
HAL Id: hal-00858394
https://hal.science/hal-00858394

Submitted on 5 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient parallel message computation for MAP
inference

Stavros Alchatzidis, Aristeidis Sotiras, Nikos Paragios

To cite this version:
Stavros Alchatzidis, Aristeidis Sotiras, Nikos Paragios. Efficient parallel message computation for
MAP inference. International Conference on Computer Vision, Nov 2011, Barcelone, Spain. pp.1379
- 1386. �hal-00858394�

https://hal.science/hal-00858394
https://hal.archives-ouvertes.fr

Efficient Parallel Message Computation for MAP Inference

Stavros Alchatzidis Aristeidis Sotiras Nikos Paragios ∗

Center for Visual Computing, Ecole Centrale de Paris, Châtenay-Malabry, France

Equipe GALEN, INRIA Saclay, Île-de-France, Orsay, France

Abstract

First order Markov Random Fields (MRFs) have be-
come a predominant tool in Computer Vision over the past
decade. Such a success was mostly due to the develop-
ment of efficient optimization algorithms both in terms of
speed as well as in terms of optimality properties. Message
passing algorithms are among the most popular methods
due to their good performance for a wide range of pair-
wise potential functions (PPFs) . Their main bottleneck is
computational complexity. In this paper, we revisit message
computation as a distance transformation using a more for-
mal setting than [8] to generalize it to arbitrary PPFs. The
method is based on [20] yielding accurate results for a spe-
cific class of PPFs and in most other cases a close approx-
imation. The proposed algorithm is parallel and thus en-
ables us to fully take advantage of the computational power
of parallel processing architectures. The proposed scheme
coupled with an efficient belief propagation algorithm [8]
and implemented on a massively parallel coprocessor pro-
vides results as accurate as state of the art inference meth-
ods, though is in general one order of magnitude faster in
terms of speed.

1. Introduction

Markov Random Fields were initially introduced in com-
puter vision to address image restoration [9] and have been
considered to address more complex problems like segmen-
tation [22], stereo-reconstruction [23], image registration
[10] etc. Key part for the success of such models has played
the advance made on the conception of efficient optimiza-
tion algorithms. Initially, the main shortcoming of the infer-
ence algorithms [3, 6] was either their slow convergence or
the lack of optimality guarantees on the obtained solutions.
These shortcomings were alleviated by the introduction of

∗The work was partially supported by the European Community’s Sev-
enth Framework Programme, ERC grant 259112 (DIOCLES) and the
sterEOS+ grant of the Medicen Ile-de-France Competitive Cluster. S.
Alchatzidis was partially supported by the Greek State Scholarships Foun-
dation. Contact author: stavros.alchatzidis@ecp.fr

techniques like graph-cuts [11], belief propagation [19] and
more recently linear programing methods [15] that boosted
the interest towards MRF models.

Efficient inference on such models can be performed ei-
ther by graph-based methods or message passing ones. The
first ones are based on the max-flow min-cut principle and
exhibit high computational efficiency, especially when ap-
plied to regular graphs. Graph-cut methods [11] belong to
this class as well as their multi-label [4, 5] and dynamic
graph-cut extensions. Their main drawback is that they are
limited by the type of energy to be minimized [13]. The
second class of methods is based on propagation of beliefs
in the graph by local exchange of messages. Max-Product
Loopy Belief Propagation [17], its efficient variants [8, 23],
tree-reweighted message passing [12] and more recently
dual decomposition [14] are representative methods in this
direction. These methods are able to cope with arbitrary
energies. Moreover, they tend to provide higher quality so-
lutions and better optimality bounds [12, 14] while at the
same time being able to handle high-order interactions [16].

Despite the success of message passing algorithms, they
rest computationally demanding, a fact that compromises
their use in large graphs with large label-sets. To counter
this, an efficient message-passing computation as a distance
transformation was proposed in [8]. The distance transform
is performed in a sequential way. Belief propagation has
also been investigated in Graphical Processing Units (GPU)
[26] in an effort to accelerate the inference throught the
computational power of the parallel architecture.

In this paper, we introduce a novel method to estimate
the message costs based on the Jump Flooding concept [20].
The main strengths of this method are: i) its capacity for
parallel implementation, ii) its generality w.r.t. pairwise en-
ergy types, iii) its feasible scaling O(nlogn) with the num-
ber of candidate labels for a node. This method has been in-
corporated to a state-of-the-art optimization algorithm and
has been implemented in GPU leading to decreased running
times while being able to capture good minima.

The remainder of this paper is organized as follows: in
section 2, we briefly review the state-of-the-art on belief
propagation methods and in particular the one introduced

in [8]. In section 3, we formulate message computation as a
distance transformation. Following, in section 4, the novel
parallel message computation scheme is presented. Exper-
imental results on the Middlebury MRF benchmark [1] are
presented in section 5, while section 6 concludes the paper.

2. Belief propagation methods
The discrete MRF problem is an attempt to assign to each

node p of a graph G = (V, E) a label lp coming from a label-
setL. V and E denote the set of the vertices and the edges of
the graph respectively. The set of vertices models the vari-
ables to be estimated, while the one of edges the interactions
between them. The labels correspond to the possible values
that the latent variables can take. The labeling problem can
be cast as the following minimization one:

min
∑
p∈V

dp(lp) +
∑
p,q∈E

dpq(lp, lq), (1)

where dp represents the unary potentials and dpq the pair-
wise ones.

Belief propagation methods attempt to optimize this
problem by exchanging messages between nodes. Each
message is a vector with size equal to K = |L| (by | · |,
the cardinality of the set is denoted). We define as mt

p→q

the message that is transmitted from node p to node q at
iteration t. At each iteration messages are computed as fol-
lows:

mt
p→q(lq) = min

lp
(dpq(lp, lq)+dp(lq) +

∑
n∈N (p)\q

mt−1
n→p(lp)

︸ ︷︷ ︸
I

),

(2)
where N (p) is the set of nodes with which node q is
connected with an edge (also called neighborhood nodes).
Hereafter, the message that results from the previous opera-
tion will be also denoted as mres. Note that in the previous
equation as well as in the rest of our analysis and imple-
mentation, negative log probabilities are considered turning
the initial max-product problem into its equivalent min-sum
one. A normalization step is usually applied afterwards con-
tributing to the robustness of the algorithm:

mres(lp) = mres(lp)−min
lq

mres(lq) (3)

At each iteration, a belief vector b can be computed for ev-
ery node,

bq(lq) = dq(lq) +
∑

n∈N (p)

mt
n→q(lq) (4)

The labeling that corresponds to Maximum A-Posteriori
Probability estimation for a node p is thus given by the la-
bels that minimize the belief, or:

min
lp

bp(lp) (5)

2.1. Belief propagation networks and prior art

Pearl in [19] introduced the method for inference on
Bayesian Networks. The proposed sum-product algo-
rithm provided exact marginal probabilities when applied
to acyclic graphs by exchanging two messages per edge.
Murphy et al. [17] proposed the use of the BP algorithm
even in graphs containing cycles. They showed that al-
though it did not converge to the global MAP solution, it
produced unexpectedly good results for different kinds of
problems. Tappen et al. [23] having noticed the inefficiency
in the propagation of information proposed accelerating it
by propagating first over rows and then over columns. Kol-
mogorov [12] introduced the TRW-S algorithm extending
the approach taken by Wainwright et al. [25], creating a
sequential algorithm which guaranteed the convergence to-
wards a good solution.

Our implementation is based upon the variant proposed
by Felzenszwalb et al. [8] (referred hereafter as BP − P).
In their paper, three ways were proposed to speed up the
Loopy-BP algorithm:

i) a multiscale approach, combining unary costs to derive
a higher level graph and using the resulting messages
to initialize the lower level graph messages;

ii) a checkerboard message computation scheme, com-
puting in turns white and black tiles thus increasing
propagation speed and halving memory requirements.
Here, ”checkerboard” stands as a metaphor for a graph
in grid connectivity;

iii) a distance transform approach to message computa-
tion, resulting in algorithms with lower computation
complexities for special classes of pairwise potentials.

The last contribution has proven to be the most popu-
lar, being incorporated in the implementations of many al-
gorithms, allowing them to achieve great speed improve-
ments. The main shortcomings of this method are the non-
generalization to other pairwise potentials and the sequen-
tial nature of the message computation. The latter, renders
problematic the design of implementations able to take ad-
vantage of the emerging multiprocessor computer architec-
tures. By reinterpreting message computation as a distance
transformation in a more general theoretical framework, we
address them both by introducing a new parallel algorithm.
In addition, we provide a GPU implementation to exhibit its
advantages in efficiency.

3. Message computation
3.1. General message computation

The general message computation, as defined in equation
(2), can be computed in 3 steps:

• addition of the message vectors and the unary potential
vector of the node. The result is an intermediate vector
I

• a double loop, calculating for each of the positions
(labels) of the resulting message mres the minimum
value of the intermediate vector when added to the
pairwise potential

• normalization, as defined in equation (3).

The second step consumes most of the execution time and
its complexityO(n2) forbids the application of Belief Prop-
agation methods to large label-sets. We will refer from now
on to step 2 as message computation (MC) as it constitutes
the most essential part of it.

Felzenszwalb et al. in [8] introduced message computa-
tion as a distance transformation. For completeness reasons,
their work is going to be presented briefly while more em-
phasis will be put on the connection between message com-
putation and distance transforms. A connection that will en-
able us to discuss the properties of the proposed algorithm.

3.2. Efficient message computation in BP-P

In BP-P two algorithms are proposed to compute mes-
sages efficiently for two types of pairwise potentials: the
L1 norm, dpq(lp, lq) = |lp − lq| and the quadratic distance
dpq(lp, lq) = (lp − lq)2. For linear pairwise costs, the al-

Figure 1. The algorithm utilized by BP-P for L1 norm pairwise
costs. Left: forward pass. Right: backward pass

gorithm scans twice I updating its values sequentially and
requires no further buffer (see Fig. 1). For the quadratic
ones, the algorithm computes the lower envelope of parabo-
las, (x − lp)2 requiring 3 extra buffers to hold information
about intersections, and positions of the parabolas partici-
pating in the lower envelope. Both algorithms exhibit an
O(n) complexity and are not susceptible to any obvious par-
allelization scheme.

3.3. Message computation as a distance tranforma-
tion

Message computation can be regarded as an additively
weighted distance transformation with an unknown number
of seeds. We will use the distance transformation terminol-
ogy to further analyze the problem at hand. In the specific
context, distance is defined by:

dAWDT (k, l) = I(k) + dpq(k, l), (6)

where again I stands for the intermediate vector and dpq for
the pairwise potential function.

An area of influence (AOI) of a label i is a set that con-
sists of all the labels that are closer (in terms of the previous
distance) to label i than any other label. Label i is called
seed.

AOIi = {l : arg min
k
dAWDT (k, l) = i}. (7)

The value of the message mres for a label l depends on the
seed to whose AOI the label belongs, or:

mres(l) = I(i) + dpq(i, l), l ∈ AOIi. (8)

Let L = (1, . . . , n) be the set of all labels. For the set of all
the AOIs the following should stand:

∪AOIi = L and AOIi ∩AOIj = ∅, (9)

or a label can belong to only one AOI.
Thus, MC can be seen as the process which, given an

intermediate vector I and a label-set L, results in a set of
seeds Σ (because initially any label can be a seed) and their
respective AOIs:

I
MC−−→ {AOIi, i}, i ∈ Σ (10)

Lemma 1: If d is a metric than i ∈ AOIi.
Proof: If i does not belong to its own AOI it will belong

to another one’s. Let this label be l, then

I(l) + d(i, l) < I(i), (11)

as d(i, i) = 0, given d is a metric. If i is a seed then there
exists some label k that belongs to its AOI. So it should
stand that:

I(i) + d(i, k) < I(l) + d(l, k). (12)

By replacing the former equation to the latter, we get:

d(i, l) + d(i, k) < d(l, k), (13)

which contradicts with the definition of a metric. Thus, we
can deduce that i ∈ AOIi since no such label l can exist.

4. Message computation using the Jump Flood-
ing algorithm

The main idea proposed in this paper is to use the Jump
Flooding algorithm to perform MC in parallel. The Jump
Flooding algorithm was introduced by Danielsson in [7] and
after many years reintroduced by Rong et al. [20] as a par-
allel framework for use on GPUs and especially to calculate
Euclidean distance transforms. It is parallel and completely
symmetrical. In our case, symmetry solves the difficult is-
sue of the unknown number of seeds as the algorithm treats
by design every label as a possible seed.

4.1. The JF algorithm

To ease the presentation, the problem is going to be for-
mulated for the 1D case, for which our experiments have
been held. The algorithm operates on the intermediate vec-
tor I (we suppose K a power of 2 without loss of gener-
ality) in an iterative manner and terminates after log2(K)
iterations. The algorithm propagates information stored in
an auxiliary vector S which holds closest seed correspon-
dences for every label. The vector is initialized at S0[k] = k
(subscript stands for iteration) or initially each label belongs
to its own seed. At each iteration S is updated as:

Si+1[k] = arg min
n=Si[k+d],Si[k−d],Si[k]

I(k) + dpq(k, n), (14)

where
d = 2log2(K)−i, (15)

Figure 2. Information propagation in the JF algorithm. Label 0
propagates its information to every other label in 4 steps.

Elaborating, node k propagates Si[k] to nodes that are
situated at d positions away in each direction (e.g at nodes
situated at k + d , k − d if such exist). In a symmetrical
view of the algorithm, every node k receives information
from nodes at distances d, compares the information with
its own and deduces the Si+1(k).

4.2. Errors in the JF algorithm

The JF algorithm is known to be approximate. Inac-
curacy is produced by the non-propagation of seed infor-

Figure 3. Visualization of seed information propagation in a con-
nected AOI containing its seed. The dotted label will get the seed’s
information from a propagation path within the AOI.

mation to all labels that should belong to its AOI. This is
mainly related to the geometry of the AOIs of the exact so-
lution. Thus, two questions arise at this point: (1) for which
geometries of AOIs can we find accurate (or closely approx-
imate) solutions using our algorithm, and (2) to which ge-
ometries a potential pairwise function corresponds.

We claim that our algorithm can find the right solution
for a pairwise distance that produces connected AOIs
which contain the seed label (as we have already seen in
Lemma 1, s ∈ AOIs for metric pairwise distances). We
will prove that every label belonging to such an AOI will be
labeled correctly. Let s be the corresponding seed for such
an AOI. In general, the following stands:

∀l ∈ AOIs : [s, l] j AOIs. (16)

[·, ·] denotes a closed set. As proven in [20], any label l
within the AOI can receive s’s information at a certain iter-
ation i = log2(K)− position of the leftmost 1 of |s − l|2,
from both of its d-neighbours (if both of them exist). This
information has followed two separate paths. One path
passes from labels belonging strictly to [s, l] while the other
one passes by at least one label outside of [s, l]. For l not
to receive the information, both of the paths should have re-
jected s’s information. That is not possible as one of these
paths passes exclusively from labels within AOIs which
will propagate s. This means that in equation (14) Si+1[k]
will be equal to s throughout this path (see Fig. 3).

Ash and Bolker [2] give much insight on the geome-
try of AOIs, studying their relation with the correspond-
ing weighted distance function in the 2D case. They prove
that a 2D additively weighted euclidean distance function
produces AOIs separated by hyperbolas, a corresponding
quadratic produces convex polygonal AOIs while a loga-
rithmic produces circular ones. The formulation and the
intuition developed in this paper can be extended to the 3D
case or specialized to the 1D case to extract approximation
properties of our algorithm for a given pairwise function.
Pairwise function apart, we believe that the connectivity of

the AOI and the inclusion of its seed within it are neces-
sary conditions (and in the 1D case sufficient also) for the
algorithm to produce accurate results and any functions not
respecting these will produce approximate results.

4.3. Approximation effects in the context of MAP
inference

In summary, the algorithm makes a distinction between
dominated seeds, for which i /∈ AOIi, and dominating
seeds, for which i ∈ AOIi. For the AOI of the second
ones, it will find an exact solution while for the AOI of the
first ones probably not as correct seed information may not
get propagated to the labels of the AOI.

Inference-wise, the effects of this approximation in the
general case should not be of much significance. Using an
exact scheme, the labels of dominated AOIs would be heav-
ily penalized. In the approximate solution, they will be pe-
nalized even more. Thus, in both cases, their contribution
to the determination of the labeling of a smooth area is of
minimal importance. In such areas, the optimal labeling of
neighboring pixels varies little. As a result, the labels that
should be considered to refine the labeling in subsequent
BP iterations come from AOIs with exact values that over-
lap. Thus, the optimal label can be decided with precision.

Approximation errors occur at the meeting lines of
smooth areas (also called edges) where the use of a trun-
cated distance or one that reaches fairly quickly a plateau
(like the log function), results in an abrupt change in the
labeling of neighboring nodes. In such areas, the optimal
labeling of neighboring nodes comes from non-overlapping
AOIs. As a result, the computation of the intermediate vec-
tor is based on the combination of both exact and over-
penalized information. This may alter the order of impor-
tance of the seeds and thus lead to an inexact labeling.

Extensive validation has led us to believe that this error
occurs rarely and in any case it has strictly local effects.
In the truncated quadratic case (a non-metric distance) and
using the penguin image for denoising we observe that the
approximation effects don’t influence much the quality of
the optimization as depicted in Fig. 4. There, the evolution
of the energy over time is similar for both the exact and ap-
proximate approaches. In Fig. 5, we can see the evolution
of the average absolute error per label. Given the optimiza-
tion parameters (weighting factor λ = 25 and truncation
equal to 200 resulting in a maximum label error equal to
5000) the error is minimal. The above is supported by the
fact that when the mean absolute error gets values around 1,
the corresponding energy coincides with the exact one.

5. Experimental results
The main aim of the validation is to show the merits of

the proposed implementation in two domains: speed and
optimization quality. More specifically, we compare with

Feuille2

Page 1

0 10 20 30 40 50 60 70 80 90 100
100

105

110

115

120
JF
Exact

Figure 4. Energy - Iteration comparison of the exact and approxi-
mate methods for quadratic pairwise energy optimization.Feuille2

Page 1

0 10 20 30 40 50 60 70 80 90 100
0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

Av. Per Label Error

Figure 5. Average absolute error per label - Iteration for quadratic
energy optimization. Average error per label is computed by com-
paring the corresponding messages of the two algorithms (JF and
Exact) on every iteration.

two state-of-the-art algorithms (alpha-expansion [5], TRW-
S [12]) to show that our algorithm provides a very competi-
tive solution within a very small time interval. Moreover, by
comparing to the BP-P variants running on the same hard-
ware, we demonstrate the utility of the addition of a paral-
lelization scheme for MC to an algorithm that can already
undergo parallelization in higher levels.

Our validation is based on the Middlebury MRF bench-
mark [1]. Three different test cases are used:

• Denoising on the Penguin image using a truncated
quadratic pairwise energy (λ = 25, truncation =
200, |L| = 256);

• Denoising on the Penguin image using a t-student pair-
wise energy (α = 700, σ = 7, |L| = 256);

• Stereo on the Tsukuba image pair using a truncated
linear pairwise energy (λ = 20, truncation = 2,
|L| = 256).

5.1. Comparison with state-of-the-art methods

We created a GPU implementation of our algorithm and
tested it against TRW-S (for quality reference) and alpha-
expansion (for speed reference). The lower bound of the

Algorithm Abs.Time ×Faster
Efficient 22.2s ×71.2
Naive 1582s ×1
JF 52s ×30.42

Table 1. Running times of CPU BP implementations after 100 it-
erations using a quadratic pairwise energy. See sec. 5.1 for details.

energy provided by TRW-S is used as the baseline with re-
spect to which the rest of the results are given as in [1]. The
GPU implementations run on a 256 core coprocessor with
an 89.6 GB/s device memory bandwidth and the CPU ver-
sions on a quad-core Intel Xeon W3530 working at 2.8Ghz.
The GPU has been exploited using Nvidia’s CUDA API.
Every algorithm run for 100 iterations except from TRW-S
that run for 200 in order to get an accurate approximation
of the lower bound of the energy.

In general, our implementation delivers high-quality so-
lutions in very small time intervals. As witnessed by Fig. 6
our implementation dominates alpha-expansion both qual-
itatively as well as in terms of speed while it can provide
a solution with energy around 101.5 percent of the optimal
one in the 1/15 of the time required by TRW-S to provide an
equivalent one (not shown in the diagram). In Fig. 8 we see
that although both alpha-expansion and TRW-S give better
quality solutions, our algorithm can provide its 101 percent
energy solution in about half the time.

T-student potentials. One of the main strengths of the
proposed framework is its applicability to general pairwise
functions. To demonstrate this, apart from the ’traditional’
linear and quadratic pairwise terms we included tests using
the t-student potential introduced in [24] and used in the
celebrated [21]. Indeed, as seen in Fig. 7 our algorithm
outperforms by far other algorithms while retaining great
quality properties (reaching almost the global minimum).

5.2. Comparison with BP-P variants

To further point out the interest of the proposed method,
we compare it to BP-P variants running on the same hard-
ware. First, we consider single processor architectures even
though one of the main advantages of our method is its suit-
ability for parallel implementation. All the BP-P CPU im-
plementations have been parallelized using OpenMP.

We claim that lower complexity renders it a fast alter-
native to the naive O(n2) MC algorithm. As depicted in
Table 1, our method achieves a considerable speed-up com-
paring to the naive scheme though being naturally slower
than the efficient O(n) implementation. Nonetheless, we
should point out the×30 speedup achieved for distances
that have no efficient scheme of computation as is the
t-student.

To show the utility of our parallelization scheme, we also
implemented two GPU versions of BP-P. One using effi-

Algorithm Abs.Time × Faster
Naive 1584s ×1
JF 54s ×29.33

Table 2. Running times of CPU BP implementations after 100 it-
erations using a t-student pairwise energy.

Algorithm Abs.Time ×Faster
Efficient 137s ×0.204
Naive 28s ×1
JF 5.21s ×5.3

Table 3. Running times of GPU BP implementations after 100 it-
erations using a quadratic pairwise energy. See sec. 5.1 for details.

Algorithm Abs.Time × Faster
Naive 207s ×1
JF 14s ×14.78

Table 4. Running times of GPU BP implementations after 100 it-
erations using a t-student pairwise energy.

cient MC algorithms (referred hereafter as (GPU BP −
P)), and another using the naive O(n2) algorithm
((GPU BP − naive)). In the next paragraphs, knowl-
edge of the notions of shared (on-chip) and global(off-chip)
memory are supposed as well as a level of acquaintance
with the SIMT (Single Instruction Multiple Threads) archi-
tecture. For further reading please refer to [18].

The implementation of the two efficient algorithms pro-
posed in [8] displays perfectly the fitness of our method to
an SIMD architecture. A straightforward implementation
scheme of MC using shared memory (having excluded in
advance one solely based on global-memory), would be to
assign a thread to every message and use the efficient vari-
ants where applicable. In practice this approach fails as the
message length increases.

Using sequential algorithms on a parallel machine is
principally wrong. The main bottleneck of massively par-
allel processing architectures is memory-throughput. This
can be seen as how can we keep all of our processors busy
having in mind that we have to access data from the slow,
off-chip global memory. Remember that CPUs use a large
memory hierarchy in order to hide this latency. GPUs trade
large memory hierarchies with increased core numbers. So,
if a CPU computation required x bytes of data loaded in the
cache hierarchy we can not just apply it blindly to a GPU as
it would now require N × x bytes where N the number of
cores per multiprocessor.

In the CUDA case a straightforward implementation
translates to a lack of available shared memory to each mul-
tiprosessor. This results in multiprocessors being more un-
derutilised the more lengthy messages become. This effect

Algorithm Abs.Time ×Faster
Efficient 18.94s ×7.65
Naive 145s ×1
JF 19s x7.63

Table 5. Running times of GPU BP implementations after 100 it-
erations using a linear pairwise energy. See sec. 5.1 for details.

is greater in the quadratic case where 4 buffers are required.
This makes the quadratic efficient implementation slower
even than the naive O(n2) one(see Table 3). On the other
hand, the linear case requires only one buffer and is, thus,
comparable to our implementation in terms of speed (see
Table 5). We should note that even though we kept the mes-
sage length at 256 for the sake of a clear comparison, for
high enough message lengths even the linear efficient algo-
rithm should be slower than our method.

Figure 6. Time-Energy comparison using a quadratic pairwise en-
ergy.

Figure 7. Time-Energy comparison using a t-student pairwise en-
ergy. Notice the great efficiency gap between our method and the
rest as for this distance there is no efficient computation scheme.

Sheet2

Page 1

0 2 4 6 8 10 12 14
100

101

102

103

104

105

106

107

108

109

110

GPU_JF
Expansion
TRW-S
GPU_BP-P

0 0,5 1 1,5 2 2,5 3 3,5 4
100

100,5

101

101,5

102

102,5

103

GPU_JF
Expansion
TRW-S
GPU_BP-P

Figure 8. Time-Energy comparison using a linear pairwise energy.
Notice that the efficient scheme in the GPU runs slightly faster
than our method.

6. Discussion
In this paper we have presented a generic message com-

putation scheme for MAP inference on MRFs which re-
solves two major issues of current efficient implementa-
tions: (1) the non-parallelization (2) the non-generalization
to pairwise potentials other than the L1-norm and the
quadratic. We provide a class of pairwise functions where
our results are accurate and an understanding of why results
for other classes, though approximate, should be close to the
accurate ones. We also provide a GPU implementation of
the algorithm in [8] to illustrate the potential of our method
both in terms of speed and quality of optimization.

Our work allows for many algorithms based on message
passing to take full advantage of recent advances in par-
allel architectures and corresponding hardware availability.
We consider our work valuable in the context of high-order
MRF modeling where the problem of large label-sets dom-
inates the inference complexity and the usage of potentials
for which there are no efficient calculation methods [16] has
led to approximation schemes [21].

References
[1] S. R. . al. A comparative study of energy minimization meth-

ods for markov random fields with smoothness-based priors.
IEEE T-PAMI, 30(6):1068 –1080, june 2008. 2, 5, 6

[2] P. F. Ash and E. D. Bolker. Generalized dirichlet tessella-
tions. Geometriae Dedicata, 20:209–243, 1986. 4

[3] J. Besag. On the statistical analysis of dirty pictures. JRSS,
B-48:259–302, 1986. 1

[4] Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max- flow algorithms for energy minimization in
vision. IEEE T-PAMI, 26(9):1124 –1137, sept. 2004. 1

[5] Y. Boykov, O. Veksler, and R. Zabih. Fast approxi-
mate energy minimization via graph cuts. IEEE T-PAMI,
23(11):1222 –1239, Nov 2001. 1, 5

[6] P. B. Chou and C. M. Brown. The theory and practice of
bayesian image labeling. IJCV, 4:185–210, 1990. 1

Figure 9. Comparison of t-student and quadratic potential function modeling for inpainting. First row: t-student potentials. Second row:
quadratic potentials. First column: CPU BP (top: efficient, bottom: naive). Second column: GPU BP - naive MC. Third column: GPU JF -
proposed method. Fourth column: Expansion. Fifth column: TRW-S. Sixth column: Top : Original Image. Bottom: GPU BP-P - efficient
message passing (only for the quadratic case).

[7] P.-E. Danielsson. Euclidean distance mapping. Computer
Graphics and Image Processing, 14:227–248, 1980. 4

[8] P. Felzenszwalb and D. Huttenlocher. Efficient belief propa-
gation for early vision. IJCV, 2006. 1, 2, 3, 6, 7

[9] S. Geman and D. Geman. Stochastic relaxation, gibbs dis-
tributions, and the bayesian restoration of images. IEEE T-
PAMI, 6(6):721 –741, nov. 1984. 1

[10] B. Glocker, A. Sotiras, N. Komodakis, and N. Paragios. De-
formable medical image registration: setting the state of the
art with discrete methods. Annual review of biomedical en-
gineering, 13:219–44, aug 2011. 1

[11] D. M. Greig, B. T. Porteous, and A. J. Seheult. Exact min-
imum a posteriori estimation for binary images. Journal
of the Royal Society. Series B (Methodological), 51(2):271–
279, 1989. 1

[12] V. Kolmogorov. Convergent tree-reweighted message pass-
ing for energy minimization. IEEE T-PAMI, 28(10):1568–
1583, 2006. 1, 2, 5

[13] V. Kolmogorov and R. Zabih. What energy functions can be
minimized via graph cuts. IEEE T-PAMI, 26:65–81, 2004. 1

[14] N. Komodakis, N. Paragios, and G. Tziritas. Mrf optimiza-
tion via dual decomposition: Message-passing revisited. In
In ICCV, 2007. 1

[15] N. Komodakis, G. Tziritas, and N. Paragios. Fast, Approx-
imately Optimal Solutions for Single and Dynamic MRFs.
Computer Vision and Pattern Recognition, IEEE Computer
Society Conference on, 2007. 1

[16] X. Lan, S. Roth, D. Huttenlocher, and M. J. Black. Efficient
belief propagation with learned higher-order markov random
fields. In ECCV, 2006. 1, 7

[17] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief prop-
agation for approximate inference: An empirical study. In In
Proceedings of Uncertainty in AI, 1999. 1, 2

[18] Nvidia. Nvidia cuda programming guide (v 4.0), 2011. 6
[19] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-

works of Plausible Inference. Morgan Kaufmann, 1988. 1,
2

[20] G. Rong and T.-S. Tan. Jump flooding in gpu with applica-
tions to voronoi diagram and distance transform. In Sympo-
sium on Interactive 3D graphics and Games, pages 109–116,
2006. 1, 4

[21] S. Roth and M. Black. Fields of experts: a framework for
learning image priors. In CVPR, june 2005. 6, 7

[22] C. Rother, V. Kolmogorov, and A. Blake. ”grabcut”: inter-
active foreground extraction using iterated graph cuts. ACM
Trans. Graph., 23:309–314, August 2004. 1

[23] M. F. Tappen and W. T. Freeman. Comparison of graph cuts
with belief propagation for stereo, using identical mrf param-
eters. ICCV, 2:900, 2003. 1, 2

[24] Y. W. Teh, S. Osindero, and G. E. Hinton. Energy-based
models for sparse overcomplete representations. JMLR,
4:1235–1260, October 2004. 6

[25] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Tree-
based reparameterization framework for analysis of sum-
product and related algorithms. Information Theory, IEEE
Transactions on, 49(5):1120–1146, May 2003. 2

[26] Y. Xu, H. Chen, R. Klette, J. Liu, and T. Vaudrey. Belief
propagation implementation using cuda on an nvidia gtx 280.
In Advances in Artificial Intelligence, 2009. 1

