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Modeling Shapes with Higher-Order Graphs:
Methodology and Applications

Chaohui Wang, Yun Zeng, Dimitris Samaras and Nikos Paragios

Abstract Extrinsic factors such as object pose and camera parametersare a main
source of shape variability and pose an obstacle to efficiently solving shape match-
ing and inference. Most existing methods address the influence of extrinsic factors
by decomposing the transformation of the source shape (model) into two parts: one
corresponding to the extrinsic factors and the other accounting for intra-class vari-
ability and noise, which are solved in a successive or alternating manner. In this
chapter, we consider a methodology to circumvent the influence of extrinsic fac-
tors by exploiting shape properties that are invariant to them. Based on higher-order
graph-based models, we implement such a methodology to address various impor-
tant vision problems, such as non-rigid 3D surface matchingand knowledge-based
3D segmentation, in a one-shot optimization scheme. Experimental results demon-
strate the superior performance and potential of this type of approach.

1 Introduction

Shape matching and inference aims at determining the correspondence between a
source shape instance (or shape model) and a target shape instance (or the observed
data where the target shape is embedded). It is a fundamentalproblem in computer
vision, computer graphics, medical image analysis and has been widely investigated
in numerous important applications such as 3D surface matching and reconstruction
[5, 32, 12, 30, 7, 21], statistical shape modeling and knowledge-based segmentation
[16, 15, 22, 34], feature correspondence and image registration [28, 38, 1, 20], shape
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similarity and object recognition [2, 3, 29]. LetS⊂ R3 denote a shape1. The general
idea for solving this problem is usually based on an optimization problem as follows:

τ opt = argmin
τ∈T

{ES1,S2(τ ) = ρ(τ (S1),S2)+ χ(τ )} (1)

whereρ(τ (S1),S2) denotes a measure on the geometric and/or photometric differ-
ence (often referred to asdata likelihood) between the transformed source shape
(model)τ (S1) and the target shapeS2, χ(τ ) denotes a prior or regularization on the
transformationτ , andT is the feasible solution set (e.g., diffeomorphisms2).

One main difficulty in solving shape matching and inference lies in the fact that
the shape usually lies in a high-dimensional parameter space and exhibits large and
complex deformation/variance in the space where its observed data lies. This poses
a challenges to the design of an efficient algorithm for the search of the optimal
transformation between two shapes or the optimal shape model from the observed
data. Another main difficulty originates from the facts thatthe problem is inherently
ill-posed and that the input data are often noisy and can be partially occluded. That
is why prior knowledge on the deformation/variance of the shape is often introduced
to address the ill-posedness of the problem and to make the algorithm more robust to
noise. However, this raises another challenge in the choiceof the representation of
prior knowledge, which should be effective in the aspect of modeling and efficient
in the aspect of learning and inference.

Main Obstacle - Extrinsic Factors

A ubiquitous phenomenon in vision perception is that a single object can exhibit
infinite geometric variation in the observed data followingthe change of extrinsic
factors such as sensor parameters and global object pose3. In the case of 3D data
where the observation also lies in a 3D Euclidean space, different sensor parameters
and/or global object poses usually lead to observations that differ by a similarity
transformation (translation/rotation/scaling). In a broad sense,extrinsic factorsrefer
to all that would cause a shape to have different extrinsic manifestations which are
nevertheless intrinsically equivalent4. An extrinsic factor is often associated with a
certain transformation groupG (e.g., the Euclidean group, the similarity group and
the isometry group) and globally affect the configuration ofa shape. Accordingly,
for a shape instance, the set of all intrinsically equivalent shapes is the orbit of that
instance under the corresponding transformation groupG.

1 The shape can also be associated with a texture model if photometricinformation is available.
2 When a bijective mapping betweenS1 ⊂ R3 andS2 ⊂ R3 is required, the feasible solution can be
defined as all diffeomorphisms that mapS1 to S2.
3 Photometric variation can be caused by the change of illumination. We mostly focus on the
geometric aspect here but the extension to the photometric aspectcan be done analogously.
4 The definition of the intrinsically equivalence depends on the problem to be addressed. For in-
stance, when dealing with non-rigid 3D surface matching, we often assume that two surfaces dif-
fering by an isometric transformation (with geodesic metrics) are intrinsically equivalent.
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Actually,extrinsic factorspose a main obstacle to addressing the aforementioned
challenges efficiently, in particular in the following two major aspects.

Regarding the problem complexity and the algorithm design,we can see from
the above discussion that such extrinsic factors are a main source of shape variability
[36], the removal of which will largely reduce the complexity of shape matching and
inference. The problem can become much easier if we only needto deal with the
intrinsic shape variability, which refers to the residual (e.g., intra-class variability,
noise) after ruling out the effect of extrinsic factors.

The main issue in the design of the algorithm is how to define and minimize
the cost function in Eq. 1 efficiently. To account for the effect of extrinsic factors,
the most commonly used scheme in the literature is: decompose the transforma-
tion τ in Eq. 1 into an transformationg ∈ G that corresponds to the extrinsic fac-
tors and a residual transformationr that accounts for the intrinsic shape variability,
i.e., τ = g◦ r, then optimizeg and r in a successive or alternating manner (e.g.,
EM-style approaches). A typical example is theiterative closest points(ICP) al-
gorithms [5, 32] for rigid shape matching, which alternatesbetween establishing
correspondences given the Euclidean transformation and estimating the Euclidean
transformation given the correspondences. Another important example is related to
the incorporation of shape priors and will be discussed a bitlater.

Such a scheme requires initializingg and is prone to be trapped at local minima
during the alternating search. Therefore, it usually workswell only when the two
shapes are close enough under the given initialization ofg. Another important limi-
tation is that it cannot directly deal with the case whereg is difficult to be explicitly
represented (e.g., the isometric transformation that is often considered innon-rigid
3D surface matching). Last, the search for optimalr (i.e., the global minimum with
respect tor) for a fixedg is actually difficult in general and its complexity increases
sharply asg deviates from the true transformation.

Regarding the incorporation of the shape prior, extrinsic factors pose an ob-
stacle for connecting the shape instance and the prior modelin the matching and
inference process. In fact, the prior information on a shapeclass lies in the resid-
ual transformationr after factoring outg corresponding to extrinsic factors from
the transformationτ . Based on this, most existing shape prior models [22],e.g., the
well-knownactive shape/appearance models(ASMs/AAMs) [16, 15], are built by
first aligning all the training samples into a reference space (to factor out the simi-
larity group) and then learning the shape distribution on these registered samples.

However, such prior models often exhibit two main limitations. On the one hand,
the estimation of the similarity transformg is required both in the training and the
inference stages, since the learned model and an observed shape instance are in dif-
ferent coordinate frames in general. Besides the computational complexity, such an
estimation also introduces certain bias on the learned prior model, since the optimal
decomposition ofτ into g andr actually is an ill-posed problem. One the other hand,
the optimal search in the inference stage with such prior models requires initializing
g and is prone to be trapped at local minima.
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Key Strategy - Encoding Shape Invariance in Higher-order Graphs

In fact, due to the intrinsic equivalence of the shape, the distance function in Eq. 1
should be invariant to extrinsic factors,i.e., ρ(τ (S1),S2) and χ(τ ) should beg-
invariant. Hence, if we can explore shape invariance with respect to extrinsic factors
by choosingg-invariant data termρ(τ (S1),S2) and prior modelχ(τ ), then we will
be able to efficiently search for the optimal transformationτ opt without searching for
g. In particular, when extrinsic factors correspond to a transformation group, such
a scheme can be interpreted as representing a shape in an intrinsic shape space that
is g-invariant and the correspondence is then determined in such an intrinsic shape
space, where the shape variability is largely reduced.

To this end, we are particularly interested in discrete representations of shapes,
which have been widely employed in the literature, where thetransformationτ in
Eq. 1 is represented by the correspondences between the points of two shapes. Then
the shape matching and inference problem boils down to determining the corre-
spondence from the target shape (or the observed image data)for each point on
the source shape (model). Recent significant development ingraph-based methods
and inference techniques (e.g., Markov Random Field (MRF) inference algorithms
[10, 25, 27] and graph matching [37, 28, 38]) have demonstrated their potential in
solving such a correspondence problem. In particular, the newly developed tech-
niques for higher-order models [24, 27, 23, 17] enhance significantly the applicable
extent and the performance of graph-based methods. In such acontext, we employ
higher-order potentials to characterize measures/statistics that areg-invariant (e.g.,
similarity-invariant and isometry-invariant) and optimize the energy function using
discrete optimization methods to address 3D shape matchingand inference (e.g.,
[42, 39, 40, 41]). One important advantage of such a scheme isthat the problem can
be solved in a one-shot optimization algorithm with optimality guarantee.

In the next two sections, we will show via our recent works [42, 39] how this
methodology can be implemented for two typical problems: non-rigid 3D surface
matching and knowledge-based 3D segmentation, and demonstrate the superior per-
formance of our approaches. Finally we will conclude the chapter with a discussion
of future directions in section 4.

2 Non-rigid 3D Surface Matching

We present our approach [42] to robustly establish correspondences between two
surfaces via a higher-order graph-based formulation, where the similarity between
local structures and the distortion of global structures are isometry-invariant and
incorporated together via singleton terms and third-orderinteractions, respectively.

Let us denote byP1 andP2 the two point sets from surfacesS1 andS2, respec-
tively. Our goal is to find the correspondence fromP2 for each point ofP1, if it
exists. This can be formulated as selecting a subset (referred to asmatching) M

from the set of all possible correspondencesA , P1×P2 that leads to the least
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dissimilarity while respecting matching constraints (e.g., one-to-one mapping). For
each correspondencea= (i, j) ∈ A , we assign a Boolean variablexa to indicate if
a is included in the matchingM (xa = 1) or not (xa = 0). By doing so, the matching
M can be represented by a tuple of Boolean variablesx = (xa)a∈A . The feasible
solution spaceX of x depends on the matching constraints. Here, we impose the
constraint that each point inP1 is mapped to at most one point inP2 andvice
versa, leading to the following feasible solution spaceX :

X = {x ∈ {0,1}|A || ∑
i∈P1

xi, j ≤ 1, ∑
j∈P2

xi, j ≤ 1,∀ i ∈ P1 and∀ j ∈ P2} (2)

The dissimilarity induced by a matching between two surfaces can be defined
based on the distortion encoded within various numbers of correspondences. We
then formulate the surface matching problem as finding the optimal matching that
minimizes the dissimilarity function as follows:

xopt = arg min
x∈X

{E(x) = ∑
a∈A

θaxa+ ∑
(a,b)∈A 2

θabxaxb+ ∑
(a,b,c)∈A 3

θabcxaxbxc} (3)

In the following, we discuss the definitions of the potentialfunctions in Eq. 3, which
capture the information of both local structures and globaldeformation.

The singleton potential encodes geometric and/or photometric compatibility be-
tween the local structures of each correspondence. For simplicity, we use the Gaus-
sian curvature curv(i) at pointi as geometric descriptor, which is invariant to isomet-
ric transformation [14], as well as the texture value tex(i) at pointi as photometric
descriptor if texture information is available. Then, the singleton potentialθa for a
correspondencea= (i, j) is defined as follows:

θa = (curv(i)−curv( j))2+λ0(tex(i)− tex( j))2 (4)

whereλ0 is a positive weight that balances the contribution betweencurvature and
texture information. Similarly, other features can also beconsidered within such
potentials, such as multiscale heat kernel signatures [35]and eigenfunctions of the
Laplace-Beltrami operator [33].

The higher-order potential encodes the intrinsic deformation priors of global
structures which are invariant to isometric transformation. Theories in Riemann sur-
face [19] reveal that when two surfaces are isometrically deformed from one to the
other, the correspondences (mapping) between them can be sufficiently character-
ized by aMöbius transformation, which has only six degrees of freedom and can
be uniquely determined by a triplet of point-wise correspondences. Hence, we can
measure the deviation from isometry for the mapping (implied by the M̈obius trans-
formation) between two surfaces determined by a triplet of point-wise correspon-
dences, which serves as an intrinsic deformation prior termthat can be encoded in
a third-order potential.
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According to the uniformization theorem [19], any 3D surface can be flattened
conformally to a canonical 2D domain. Then for any triplet ofcorrespondences,
(p1

i , p
1
j , p

1
k) ∈ P1 and (p2

i , p
2
j , p

2
k) ∈ P2, we first recover the associated Möbius

transformationm1(z) andm2(z) that maps each triplet to a constant configuration

(ei 2π
3 ,ei 4π

3 ,ei2π). Under this transformation, each pointp in the setsP1 andP2 is
equipped with coordinates in̂C (i.e., the complex planeC∪{∞}) denoted byz(p)∈
Ĉ. Similar to [30], we establish correspondences betweenP1 andP2 by searching
the mutually closest point correspondences setMi jk under the new coordinates, and
define the deformation deviation from isometry as:

Ei jk = ∑
(p1,p2)∈Mi jk

|z(p1)−z(p2)|
2 (5)

Then we define the intrinsic deformation prior term as follows:

θMöbius
i jk =

{

Ei jk/|Mi jk |
2−1 if Ei jk/|Mi jk |

2 < δ
1/|Mi jk | otherwise

(6)

Here δ is a lower bound value to rule out unlikely correspondences (in our ex-
perimentδ = 0.1). Intuitively, if there are more matching pairs and the distances
between those matching pairs are smaller, the potential will be lower. Such a prior
term is invariant with respect to isometric transformation, due to the fact thatEi jk is
computed in the canonical 2D domain and an isometric transformation applied to a
surface will not change the representation of the surface inthe canonical domain.

Since the mirror symmetry group is a subset of the isometry group, the intrinsic
deformation prior term in Eq. 6 cannot resolve symmetry ambiguity. In practice we
often want to eliminate such an ambiguity, for which we can define another type of
third-order terms based on the Gaussian map of the surface. The Gaussian map is
defined as the mapping of the normal at each point on the surface to the unit sphere
[14]. Due to the fact that two triplets have the same orientation of the Gaussian maps
if and only if the determinant of their normals have the same sign, we can define the
below higher-order term as a penalty for extrinsic orientation inconsistency:

θGaussian
i jk =

{

0 if det(n1
i ,n

1
j ,n

1
k) ·det(n2

i ,n
2
j ,n

2
k)≥ 0

1/|Mi jk | otherwise
(7)

whereni ∈ R
3 denotes the normal at pointi, and det(ni ,n j ,nk) denotes the deter-

minant of the 3×3 matrix [ni ,n j ,nk]. With such an additional term, the third-order
potential for each triplet of correspondences(p1

i , p
1
j , p

1
k)→ (p2

i , p
2
j , p

2
k) is defined as

a weighted sum of the two types of potentials,i.e.,

θi jk = λ1θMöbius
i jk +λ2θGaussian

i jk (8)

Here, only singleton and third-order terms are considered for simplification. Pair-
wise potentials defined based on different metrics (e.g., geodesic [12], diffusion met-
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rics [13] and commute time [31]) can also be considered in this general formulation
to integrate more geometric information towards improvingthe performance.

Dual-decomposition-based optimizationAn advantage of the pseudo-boolean
formulation is that higher-order terms can be reduced into aquadratic term and
then be solved by existing efficient optimization algorithms such as QPBO tech-
niques [9, 26]. Inspired by [38], the dual-decomposition optimization framework
[4, 27] and the order-reduction technique proposed in [23] are adopted to deal with
the problem in Eq. 3. More specifically, the original problemis decomposed into
a linear subproblem, a higher-order pseudo-boolean subproblemand a set oflocal
subproblems. The linear subproblem and the local subproblems used in theexperi-
ments are similar to those of [38]. Then, a higher-order pseudo-boolean subproblem
is introduced to deal with the higher-order terms in Eq. 3. After solving the subprob-
lems, the dual variables are updated using a projected subgradient method [27, 38]
to maximize the lower bound.

Towards efficient dense surface matching,we propose a two-stage optimization
pipeline which consists ofsparse feature matchinganddense point matching. In
the sparse matching stage, we establish the correspondences between two small sets
of sparse features using the high-order graph matching algorithm presented above.
Since any three correspondences determine a mapping between the two surfaces
and provide a correspondence candidate onS2 for each point onS1, a large num-
ber of correspondence candidates can be obtained for each point by considering all
distinct triplets of correspondences in the sparse featurematching result. This can
be followed by a clustering process to find the modes of the candidates so as to
significantly reduce the number of candidates. Finally, a similar high-order graph
matching scheme is employed to determine the optimal dense surface matching.

Experimental results The evaluation of our framework is done based on a number
of challenging examples, which demonstrates its accuracy and efficiency, notably
in challenging cases of very large deformations, or meshes that are partially oc-
cluded (see sample results in Fig. 1). Due to the lack of a ground truth regarding the
dense correspondence, we quantitatively measure the quality of dense registration
as follows: after performing the Delaunay triangulation ofthe points on the source
surface, we compute the ratio of the area of each facet to the area of its matched
facet (see Fig. 1). For natural deformations (e.g., expression change, stretched arms
or bending figures) such as those in our experiments, the local area is not expected
to undergo abrupt change. Therefore the log area ratio is expected to be close to 0.

3 Pose-Invariant Prior and Knowledge-based Segmentation

In this section, higher-order interactions are consideredto build pose-invariant shape
priors and are exploited for the development of a novel one-shot optimization ap-
proach for knowledge-based 3D segmentation in medical imaging [39].
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Fig. 1 Matching results (from left to right: sparse matching, dense matching and log area ratio).

Pose-invariant shape modelingThe shape model consists of a setV of landmarks
on the boundary of the object of interest. In the 3D case, we use xi (i ∈ V ) to
denote the 3D position of landmarki andx = (xi)i∈V denote the positions of all
the landmarks. Our goal is to learn priors onx from the training data that con-
sists of a set ofM shapes. Instead of registering all the surfaces into a reference
space, we only assume that point-wise correspondences havebeen determined for
the landmarks in the training set. We propose to learn statistics on similarity in-
variants, such as the relative distances between pairs of landmarks in a clique. Let
Pc = {(i, j)|i, j ∈ c andi < j} denote all the pairs for a cliquec (c⊆ V and|c| ≥ 3)
of landmarks, anddi j =

∥

∥xi −x j
∥

∥ denote the Euclidean distance between pointsi
and j ((i, j) ∈ Pc). We compute therelative distanced̂i j by normalizingdi j over
the sum of the distances between all the pairs of points involved in the cliquec, i.e.,

d̂i j =
di j

∑(i, j)∈Pc di j
(9)

Since the distancêdi j is normalized (i.e., ∑{i, j}∈Pc d̂i j = 1), it is sufficient to con-
sider a vector̂dc of relative distances corresponding to|Pc|−1 pairs of points. For
instance, let us consider a third-order cliquec= {i, j,k} (i, j,k∈ V andi < j < k),
the corresponding three points compose a triangle∆i jk andd̂c denotes the relative
lengths(d̂i j , d̂ jk) of the sides(i, j) and( j,k), i.e.,

d̂c = (
di j

di j +d jk +dki
,

d jk

di j +d jk +dki
) (10)
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We can learn the statisticsψc(d̂c) of d̂c from the training data, with standard prob-
abilistic models such as Gaussian Distributions, GaussianMixtures and Parzen-
Windows. Finally, we build the higher-order shape modelS = (V ,C ,{ψc(·)}c∈C ),
whereV andC determine the topology of the model and{ψc(·)}c∈C characterizes
the statistical geometric priors between the points contained in each cliquec ∈ C .
In the case where third-order cliques are used,C is defined asC = {{i, j,k}|i, j,k∈
V andi < j < k}. Such statistical constraints can be easily encoded in a higher-
order MRF with a set of cliques that includesC , leading to a prior probability on
the 3D configuration of the shape model as follows:

p(x) ∝ ∏
c∈C

ψc(d̂c(xc)) (11)

whered̂c(xc) denotes the mapping from the 3D positionsxc of the three points con-
tained in the cliquec to the relative distance vectord̂c. It is easy to verify that̂dc is
similarity-invariant. However, other similarity invariants (such as angles of a trian-
gle) can also be adopted in the above shape prior model.

Landmark candidate detection In order to explore image support through feature
vectors and to avoid a prohibitive computational complexity, we perform landmark
detections to find a set of correspondence candidates in the observed image for each
landmarki (i ∈ V ) in the 3D shape model. To this end, we first learn a classifier
for each landmark, then compute a score for each possible location, and finally
select theL positions that have the best scores to compose the candidateset for the
landmark. We employedRandom Forests[11] to perform the classification.

Higher-order MRF segmentation formulation The shape model, together with
the evidence from the image support, is formulated within a higher-order MRF to
perform image segmentation. To this end, we associate each node of the MRF with
a landmarki (i ∈ V ), and the latent variableXi corresponding to the nodei de-
notes the 3D position of the associated landmark. The candidate set of each variable
Xi is denoted byXi , which consists of the detected landmark candidates. Thus,
the Cartesian productX = ∏i∈V Xi denotes the candidate set of the configuration
x = (xi)i∈V of the MRF model. In order to introduce the pose-invariant shape prior
(of third order) into the MRF formulation, we associate a triplet of landmarks to
a third-order cliquec and use the potential function of the cliquec to encode the
statistical geometric constraints between the three landmarks. Finally, the segmen-
tation problem is transformed into estimating the optimal configurationxopt of the
higher-order MRF, which is formulated as a minimization of the MRF energyE(x):

xopt = arg min
x∈X

E(x) (12)

The energy of MRF is defined as a sum of singleton potentialsUi(xi) (i ∈ V ) and
third-order potentialsUc(xc) (c∈ C ), i.e.,

E(x) = ∑
i∈V

Ui(xi)+ ∑
c∈C

Hc(xc) (13)
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(a) (b) (c)

Fig. 2 Muscle segmentation. (a) A slice of a 3D MRI image of calf muscle with expert annotation.
(b) MG muscle segmentation results (green: reference; red: result). (c) Boxplots of the average
landmark error measure in voxel (1. our method. 2. method in [18]. 3. standard ASM method.).
On each box, the central mark in red is the median, the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data points.

The singleton potentialUi(xi) (i ∈ V ) consists of the negative log-likelihood,
imposing penalty for landmarki to be located at positionxi in imageI , i.e.,

Ui(xi) =− logp(I |xi) (14)

p(I |xi) is defined using the classifier’s output probability value for landmarki to be
located atxi . The higher-order clique potentialUc(xc) (c∈C ) encodes the statistical
geometrical constraints on the tripletc of points and is defined as:

Uc(xc) =−α · logψc(d̂c(xc)) (15)

whereα > 0 is a positive weight,̂dc(xc) andψc(·) have been presented previously.
Regional terms can also be factorized and incorporated in such an MRF model [41].

Higher-order MRF inference We adopt the dual-decomposition optimization frame-
work [4, 27] to solve the inference (Eq. 12). More specifically, we decompose the
original problem into a set of subproblems, each corresponding to a factor-tree [6]
and perform the exact inference efficiently in each subproblem in polynomial time
using the max-product belief propagation algorithm [6], with complexityO(NLK),
whereN, L andK denote the number of nodes, the number of candidates for each
node, and the maximum order of the factors, respectively. The solutions of the sub-
problems are combined using projected subgradient method to solve the Lagrangian
dual so as to obtain the solution of the original problem [27].

Experimental results The dataset for experimental validation consists of 3D MRI
scans of the calf muscles of 25 subjects (Fig. 2(a)). Standard of reference was avail-
able, consisting of annotations provided by experts for theMedial Gastrocnemius
(MG) muscle. To segment MG muscle from such images is challenging since there
is no evident difference of tissue properties between neighbor muscles and bound-
aries between adjacent muscles are visible very sparsely and heterogeneously. We
performed a leave-one-out cross-validation on the whole dataset. For comparison
purposes, we considered those methods presented in [18]. Fig. 2(b) shows two ex-
amples of the surface reconstruction results obtained using the estimated position
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of landmarks andthin plate spline(TPS) [8]. Fig. 2(c) presents the average distance
between the real and estimated landmark positions using different methods, which
confirms the superior performance of the proposed similarity-invariant shape prior
and inference using higher-order MRFs.

4 Conclusion

We have shown, via two specific applications, the idea of encoding shape invariance
in higher-order graphs for shape matching and inference, resulting in a one-shot
optimization algorithm without initializing and estimating extrinsic factors. Similar
ideas can be applied to address other extrinsic factors. Forexample, we introduced
in [40] a unified paradigm for 3D landmark model inference from monocular 2D im-
ages to simultaneously determine both the optimal 3D model and the corresponding
2D projections without explicit estimation of the camera viewpoint. As the next
step, it is interesting to study the optimal invariants and to recover the optimal sub-
set of higher-order interactions that can best express the 3D geometric manifold.
Besides, faster optimization algorithms of higher-order MRFs could be beneficial
both in terms of the considered applications as well as in terms of modularity with
respect to other shape matching and inference applications.
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