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Abstract. We derive a Weierstrass-type formula for conformal Lagrangian immersions in Eu-
clidean 4-space, and show that the data satisfies an equation similar to Dirac equation with
complex potential. Alternatively this representation has a simple formulation using quaternions.
We apply it to the Hamiltonian stationary case and construct all possible tori, thus obtaining a
first approach to a moduli space in terms of a simple algebraic-geometric problem on the plane.
We also classify Hamiltonian stationary Klein bottles and show they self-intersect.
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Introduction

In this paper we revisit and generalize some aspects of the Weierstrass construction
for Hamiltonian stationary Lagrangian surfaces which was given in [HR]. We are
interested here in Lagrangian surfaces in R4 ≃ C2, equipped with the standard
symplectic form, a priori without the assumption of being Hamiltonian stationary.
In order to build a Weierstrass representation of these immersions, it is natural
in a first step to consider the set of weakly conformal Lagrangian immersions of
a Riemann surface: they are maps which coincide with a conformal immersion
outside isolated points where the Jacobian matrix vanishes, and such that the
pull-back of the symplectic form vanishes. In [HR], we analyzed weakly conformal
Lagrangian immersions which are Hamiltonian stationary, i.e. critical points of
the area functional with the requirements of (i) being Lagrangian and (ii) the only
infinitesimal variations allowed are the one given by Hamiltonian vector fields
(see [O1], [O2], [SW]). They enjoy a nice characterization using the canonical
Lagrangian angle map defined over any Lagrangian surface and with values in the
circle S1 (it is actually a part of the classical Gauss map of the immersion). A
precise definition is given in Section 1 below. A Lagrangian surface is Hamiltonian
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stationary if and only if the Lagrangian angle map is a harmonic map from the
surface to the circle. This leads to many nice properties which may be summarized
by saying that these surfaces are solutions of a completely integrable system.

In the first Section, we show that the Hamiltonian stationary assumption may
be removed and that we still have a Weierstrass type representation of all weakly
conformal Lagrangian immersions. This is very similar to the Weierstrass repre-
sentation for weakly conformal immersions in R3 due to B. G. Konopelchenko [Ko].
Some variants were proposed also in [Ke] and this representation has been stud-
ied by many authors [KoT1, KoT2], [B1, B2], [KuS], [T1, T2]. Actually we shall
first present our representation using notations that make evident the similarities
between the two theories, since they rely on a kind of Dirac equation.

In the second Section, we propose an equivalent representation using quater-
nions. The gain is not only formal, but it also unveils the quaternionic structure of
the problem. In particular when we specialize back to Hamiltonian stationary La-
grangian immersions, we see immediately that the set of solutions has the structure
of a vector space over the quaternions. Exploiting this structure leads to formulae
equivalent to the one in [HR] but much simpler to handle.

In the last Section, we present computations using these formulae and we focus
on immersed Klein bottles. We classify all such surfaces and show that none is
embedded.
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1. Weierstrass representation for Lagrangian surfaces in C2

Let (ǫ1, ǫ2) be the canonical basis of C2 over C. We equipp C2 with the Hermitian
product

〈v, w〉H = v1w1 + v2w2,

so that, as a real four-dimensional space, C
2 has the Euclidean scalar product

〈., .〉E and the symplectic form ω given by

〈v, w〉H = 〈v, w〉E − iω(v, w). (1)

Let Ω ⊂ C be a simply connected domain and X : Ω −→ C2 some conformal

Lagrangian immersion. Letting ef :=
∣

∣

∂X
∂x

∣

∣

2
=
∣

∣

∣

∂X
∂y

∣

∣

∣

2
, and e1 := e−f/2 ∂X

∂x , e2 :=

e−f/2 ∂X
∂y , we have

dX = ef/2(e1dx + e2dy), (2)
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and (e1, e2) is necessarily the orthonormal basis of some Lagrangian plane in C2.
By (1) this condition amounts to 〈e1, e2〉H = 0. Hence, for all (x, y) ∈ Ω, the
components of e1(x, y) and e2(x, y) in the basis (ǫ1, ǫ2) form a matrix

e(x, y) =

(

e1
1 e1

2
e2
1 e2

2

)

(x, y), (3)

which belongs to U(2). Decompose e(x, y) as

e(x, y) = eiβ/2g, (4)

where β ∈ R/2πZ and g ∈ SU(2). Notice that such a decomposition is not unique;

the other possible one is e(x, y) = ei(β+2π)/2(−g). But since Ω is simply connected,
we can construct smooth functions β : Ω −→ R/2πZ and g : Ω −→ SU(2), such
that (4) holds everywhere. The angle β is called the Lagrangian angle function, is
characterized by dz1 ∧ dz2(e1, e2) = eiβ .

Let us focus on (x, y) 7−→ ef(x,y)/2g(x, y), a map with values in R
∗
+.SU(2). We

remark that R+.SU(2) is isomorphic to the set of quaternions H. Namely, letting

1 :=

(

1 0
0 1

)

, I :=

(

0 −1
1 0

)

, J :=

(

i 0
0 −i

)

, K :=

(

0 i
i 0

)

,

the map

H : R+.SU(2) 7−→ H

t1 + xI + yJ + zK 7−→ t + xi + yj + zk

is a field isomorphism1. Using the fact that each quaternion ζ can be written in
an unique way ζ = a + jb, where a, b ∈ C ⊂ H, we shall define two functions
s1, s2 : Ω −→ C such that

H
(

ef(x,y)/2g(x, y)
)

= s1(x, y) + js2(x, y) = s1(x, y) + s2(x, y)j.

A computation shows that

ef(x,y)/2g(x, y) =

(

Re(s1) + iRe(s2) −Im(s1) − iIm(s2)
Im(s1) − iIm(s2) Re(s1) − iRe(s2)

)

(x, y).

1 One could also use the more natural isomorphism H̃ :

(

a −b

b a

)

7−→ a + jb. Both isomor-

phisms are actually conjugate through H(.) = τH̃τ−1, where τ :=
√

2

2
(i + j). But H will be

more suitable in the following.
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We deduce from (2) and (4) that in the basis (ǫ1, ǫ2),

dX = eiβ/2

(

(

Re(s1) + iRe(s2)
Im(s1) − iIm(s2)

)

dx

+

(

−Im(s1) − iIm(s2)
Re(s1) − iRe(s2)

)

dy

)

(5)

= eiβ/2

(

Re

[(

s1

−is1

)

dz

]

+ iRe

[(

s2

is2

)

dz

]

)

.

We look for the necessary and sufficient conditions on (s1, s2) such that a solution
of (5) exists on all simply-connected domain, i. e.

0 = d

(

eiβ/2Re

[(

s1

−is1

)

dz

]

+ ieiβ/2Re

[(

s2

is2

)

dz

])

= eiβ/2





−Im
(

∂s2

∂z − 1
2

∂β
∂z s1

)

− iIm
(

∂s1

∂z + 1
2

∂β
∂z s2

)

Re
(

∂s2

∂z − 1
2

∂β
∂z s1

)

+ iRe
(

∂s1

∂z + 1
2

∂β
∂z s2

)



 dz ∧ dz.

(6)

We see that (6) is true if and only if











∂s1

∂z
= −

1

2

∂β

∂z
s2

∂s2

∂z
=

1

2

∂β

∂z
s1.

(7)

This system may be written using a kind of Dirac operator. Set

U :=
1

2

∂β

∂z
, φ :=

(

s1

s2

)

, D :=

(

0 ∂
∂z

− ∂
∂z 0

)

,

then (7) is equivalent to the following

Dφ =

(

U 0
0 U

)

φ. (8)

Conversely one may check directly that, for any smooth function β : Ω −→ R/2πZ,

any solution φ =

(

s1

s2

)

of (8) produces a C2-valued closed 1-form on Ω given by

α := eiβ/2
(

Re

[(

s1

−is1

)

dz

]

+ iRe

[(

s2

is2

)

dz

])

.

And if φ 6= 0, any solution X : Ω −→ C2 of dX = α is a conformal Lagrangian
immersion, with Lagrangian angle map β. Thus we obtain the following
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Theorem 1. Let Ω ⊂ C be a simply connected domain. For any conformal
Lagrangian immersion X : Ω −→ C

2, there exist smooth functions β : Ω −→

R/2πZ and φ =

(

s1

s2

)

: Ω −→ C2 \ {0}, determined by (5) and then φ is a

solution of the Dirac equation (8). Conversely any never vanishing solution of (8)
gives rise to a conformal Lagrangian immersion obtained by integrating (5).

Remark that the case where φ vanishes on isolated points corresponds to weakly
conformal immersions. All this construction can actually be understood in terms
of a decomposition of the complexification of the Hermitian Galilee group of C2,
U(2) ⋉ C

2 by an order fourth automorphism (see [HR] for details).

It is tempting to compare this result with the spinorial Weierstrass repre-
sentation due to B. G. Konopelchenko [Ko] of surfaces in R3 (see also [KoT1,
KoT2], [B1, B2], [KuS], [T1, T2]). Let p : Ω −→ R be a smooth function and

φ =

(

s1

s2

)

: Ω −→ C
2 \ {0} be a solution of the Dirac equation

Dφ =

(

p 0
0 p

)

φ. (9)

Then the following 1-form

η := Re





s2
1dz − s2

2dz

−i(s2
1dz − s2

2dz)
s1s2dz + s1s2dz



 (10)

is closed and any solution Y : Ω −→ R3 of the equation dY = η is a conformal
immersion. Moreover the mean curvature of this surface satisfies

2p = H(|s1|
2 + |s2|

2)

and the pull-back metric is
(

|s1|
2 + |s2|

2
)2

dzdz.
The similarity between the two algorithms is striking but not total, since the

potentials

(

p 0
0 p

)

and

(

U 0
0 U

)

generally differ. For an arbitrary function U :

Ω −→ C and for a solution φ of

Dφ =

(

U 0
0 U

)

φ,

the relation (5),which gives rise to a map into C2, makes sense only if U has the
form U = 1

2
∂β
∂z , with β real valued. And the Konopelchenko ansatz integrates only

if U is real. Thus there is an intersection case, where U is both real valued and
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of the form U = 1
2

∂β
∂z , which is realized if and only if β is a real valued function

of the variable x. An interesting subcase is when β(x, y) = 4x ⇔ U = p = 1.
The corresponding surfaces in R3 have been studied by J. Richter [R] in his thesis
where there are named Dirac surfaces. Another intrinsic difference between the
two representations becomes obvious at the global level: in Konopelchenko’s case
the quantities s1, s2 are spinors and the potential p is a density, while in the
Lagrangian case they are all 1-forms (though with a similar sign twist).

2. Formulation using quaternions

We identify C2 with the set of quaternions H using the real vector space isomor-
phism

Φ : C
2 −→ H

z =

(

z1

z2

)

7−→ τ(z1 + jz2)τ−1,

where τ :=
√

2
2 (i + j) and C = R + iR ⊂ R + iR + jR + kR = H. Notice that

Φ(ǫ1) = 1 and Φ(ǫ2) = i. Similarly we recall the field isomorphism already used
in the previous section between R+.SU(2) and H,

H : R+.SU(2) −→ H
(

a −b
b a

)

7−→ τ(a + jb)τ−1.

Then a short computation shows that ∀eiθ ∈ S1 ⊂ C, ∀R ∈ R+.SU(2) and
∀z ∈ C2,

Φ(eiθRz) = H(R)Φ(z)ejθ. (11)

Thus, if X : Ω −→ C2 and we denote dX = e(f+iβ)/2 (g(ǫ1)dx + g(ǫ2)dy),

d (Φ ◦ X) = H
(

ef/2g
)(

Φ(ǫ1)e
jβ/2dx + Φ(ǫ2)e

jβ/2dy
)

= H
(

ef/2g
)

dz ejβ/2,

where dz := dx + idy is viewed as H-valued2. In the remainder of this section,
we shall abuse notations and denote X ≃ Φ ◦ X (X is then a map into H) and
we also set h := H

(

ef/2g
)

. Moreover in our computations, we shall assume that
Ω ⊂ C ⊂ H. Thus we define the Cauchy-Riemann operators ∂z \ ∂, ∂z \ ∂, ∂/∂z
and ∂/∂z, such that

dh = (∂h/∂z)dz + (∂h/∂z) dz = dz (∂z \ ∂h) + dz (∂z \ ∂h) .

2 The quaternionic notation may mislead the Reader into viewing d (Φ ◦ X) as a (1,0)-form,

since no dz term is present. That notion however is not valid, and we might introduce dz using

the property dz j = j dz.
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Hence the compatibility condition for a solution X of dX = hdz ejβ/2 to exist is

0 = ((∂h/∂z)dz + (∂h/∂z) dz) ∧ dz ejβ/2 − hdz ∧ dβ
j

2
ejβ/2

=

(

(∂h/∂z) − h
∂β

∂z

j

2

)

dz ∧ dz ejβ/2.
(12)

(We shall constantly use the fact that if u ∈ C ⊂ H, ju = uj and ku = uk. Here
this is reponsable for the signs in the formula, since dz ∧ dz = 2idx ∧ dy.) Hence
the compatibility condition writes

(∂h/∂z) = h
∂β

∂z

j

2
. (13)

If we let h = s1 + js2 and substitute in this equation, we see that s1, s2 are
solutions of the system (7) or (8).

2.1. Hamiltonian stationary Lagrangian immersions

As proven in [HR], Hamiltonian stationary Lagrangian immersions are characte-
rized in this framework by the additional condition that β is a harmonic function.
Thus they may be constructed by first picking up some harmonic function β and
second solving Equation (13), where h : Ω −→ H is the unknown function. It is
then clear that the set of solutions of this equation is a quaternionic vector space
(H acting on the left).

Let us focus (as in [HR]) on the toric solutions. Since any torus is conformally
equivalent to some C/Γ, where Γ := v1Z + v2Z is a lattice in C, it amounts to
looking for Γ-periodic Hamiltonian stationary Lagrangian immersions X : C −→
H. Setting

dX = hdz ejβ/2,

we are led to look for (a priori) 2Γ-periodic maps h : C −→ H and Γ-periodic
maps β : C −→ R/2πZ, such that hejβ/2 is Γ-periodic, β is harmonic and h
is a solution of (13). The only such β’s are of the form β(z) = 2π〈β0, z − z0〉 =
π(β0(z−z0)+β0(z−z0)), with β0 ∈ Γ⋆, where Γ⋆ is the dual lattice to Γ. Without
loss of generality we shall assume that z0 = 0. The 2Γ-periodic maps h : C −→ H

are of the form
h =

∑

γ∈1
2
Γ⋆

ĥγei2π〈γ,z〉,

where ĥγ are unique Fourier coefficients3in H. Now the equation (13) is written

3 Notice that we do not need here reality conditions on the Fourier coefficients ĥγ . A way

to convince oneself that any 2Γ-periodic function f : C −→ H has such a unique Fourier

decomposition is to set f = f1 + jf2, where f1 and f2 are complex valued and to Fourier

decompose f1 and f2.
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as
∑

γ∈1
2
Γ⋆

ĥγiγei2π〈γ,z〉 =
∑

γ∈1
2
Γ⋆

ĥ−γ
jβ0

2
ei2π〈γ,z〉,

which is satisfied if and only if

ĥγ = ĥ−γ
β0γ

2|γ|2
k, ∀γ ∈

1

2
Γ⋆. (14)

The relation (14) implies ĥγ = ĥγ
|β0|2
4|γ|2 . Hence all ĥγ ’s vanish except when |γ| =

|β0|
2 , and then β0γ

2|γ|2 k = 2γ

β0

k. Conversely, as shown in [HR], the map h yields after

integration a Γ-periodic immersion if and only if the γ’s for which ĥγ does not
vanish belong to

Γ⋆
β0

:= {γ ∈
β0

2
+ Γ⋆; |γ| =

|β0|

2
, γ2 6=

β2
0

4
},

and the relation (14) is true. We can describe the solutions by considering a subset
containing half of the relevant frequencies γ

Γ⋆
β0,+ := {γ ∈ Γ⋆

β0
/Im(γβ−1

0 ) > 0},

and then, thanks to (14),

dX =
∑

γ∈Γ⋆
β0,+

ĥγ

(

ei2π〈γ,z〉 −
2γ

β0
ke−i2π〈γ,z〉

)

dz ejπ〈β0,z〉

=
∑

γ∈Γ⋆
β0,+

ĥγei2π〈γ,z〉
(

1 −
2γ

β0
k

)

dz ejπ〈β0,z〉.

We can integrate explicitly this equation and we obtain

X(z) = X0 +
∑

γ∈Γ⋆
β0,+

ĥγXγ(z),

where X0, ĥγ ∈ H are constants and

Xγ(z) = ei2π〈γ,z〉 β0 + 2γk

2πIm(γβ̄0)
ejπ〈β0,z〉. (15)

Hence, given β0, the set of doubly periodic Hamiltonian stationary Lagrangian
weakly conformal maps having a Lagrangian angle function 2π〈β0, z〉 is a quater-

nionic vector space of dimension 1 + Card
(

Γ⋆
β0,+

)

over H.
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3. Construction of immersed Hamiltonian stationary Lagrangian
Klein bottles

We depict an abstract Klein bottle K as the complex plane C quotiented by the
following (renormalized) group action: z 7→ z + iτ and z 7→ z̄ + 1 where τ is a
real number. Iterating the second relation, we get z 7→ z + 2, hence the torus
T = C/Γ, where Γ = 2Z ⊕ iτZ, is a rectangular orientable double cover of K. We
can now use the formalism in the previous section and characterize the immersed
Klein bottles as giving rise to particular cases of immersed tori.

Theorem 2. There exist Lagrangian Hamiltonian stationary Klein bottles; they
are never embedded.

The proof proceeds in three steps.

Step 1: The Lagrangian angle.
The dual lattice Γ⋆ is 1

2Z ⊕ i
τ Z, and β0 belongs to Γ⋆ so β0 = m

2 + in
τ for some

integers m,n. Since z 7→ z̄ + 1 reverses orientation of the tangent plane, we need
β(z̄ + 1) ≡ β(z) + π mod 2π.

β(z̄ + 1) = 2π〈β0, z̄ + 1〉 = π

(

m(x + 1) −
2n

τ
y

)

= β(z) + mπ −
4nπy

τ

which imposes n = 0 and m odd. Finally β(z) = mπx.

Step 2: The basis vectors.
Take γ = aτ+i4b

4τ ∈ Γ⋆
β0,+ (recall that Γ⋆

β0,+ ⊂ β0

2 + Γ⋆ so a is odd, b is a positive

integer) and |γ| = |β0

2 | reads

(a2 − m2)τ2 + 16b2 = 0. (16)

We associate two linked frequencies γ and γ′ = γ̄ to write ĥγXγ + ĥγ̄Xγ̄ =: ĥγYγ ,
where

Yγ(z) = Xγ(z) + im+a aτ + 4bi

mτ
Xγ′

=
1

2πbm

(

mτe
iπ
2

(ax+ 4by
τ

) + (aτ + 4bi)ke
−iπ

2
(ax+ 4by

τ
)

− im+a aτ + 4bi

mτ

(

mτe
iπ
2

(ax− 4by

τ
) + (aτ − 4bi)ke− iπ

2
(ax− 4by

τ
)
)

)

ejπ〈β0,z〉

=
1

2πbm

(

mτe
iπ
2

(ax+ 4by
τ

) + (aτ + 4bi)ke
−iπ

2
(ax+ 4by

τ
)
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− im+a
(

(aτ + 4bi)e
iπ
2

(ax− 4by

τ
) + mτke− iπ

2
(ax− 4by

τ
)
)

)

ejπ〈β0,z〉

=
e

iπax
2

2πbm

(

e
i2πby

τ (mτ + (aτ + 4bi)k)

− im+ae− i2πby
τ (mτ − (aτ + 4bi)k)k

)

e
jπmx

2

=
1

2πbm

(

e
i2πby

τ Y ′(x) + e− i2πby

τ Y ′′(x)

)

with

Y ′(x) = e
iπax

2 (mτ + (aτ + 4bi)k)e
jπmx

2

= e
iπax

2 (mτ + (aτ + 4bi)k)
e

iπmx
2 (1 − k) + e− iπmx

2 (1 + k)

2

=
e

iπ
2

(a+m)x

2
((m − a)τ − 4bi) (1 − k)

+
e

iπ
2

(a−m)x

2
((m + a)τ + 4bi) (1 + k).

Similarly

Y ′′(x) = im+a

(

e
iπ
2

(a+m)x

2
((m − a)τ − 4bi) (1 − k)

−
e

iπ
2

(a−m)x

2
((m + a)τ + 4bi) (1 + k)

)

.

Finally

Yγ(z) =
1

4πbm

(

(

e
i2πby

τ + im+ae− i2πby

τ

)

e
iπ
2

(a+m)x ((m − a)τ − 4bi) (1 − k)

+
(

e
i2πby

τ − im+ae− i2πby
τ

)

e
iπ
2

(a+m)x ((m + a)τ + 4bi) (1 + k)

)

.

If m + a ≡ 0 mod 4,

Yγ =
1

2πbm

(

cos
2πby

τ
e

iπ
2

(a+m)x ((m − a)τ − 4bi) (1 − k)

+i sin
2πby

τ
e

iπ
2

(a−m)x ((m + a)τ + 4bi) (1 + k)

)

,
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while m + a ≡ 2 mod 4 gives a similar expression for Yγ where only cos and i sin
are exchanged. We may sum up saying that Yγ has the form

Zp,q,b(x, y) = cos
2πby

τ
e2ipπxC1 + i sin

2πby

τ
eiqπxC2,

where
• if m + a ≡ 0 mod 4, (p, q) =

(

a+m
2 , a−m

2

)

and











C1 = −
qτ + i2b

πbm
(1 − k)

C2 =
pτ + i2b

πbm
(1 + k)

• if m + a ≡ 2 mod 4, (p, q) =
(

a−m
2 , a+m

2

)

and











C1 =
qτ + i2b

πbm
(1 + k)

C2 = −
pτ + i2b

πbm
(1 − k)

.

Notice that in both cases p ≡ 0 mod 2 and q ≡ 1 mod 2. We conclude with the
following property, obvious on the form above

Zp,q,b(x +
k

2p
, ℓτ/2) = (−1)k+ℓbZp,q,b(x, 0).

Step 3: Self-intersections.
Consider a Klein bottle, hence a H-linear combination of terms Zpi,qi,bi

. The
condition (16) implies

b2i pjqj = b2jpiqi . (17)

Assume some optimal vertical periodicity; in particular the bi’s are not all even
(otherwise we change the lattice Γ). Now

Zpi,qi,bi
(x +

1

2
, ℓiτ/2) = (−1)pi+ℓibiZpi,qi,bi

(x, 0) .

We claim that there exist an integer ℓ such that

pi + ℓbi ≡ 0 mod 2. (18)

Assume – up to reindexing – that b1 ≡ 1 (all equivalences are taken mod 2) then
ℓ ≡ p1 works. If for some i, bi ≡ 1 then (17) implies pi ≡ p1 and equation (18)
holds. If on the contrary bi ≡ 0, then pi ≡ 0 necessarily, and (18) holds again.

We conclude that Zpi,qi,bi
(x+ 1

2 , ℓτ/2) = Zpi,qi,bi
(x, 0) for any i; the same holds

for any linear combination. So the Klein bottle is not embedded. Notice that one
may construct Klein bottles having only that self-intersection, and no other, but
not on a square lattice.

An example. Taking τ = 1 and a = 3, b = 1, m = 5, we obtain:

Yγ =
1 − i2

5π

(

cos 2πyei4πx(1 − k) − sin 2πye−iπx(1 + k)
)

.
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