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Modeling Shapes with Higher-Order Graphs:
Methodology and Applications

Chaohui Wang, Yun Zeng, Dimitris Samaras and Nikos Paragios

Abstract Extrinsic factors such as object pose and camera paranatemain
source of shape variability and pose an obstacle to efflgientving shape match-
ing and inference. Most existing methods address the infeiefn extrinsic factors
by decomposing the transformation of the source shape (iotetwo parts: one
corresponding to the extrinsic factors and the other adaogifor intra-class vari-
ability and noise, which are solved in a successive or atérg manner. In this
chapter, we consider a methodology to circumvent the inflaesf extrinsic fac-
tors by exploiting shape properties that are invariant éorthBased on higher-order
graph-based models, we implement such a methodology t@sslgarious impor-
tant vision problems, such as non-rigid 3D surface matchimtjknowledge-based
3D segmentation, in a one-shot optimization scheme. Exyarial results demon-
strate the superior performance and potential of this ty@gproach.

1 Introduction

Shape matching and inference aims at determining the gumelgnce between a
source shape instance (or shape model) and a target shegreafor the observed
data where the target shape is embedded). It is a fundanpeotdém in computer
vision, computer graphics, medical image analysis and des tvidely investigated
in numerous important applications such as 3D surface rimgfemd reconstruction
[5,32,12, 30, 7, 21], statistical shape modeling and kndgéebased segmentation
[16, 15, 22, 34], feature correspondence and image retistif8, 38, 1, 20], shape
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similarity and object recognition [2, 3, 29]. L&t R® denote a shapeThe general
idea for solving this problem is usually based on an optitiirgproblem as follows:

1o = argmin(Es, 5, (1) = P(T(S1). S) + X (1)} (@)

wherep(1(S1),S) denotes a measure on the geometric and/or photometric-diffe
ence (often referred to afata likelihood between the transformed source shape
(model)1(S;) and the target shag, x (1) denotes a prior or regularization on the
transformatiorr, and.7 is the feasible solution se¢.@, diffeomorphisms).

One main difficulty in solving shape matching and infereries in the fact that
the shape usually lies in a high-dimensional parameterespad exhibits large and
complex deformation/variance in the space where its olksetata lies. This poses
a challenges to the design of an efficient algorithm for thercde of the optimal
transformation between two shapes or the optimal shape Infrode the observed
data. Another main difficulty originates from the facts ttie problem is inherently
ill-posed and that the input data are often noisy and can d&lhaoccluded. That
is why prior knowledge on the deformation/variance of thegghis often introduced
to address the ill-posedness of the problem and to makedbathim more robust to
noise. However, this raises another challenge in the claditiee representation of
prior knowledge, which should be effective in the aspect oflgling and efficient
in the aspect of learning and inference.

Main Obstacle - Extrinsic Factors

A ubiquitous phenomenon in vision perception is that a sirajject can exhibit
infinite geometric variation in the observed data followithg change of extrinsic
factors such as sensor parameters and global object.fdoste case of 3D data
where the observation also lies in a 3D Euclidean spaceydiit sensor parameters
and/or global object poses usually lead to observationsdiffar by a similarity
transformation (translation/rotation/scaling). In admieensegxtrinsic factorgefer

to all that would cause a shape to have different extrinsicifestations which are
nevertheless intrinsically equivalénfAn extrinsic factor is often associated with a
certain transformation group (e.g, the Euclidean group, the similarity group and
the isometry group) and globally affect the configuratiorasthape. Accordingly,
for a shape instance, the set of all intrinsically equiverapes is the orbit of that
instance under the corresponding transformation gdup

1 The shape can also be associated with a texture model if phototinédrimation is available.

2 When a bijective mapping betwe&n c R® andS, ¢ R3 is required, the feasible solution can be
defined as all diffeomorphisms that m&pto ;.

3 Photometric variation can be caused by the change of illunginative mostly focus on the
geometric aspect here but the extension to the photometric asebe done analogously.

4 The definition of the intrinsically equivalence depends amphoblem to be addressed. For in-
stance, when dealing with non-rigid 3D surface matching, wenofissume that two surfaces dif-
fering by an isometric transformation (with geodesic metrics) rtrénisically equivalent.
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Actually, extrinsic factorgpose a main obstacle to addressing the aforementioned
challenges efficiently, in particular in the following twoajor aspects.

Regarding the problem complexity and the algorithm design, we can see from
the above discussion that such extrinsic factors are a manes of shape variability
[36], the removal of which will largely reduce the complepitf shape matching and
inference. The problem can become much easier if we only teddal with the
intrinsic shape variability which refers to the residua¢ g, intra-class variability,
noise) after ruling out the effect of extrinsic factors.

The main issue in the design of the algorithm is how to defind mmimize
the cost function in Eq. 1 efficiently. To account for the effef extrinsic factors,
the most commonly used scheme in the literature is: decoanpes transforma-
tion T in Eg. 1 into an transformatiog € G that corresponds to the extrinsic fac-
tors and a residual transformatiothat accounts for the intrinsic shape variability,
i.e., T =gor, then optimizeg andr in a successive or alternating mannergy,
EM-style approaches). A typical example is fiterative closest point$lCP) al-
gorithms [5, 32] for rigid shape matching, which alternabetween establishing
correspondences given the Euclidean transformation aimdagsg the Euclidean
transformation given the correspondences. Another impbexample is related to
the incorporation of shape priors and will be discussed ktat.

Such a scheme requires initializiggand is prone to be trapped at local minima
during the alternating search. Therefore, it usually warkdl only when the two
shapes are close enough under the given initializatian Ahother important limi-
tation is that it cannot directly deal with the case wherg difficult to be explicitly
representede(g, the isometric transformation that is often consideredan-rigid
3D surface matching). Last, the search for optim@le., the global minimum with
respect ta) for a fixedg is actually difficult in general and its complexity increase
sharply agy deviates from the true transformation.

Regarding the incorporation of the shape prior, extrinsic factors pose an ob-
stacle for connecting the shape instance and the prior modbe matching and
inference process. In fact, the prior information on a shapss lies in the resid-
ual transformationr after factoring outg corresponding to extrinsic factors from
the transformatiorr. Based on this, most existing shape prior models [22], the
well-known active shape/appearance modéSMs/AAMS) [16, 15], are built by
first aligning all the training samples into a reference sp@a factor out the simi-
larity group) and then learning the shape distribution @séhregistered samples.

However, such prior models often exhibit two main limitaiso On the one hand,
the estimation of the similarity transforgnis required both in the training and the
inference stages, since the learned model and an obserape sistance are in dif-
ferent coordinate frames in general. Besides the compuagtcomplexity, such an
estimation also introduces certain bias on the learned praalel, since the optimal
decomposition of into g andr actually is an ill-posed problem. One the other hand,
the optimal search in the inference stage with such prioretsagquires initializing
g and is prone to be trapped at local minima.
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Key Strategy - Encoding Shape Invariance in Higher-order Gaphs

In fact, due to the intrinsic equivalence of the shape, tetadce function in Eq. 1
should be invariant to extrinsic factorse., p(7(S1),S) and x(1) should beg-
invariant. Hence, if we can explore shape invariance wispeet to extrinsic factors
by choosingg-invariant data ternp(7(S1),S) and prior model (1), then we will
be able to efficiently search for the optimal transformati®ftiwithout searching for
g. In particular, when extrinsic factors correspond to agfanmation group, such
a scheme can be interpreted as representing a shape iniasitnéhape space that
is g-invariant and the correspondence is then determined im andntrinsic shape
space, where the shape variability is largely reduced.

To this end, we are particularly interested in discreteasentations of shapes,
which have been widely employed in the literature, wheretthesformationr in
Eq. 1 is represented by the correspondences between ths pbiwo shapes. Then
the shape matching and inference problem boils down to mi&térg the corre-
spondence from the target shape (or the observed image fdatejch point on
the source shape (model). Recent significant developmegraph-based methods
and inference techniques.¢, Markov Random Field (MRF) inference algorithms
[10, 25, 27] and graph matching [37, 28, 38]) have demoreddrtiieir potential in
solving such a correspondence problem. In particular, #velyndeveloped tech-
niques for higher-order models [24, 27, 23, 17] enhancefgigntly the applicable
extent and the performance of graph-based methods. In scwhtext, we employ
higher-order potentials to characterize measures/statibhat areg-invariant €.g,
similarity-invariant and isometry-invariant) and optiraithe energy function using
discrete optimization methods to address 3D shape matehmidgnferenced.g,
[42, 39, 40, 41]). One important advantage of such a schethatishe problem can
be solved in a one-shot optimization algorithm with optiityeuarantee.

In the next two sections, we will show via our recent works, [82] how this
methodology can be implemented for two typical problemsi-rigid 3D surface
matching and knowledge-based 3D segmentation, and deratantte superior per-
formance of our approaches. Finally we will conclude thepthiawith a discussion
of future directions in section 4.

2 Non-rigid 3D Surface Matching

We present our approach [42] to robustly establish cormdpaces between two
surfaces via a higher-order graph-based formulation, e/tiex similarity between
local structures and the distortion of global structures isometry-invariant and
incorporated together via singleton terms and third-ongkeractions, respectively.
Let us denote by?; and 22, the two point sets from surfac& andS,, respec-

tively. Our goal is to find the correspondence fram for each point of#7y, if it

exists. This can be formulated as selecting a subset (eefféor asmatching .#

from the set of all possible correspondenegs® &2 x &, that leads to the least
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dissimilarity while respecting matching constrainésy, one-to-one mapping). For
each correspondenee= (i, j) € <, we assign a Boolean variablg to indicate if

ais included in the matchingZ (xa = 1) or not §; = 0). By doing so, the matching

# can be represented by a tuple of Boolean variakles(xa)ac.s. The feasible
solution spaceZ” of x depends on the matching constraints. Here, we impose the
constraint that each point ig?; is mapped to at most one point i, andvice
versa leading to the following feasible solution spagé:

2 ={xe{0,1}}]] Z Xj<1 Yy xj<lvVie Z1andvje 2} (2)
e jEP

The dissimilarity induced by a matching between two susacan be defined
based on the distortion encoded within various numbers okespondences. We
then formulate the surface matching problem as finding thiena matching that
minimizes the dissimilarity function as follows:

xPl=argminfE(x) = Y BaXat 5 OapdaXot Y BanodaXoXe} (3)
xeZ acw/ (ab)car? (ab,c)ea3

In the following, we discuss the definitions of the poterfactions in Eq. 3, which
capture the information of both local structures and glaledbrmation.

The singleton potential encodes geometric and/or photometric compatibility be-
tween the local structures of each correspondence. Folisitpypve use the Gaus-
sian curvature cui¥) at pointi as geometric descriptor, which is invariant to isomet-
ric transformation [14], as well as the texture value(igat pointi as photometric
descriptor if texture information is available. Then, tlmgéeton potentiab, for a
correspondence= (i, j) is defined as follows:

Ba = (curv(i) —curv(j))? + Ao(tex(i) —tex(j))? (4)

where)g is a positive weight that balances the contribution betweewature and
texture information. Similarly, other features can alsocbasidered within such
potentials, such as multiscale heat kernel signaturesg@&leigenfunctions of the
Laplace-Beltrami operator [33].

The higher-order potential encodes the intrinsic deformation priors of global
structures which are invariant to isometric transformatitheories in Riemann sur-
face [19] reveal that when two surfaces are isometricalfprieed from one to the
other, the correspondences (mapping) between them carffluéestly character-
ized by aMdbius transformationwhich has only six degrees of freedom and can
be uniquely determined by a triplet of point-wise corregpemtes. Hence, we can
measure the deviation from isometry for the mapping (intplig the Mdbius trans-
formation) between two surfaces determined by a tripletaifijpwise correspon-
dences, which serves as an intrinsic deformation prior thahcan be encoded in
a third-order potential.
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According to the uniformization theorem [19], any 3D sugamn be flattened
conformally to a canonical 2D domain. Then for any tripletcofrespondences,
(pt,p},pp) € 21 and (p?, p?, p§) € #%2, we first recover the associatedobius
transformationm!(z) and?(z) that maps each triplet to a constant configuration

(ei%g,ei?,éz"). Under this transformation, each pojnin the sets?; and &; is
equipped with coordinates i (i.e., the complex plan€ U {«}) denoted by(p) €

C. Similar to [30], we establish correspondences betwggrand 42, by searching
the mutually closest point correspondences#gi under the new coordinates, and
define the deformation deviation from isometry as:

Ej= 5  lzp)—2p)l? (5)
(P1,P2) €Ak

Then we define the intrinsic deformation prior term as foow
gMobius _ Ei/|-#x>—1 i Ejx/| Akl <9 (6)
ik 1/| | otherwise

Here o is a lower bound value to rule out unlikely correspondendeso(r ex-
perimentd = 0.1). Intuitively, if there are more matching pairs and theatises
between those matching pairs are smaller, the potentibbwilower. Such a prior
term is invariant with respect to isometric transformatidue to the fact thef;j is
computed in the canonical 2D domain and an isometric tramsftion applied to a
surface will not change the representation of the surfatieditanonical domain.
Since the mirror symmetry group is a subset of the isometrygrthe intrinsic
deformation prior term in Eq. 6 cannot resolve symmetry @uity. In practice we
often want to eliminate such an ambiguity, for which we cafinrdeanother type of
third-order terms based on the Gaussian map of the surfdeeGaussian map is
defined as the mapping of the normal at each point on the sutdathe unit sphere
[14]. Due to the fact that two triplets have the same oriématf the Gaussian maps
if and only if the determinant of their normals have the saige,sve can define the
below higher-order term as a penalty for extrinsic oridatainconsistency:
\Gaussian__ 0 if det(nilanjl’nb 'det(niz’n]%'ﬁ) >0 @)
1k | 1/|#j| otherwise

wheren; € R3 denotes the normal at pointand detn;,n;j,nyx) denotes the deter-
minant of the 3x 3 matrix [n;,nj, ni]. With such an additional term, the third-order
potential for each triplet of correspondence, pt, pi) — (p?, P?, pf) is defined as
a weighted sum of the two types of potentials,,

Gljk _ Aleil}/lI('dbius_F)\zeiﬁ(aussian (8)

Here, only singleton and third-order terms are considevesimplification. Pair-
wise potentials defined based on different metrcg (geodesic [12], diffusion met-
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rics [13] and commute time [31]) can also be considered mdbneral formulation
to integrate more geometric information towards improwuimg performance.

Dual-decomposition-based optimizationAn advantage of the pseudo-boolean
formulation is that higher-order terms can be reduced intuadratic term and
then be solved by existing efficient optimization algorigisuch as QPBO tech-
niques [9, 26]. Inspired by [38], the dual-decompositiotirofzation framework
[4, 27] and the order-reduction technique proposed in [28Jaaopted to deal with
the problem in Eq. 3. More specifically, the original probleydecomposed into
alinear subproblemahigher-order pseudo-boolean subproblamd a set ofocal
subproblemsThe linear subproblem and the local subproblems used iexperi-
ments are similar to those of [38]. Then, a higher-order gedhoolean subproblem
is introduced to deal with the higher-order terms in Eq. 3eA$olving the subprob-
lems, the dual variables are updated using a projected adiegit method [27, 38]
to maximize the lower bound.

Towards efficient dense surface matchingwe propose a two-stage optimization
pipeline which consists adparse feature matchingnd dense point matchingn
the sparse matching stage, we establish the corresporsdegivecen two small sets
of sparse features using the high-order graph matchingitigopresented above.
Since any three correspondences determine a mapping lmethedwo surfaces
and provide a correspondence candidateéspfor each point ors;, a large num-
ber of correspondence candidates can be obtained for eadtbygaonsidering all
distinct triplets of correspondences in the sparse feahatehing result. This can
be followed by a clustering process to find the modes of thelidates so as to
significantly reduce the number of candidates. Finally,nailar high-order graph
matching scheme is employed to determine the optimal demfscse matching.

Experimental results The evaluation of our framework is done based on a number
of challenging examples, which demonstrates its accuradye#ficiency, notably

in challenging cases of very large deformations, or meshasadre partially oc-
cluded (see sample results in Fig. 1). Due to the lack of argtowth regarding the
dense correspondence, we quantitatively measure thetyqohliense registration

as follows: after performing the Delaunay triangulatiortleé points on the source
surface, we compute the ratio of the area of each facet tordeed its matched
facet (see Fig. 1). For natural deformatiorsy( expression change, stretched arms
or bending figures) such as those in our experiments, thédoea is not expected

to undergo abrupt change. Therefore the log area ratio isoteg to be close to 0.

3 Pose-Invariant Prior and Knowledge-based Segmentation

In this section, higher-order interactions are considerdulild pose-invariant shape
priors and are exploited for the development of a novel dra-eptimization ap-
proach for knowledge-based 3D segmentation in medicalimgd§9].
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Fig. 1 Matching results (from left to right: sparse matching, dense nregcind log area ratio).

Pose-invariant shape modelingThe shape model consists of a $ebf landmarks
on the boundary of the object of interest. In the 3D case, veexugi € 7)) to
denote the 3D position of landmarkandx = (x;)ic» denote the positions of all
the landmarks. Our goal is to learn priors wrfrom the training data that con-
sists of a set oM shapes. Instead of registering all the surfaces into aaeber
space, we only assume that point-wise correspondencesbiavedetermined for
the landmarks in the training set. We propose to learn staisn similarity in-
variants, such as the relative distances between pairqidiriarks in a clique. Let
Z.={(i,])|i, ] € candi < j} denote all the pairs for a cligue(c C ¥ and|c| > 3)
of landmarks, andij = ||x —x;|| denote the Euclidean distance between pdints
andj ((i,j) € Z:). We compute theelative distanced]i by normalizingd;; over
the sum of the distances between all the pairs of pointswedbin the clique, i.e.,

dij

- 9
3 (i,)e 7 dij

dj =
Since the distance; is normalized ie., 3 ;i jjc , dij = 1), it is sufficient to con-
sider a vectod of relative distances corresponding|t#;| — 1 pairs of points. For

instance, let us consider a third-order clique {i, j,k} (i, j,k € 7" andi < j <k),
the corresponding three points compose a triadgleandd. denotes the relative

lengths(dij, djx) of the sideg(i, j) and(j,k), i.e.,

d; dik

a =
¢ (dij +djk +dyi” dij +djk+dki)

(10)
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We can learn the statistia(dc) of d. from the training data, with standard prob-
abilistic models such as Gaussian Distributions, Gauskiatures and Parzen-
Windows. Finally, we build the higher-order shape mogek (¥, €, { (") }ccv),
where¥ and% determine the topology of the model afiic(-) } ¢ characterizes
the statistical geometric priors between the points caethin each clique € €.

In the case where third-order cliques are uséds defined a&” = {{i, j,k}|i, j,k €

¥ andi < j < k}. Such statistical constraints can be easily encoded in leehig
order MRF with a set of cliques that includ®§ leading to a prior probability on
the 3D configuration of the shape model as follows:

p(x) O I_I ‘I’c(ac(xc)) (11)

ce?

whered.(x) denotes the mapping from the 3D positiog®f the three points con-
tained in the clique to the relative distance vectdg. It is easy to verify thadl is
similarity-invariant. However, other similarity invarigs (such as angles of a trian-
gle) can also be adopted in the above shape prior model.

Landmark candidate detection In order to explore image support through feature
vectors and to avoid a prohibitive computational compiexite perform landmark
detections to find a set of correspondence candidates irbex\ed image for each
landmarki (i € 7') in the 3D shape model. To this end, we first learn a classifier
for each landmark, then compute a score for each possib&idoc and finally
select the. positions that have the best scores to compose the candeldta the
landmark. We employeRandom ForestfL1] to perform the classification.

Higher-order MRF segmentation formulation The shape model, together with
the evidence from the image support, is formulated withinghér-order MRF to
perform image segmentation. To this end, we associate eatghaf the MRF with

a landmarki (i € ¥), and the latent variabl¥; corresponding to the nodede-
notes the 3D position of the associated landmark. The catelgkt of each variable
X; is denoted byZi, which consists of the detected landmark candidates. Thus,
the Cartesian product” = [y Zi denotes the candidate set of the configuration
X = (X)iey of the MRF model. In order to introduce the pose-invariarmtpghprior

(of third order) into the MRF formulation, we associate alet of landmarks to

a third-order cliqguec and use the potential function of the cliquéo encode the
statistical geometric constraints between the three lamkisn Finally, the segmen-
tation problem is transformed into estimating the optin@ifigurationx®Pt of the
higher-order MRF, which is formulated as a minimizationte# MRF energye (x):

XOPt = argxrerlj?E(x) (12)

The energy of MRF is defined as a sum of singleton poteritldlg) (i € ¥") and
third-order potential&lc(xc) (c € %), i.e.,

E(X) = > Uix)+ > Hel(x) (13)

i€’ ces
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Fig. 2 Muscle segmentation. (a) A slice of a 3D MRI image of calf muscle witheet annotation.

(b) MG muscle segmentation results (green: reference; red: reg)lBoxplots of the average
landmark error measure in voxel (1. our method. 2. method in [18teéhdard ASM method.).
On each box, the central mark in red is the median, the edges dick are the 25th and 75th
percentiles, the whiskers extend to the most extreme data points.

The singleton potentidl;(x) (i € ¥) consists of the negative log-likelihood,
imposing penalty for landmarkto be located at positiox in imagel, i.e.,

Ui(xi) = —logp(l |xi) (14)

p(1]x) is defined using the classifier’s output probability valuelémdmarki to be
located ak;. The higher-order clique potentidk(xc) (c € ¢) encodes the statistical
geometrical constraints on the tripkedf points and is defined as:

Uc(Xc) = —a -log ‘-pc(ac(xc)> (15)

wherea > 0 is a positive weightﬂc(xc) andy(-) have been presented previously.
Regional terms can also be factorized and incorporatecciman MRF model [41].

Higher-order MRF inference We adopt the dual-decomposition optimization frame-
work [4, 27] to solve the inference (Eqg. 12). More specificalle decompose the
original problem into a set of subproblems, each corresipgni a factor-tree [6]

and perform the exact inference efficiently in each subgmlh polynomial time
using the max-product belief propagation algorithm [6}thagomplexityO(NLX),
whereN, L andK denote the number of nodes, the number of candidates for each
node, and the maximum order of the factors, respectivelg.sttutions of the sub-
problems are combined using projected subgradient methseal\te the Lagrangian
dual so as to obtain the solution of the original problem [27]

Experimental results The dataset for experimental validation consists of 3D MRI
scans of the calf muscles of 25 subjects (Fig. 2(a)). Stahafaeference was avail-
able, consisting of annotations provided by experts forMieglial Gastrocnemius
(MG) muscle. To segment MG muscle from such images is chgithgrsince there

is no evident difference of tissue properties between figihuscles and bound-
aries between adjacent muscles are visible very sparsdliyheterogeneously. We
performed a leave-one-out cross-validation on the whotasgd For comparison
purposes, we considered those methods presented in [§8R(B) shows two ex-
amples of the surface reconstruction results obtainedyubia estimated position
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of landmarks anthin plate spling TPS) [8]. Fig. 2(c) presents the average distance
between the real and estimated landmark positions usiferelift methods, which
confirms the superior performance of the proposed simjkamitariant shape prior
and inference using higher-order MRFs.

4 Conclusion

We have shown, via two specific applications, the idea of dimgpshape invariance
in higher-order graphs for shape matching and inferencyltieg in a one-shot
optimization algorithm without initializing and estimagj extrinsic factors. Similar
ideas can be applied to address other extrinsic factorseXa@mple, we introduced
in [40] a unified paradigm for 3D landmark model inferencerinmonocular 2D im-
ages to simultaneously determine both the optimal 3D mautktlze corresponding
2D projections without explicit estimation of the camerawpoint. As the next
step, it is interesting to study the optimal invariants amdetcover the optimal sub-
set of higher-order interactions that can best express Ehgedmetric manifold.
Besides, faster optimization algorithms of higher-orderMdRould be beneficial
both in terms of the considered applications as well as imgesf modularity with
respect to other shape matching and inference applications
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