by taking into account both absorption and mechanical resistance.

Incident energy (keV) Exp. range (µm) Kanaya-Okayama Range (µm)
2.5 0.21 0.13
5 0.48 0.41
10 1.11 1.31

Table 1: Kanaya-Okayama electron maximum penetration range and experimental data in aluminium
from Ref.[9]

89

Two different configurations of the anode assembly were used:90

• the first one, where the Al foil target serves also as vacuum window; it is supported91

on a copper grid that has a 45% transparency ratio (holes diameter = 0.25 mm,92

Fig. 2a);93

• the second one, where the Al foil is mechanically maintained using a flat washer94

with an aperture diameter of 8 mm (Fig. 2b).95

A 16 µm thick foil was used for the aluminium target in order to ensure its mechanical96

resistance. Based on Atomic Data and Nuclear Data Tables [10], Fig. 3 shows the photon97

4
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transmission of an Al foil with thickness at 16 µm, for X-ray energies below 6 keV, which98

plays the role of a filter. For energies greater than 2.5 keV, transmission increases with99

increasing photon energy. Below 2.5 keV, only a weak transmission is observed and it100

peaks at 1.5 keV, the value of the Al Kα line. This shows that with a thickness at 16 µm,101

if, on the one hand the transmission ratio is lowered, on the other hand, when operating102

with an accelerating voltage less than 2 keV, the transmitted energy is essentially due to103

the Al Kα line.104

Figure 3: Transmission of 15.5 µm thick Al foil (corresponding to 16 µm thick with an electron full range
set at 0.5 µm) for energy below 6 keV [10]

.

3.2. Photon energy spectra105

Fig. 4 shows the measured photon energy spectra of the USX beam, at accelerating106

voltages ranging from 2 to 3 kV, as measured using a semiconductor detector (Si-PIN107

photodiode). The measurement is performed at 5 cm from the aluminium foil and at108

very low tube current as it is recommended to operate the detector at low photon fluence109

rate [8].110

At 2.5 kV and at 5 cm from the aluminium target foil the bremsstrahlung emission111

becomes visible in addition to the Al Kα line, in this case bremsstrahlung is about 15%112

of the total count (Fig. 4). The percentage of bremsstrahlung contribution at different113

distances below 5 cm decreases because the air attenuation coefficient of photons at114

energy 1.5 keV is greater than for photons at higher energies. The mass attenuation115

coefficients of air at photon energy E = 1.5, 2 and 3 keV are respectively 1.19 × 103,116

5.28× 102 and 1.63× 102 cm2.g−1 [16].117

Remarkably, at 2 kV operation, bremsstrahlung emission is negligible and the beam118

can be considered as mono-energetic; it is essentially composed of Al Kα photons. It119

should be noticed that the more the accelerating voltage increases, the more pulse pill-up120

counts appear at energies greater than the equivalent voltage. This latter phenomenon121

is indicated in Fig. 4 for the most obvious case, i.e. at 3 kV.122

5
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Figure 4: Experimental USX energy spectrum in air measured at 5 cm from aluminium foil at different
accelerating voltages.

3.3. Gafchromic film calibration and uncertainties123

The study of the spatial distribution of fluence rate for the USX beam is estimated124

using two-dimensional gafchromic films, often used for 2D dose measurement in the range125

10-400 Gy [11].126

The dosimetry with Gafchromic films is based on the measurement of absorbance127

(optical density, OD) variation. To convert the absolute response, it is necessary to128

determine the calibration curve (dose = f (OD)). ODs can be determined either by UV-129

Vis spectrometry or using a document scanner [12–14]. In the present study, six HD-810130

films (2 × 2 cm) were irradiated at various 60Co γ-ray (1173.2 and 1332.5 keV) doses131

in air, under electronic equilibrium conditions: 10.20, 19.76, 40.08, 60.00, 100.02, 200.30132

Gy.133

Two films that were not irradiated, but suffered the same environmental effects also134

were used as control. Absorbance of HD-810 films in the visible spectrum for differ-135

ent air kermas was recorded using a UV-visible spectrophotometer. The spectra show136

absorbance peaks in the red region (Fig. 5).137

Films were scanned in color at 300 × 300 dpi, using a document scanner (Canon138

PCL6 Driver Generic), and then processed by the image processing software (Image J).139

According to the results shown in Fig. 5, only the red level was extracted from the whole140

RGB image and analysed. The variation in optical density (OD) caused by irradiation141

is calculated using the standard equation:142

OD = log

(

IC
IM

)

(1)

where IC and IM are respectively the grey levels determined from the region of interest143

selected from control and irradiated films, with σIC and σIM their corresponding uncer-144

tainties. The uncertainty on OD measurements, assuming that there is no correlation145

6
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Figure 5: Absorbance spectra as measured on HD-810 films in the visible region after exposure at various
γ-ray air kermas (see caption).

between IC and IM , is calculated using:146

σ =
1

ln 10

√

σ2
IC

I2C
−

σ2
IM

I2M
(2)

The relation linking dose in air to OD is given by the linear fit of the curve presented in147

Fig. 6, whose slope is denoted α:148

γDair = (α ± σα)×OD (3)

Assuming that the uncertainty on measured dose in air is only dependant on measurement149

uncertainty σOD and fitting parameters, we can write:150

σγDair
=

√

α2 × σ2
OD +OD2

× σ2
α (4)

The calibration curve shown in Fig. 6 follows a linear relationship with dose in air within151

the range 10-200 Gy. Interestingly the relative uncertainty drops down to values that152

are less than 5% for doses in air greater than 50 Gy.153

3.4. Photon fluence rates154

As mentioned by ref [14], the formation of the blue polymer product in the HD-810155

films is assumed to be characterized by an average energy deposition independent of156

radiation quality [15]. Thus, the mean absorbed dose of USX to the active layer (AL) of157

HD-810 film; USXDm can be derived from equations (4) and (5) [4]:158

USXDm = γDAL (5)

=
γ (µen/ρ)AL
γ (µen/ρ)air

×
γ Dair

= 1.09×γ Dair

7
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Figure 6: Calibration curve reference dose in air versus OD. The inset shows the variation of relative
uncertainties (%) with measured dose. Note that for doses in air above 50 Gy the relative uncertainty
will not exceed 5%.

where the µen/ρ are the mass-energy absorption coefficients, their values for AL and air159

are respectively 2.91 × 10−2 cm2.g−1 [14] and 2.666 × 10−2 cm2.g−1 [16]. The surface160

dose rate in the active layer can be calculated using [17]:161

USXḊS =USX Ḋm

(

µ

ρ

)

ρ.d

1− exp

[

−

(

µ

ρ

)

ρ.d

] (6)

where µ/ρ = 809 cm2.g−1 is the mass attenuation coefficient of AL, ρ and d are respec-162

tively the density and the thickness of AL. The photon fluence rate Φ̇AL at the incident163

surface of the active layer can be calculated using:164

Φ̇AL = C ×

USXḊS

(µen/ρ)AL × E
(7)

where C is the conversion coefficient of 6.24× 1017 eV.g−1.Gy−1, E is the photon energy165

(1.5 keV for Al Kα X-rays, see 3.1 Photon energy spectra). Finally, the photon fluence166

rate at the surface of HD-810 film can be estimated by computing relation (8), taking into167

account the attenuation in the surface layer by means of the mass attenuation coefficient168

at 1.5 keV equal to 9.95× 102 cm2.g−1:169

Φ̇S = 7.5× 1011 ×USX Ḋm (8)

= 2.57× 1014 ×
OD

t

with t the exposure time.170

8
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3.5. Spatial photon fluence rate distributions171

When USX photon beams are applied to biological samples, it is necessary to know172

the spatial photon fluence rate distribution in the region of irradiation. For this reason,173

HD-810 films were irradiated in air at different distances from the aluminium foil per-174

pendicularly to the beam axis. Fig. 7 shows the radial profile of USX photon fluence rate175

distributions for two configurations of the anode (target assembly), at 13 mm distance176

within identical operation parameters (2.4 kV, 3 mA, 6× 10−2 mbar). It is clear that on177

the beam axis, keeping the same parameters of irradiation, the photon fluence rate with178

a flat washer is twice that measured with a copper grid. However, the irradiation time179

of samples may be optimized as it should be an important parameter in some specific180

radiobiology experiments.

Figure 7: Radial profile of USX photon fluence rate distributions for the two anode configurations
(generator parameters: 2.4 kV, 3mA, 6 × 10−2 mbar). Measurements are performed at 13 mm from
the aluminium target. The color inset on the upper-right part of the figure is the radial fluence rate
distribution determined by means of image analysis of the dosimetric films when the flat-washer was
used as an anode configuration.

181

3.6. Estimation of the beam dimensions182

When using a mechanically maintained aluminium foil supported by a flat washer, due183

to the pressure difference between inner and outer parts of the chamber, the aluminum184

foil takes the shape of a concave lens. In such a case, the generator acts like a quasi-point185

source. For a mono-energetic photon point-source in air along the beam axis, the photon186

fluence rate at two distances x and y (x < y) from the source can therefore be expressed187

as a combination of the beam divergence and its attenuation in air:188

Φ̇y = Φ̇x

x2

y2
× exp

[(

µ

ρ

)

× ρ(x− y)

]

(9)

where µ/ρ is the mass attenuation coefficient in air at the considered energy.189

9
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It is assumed that the USX source under 2 kV accelerating voltage is a point source190

located at 2 mm into the vacuum chamber from the aluminium foil. The photon flu-191

ence rates at different distances from the point-source were thus measured using the192

Gafchromic (HD-810) films by applying the methodology described above.193

Figure 8: Measured photon fluence rate along the beam axis at different distances from source compared
to the calculated values (9). The experimental value at 10 mm serves as an input data in (9).

Distances to the aluminium foil were fixed using a linear roller screw driven position-194

ing stage with a 10 µm precision. Values in the close vicinity to the maximum of the195

Gaussian fluence distributions (Fig. 7) have been used to computing Eq.(9). A rather196

very satisfactory accordance between calculated and measured data is found which con-197

firms that the beam originates from a point-source. This result constitutes substantial198

time-savings for future experiments where the photon fluence rates have to be determined199

at various distances, when using the target configuration based on the flat washer.200

4. Conclusion201

In this study, we have characterized the beam of a tailor-made lab table cold-cathode202

USX generator equipped with two different aluminum foil anode assembly configurations.203

A first preliminary estimation based on Atomic and Nuclear Data Tables has provided204

evidence for preferential transmission of the Kα line through a 16 µm thick aluminium205

target when the USX photons have energies less than 2 keV. This has been confirmed206

experimentally by spectrometric measurements based on a Si-PIN X-ray detector; at 2207

kV acceleration voltage; the experimental spectrum is quasi-monoenergetic (Gaussian208

distribution), centred on the Al Kα line, i.e. 1.5 keV. The use of Gafchromic dosimetric209

films enabled the fluence rate distributions to be estimated using 60Co air Kerma reference210

calibration and transfert to both anode assemblies used via dosimetric film irradiation.211

It was found that the anode assembly made up of a flat washer (with a 8 mm hole212

diameter) produces a fluence rate twice of that of the same aluminium foil supported213

by a grid with a 45% transparency ratio. A three-dimensional representation of the214

10
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radial fluence rate distribution of the beam was deduced from image analysis of the215

regions of interest on the dosimetric films. The expected behaviour of the so-called216

flat-washer anode assembly comparable to a point source due to its concave shape was217

verified by applying both quadratic and exponential properties (Eq. 9), particular to218

point-sources. Intended to be used for radiobiology experiments, this USX generator has219

beam characteristics comparable to those generally used in this area of research. Studies220

are currently under investigation to designing a free-air ionization chamber aimed at221

evaluating the USX photon fluence rate (by measuring air kerma of the monoenergetic222

photon beam) in routine work.223
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