
HAL Id: hal-00858391
https://hal.science/hal-00858391

Submitted on 5 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an unified definition of Minimal Cut Sequences
Pierre-Yves Chaux, Jean-Marc Roussel, Jean-Jacques Lesage, Gilles Deleuze,

Marc Bouissou

To cite this version:
Pierre-Yves Chaux, Jean-Marc Roussel, Jean-Jacques Lesage, Gilles Deleuze, Marc Bouissou. Towards
an unified definition of Minimal Cut Sequences. 4th IFAC Workshop on Dependable Control of
Discrete Systems (DCDS 2013), Sep 2013, York, United Kingdom. Paper n°1. �hal-00858391�

https://hal.science/hal-00858391
https://hal.archives-ouvertes.fr

Towards a unified definition of Minimal

Cut Sequences

Pierre-Yves Chaux ∗ Jean-Marc Roussel ∗

Jean-Jacques Lesage ∗ Gilles Deleuze ∗∗ Marc Bouissou ∗∗

∗ Automated Production Research Laboratory (LURPA), ENS Cachan,
Cachan, FRANCE (e-mail: {FirstName.LastName}@

lurpa.ens-cachan.fr).
∗∗ Électricité De France, Recherche et Dévelopement (EDF R&D),
Clamart, FRANCE (e-mail: {FirstName.LastName}@ edf.fr).

Abstract: The growing complexity of systems increases the complexity of reliability modelling
and implies the need to model both the dynamics of systems and the reparability of components.
The qualitative reliability analyses aim at finding the minimal representation of all the
scenarios of failures and repairs of the components, leading to the system failure. This minimal
representation is the set of Minimal Cut Sequences. In order to provide a formal definition of
these specific scenarios, whatever the risk analysis model used, this paper proposes coherence
rules for dynamic and repairable systems whose dysfunctional scenarios are modelled by a finite
automaton.

Keywords: Minimal Cut Sequences, Dynamic Systems, Repairable Components, Qualitative
studies, Coherence Rules, Finite Automaton.

1. INTRODUCTION

Qualitative reliability analyses of dynamic systems have
been a challenge for many years, even if efficient models
allowing representing systems where the order of compo-
nent failure occurrences have an effect on the system fail-
ure were proposed. Especially the size of studied systems
have made necessary to define a minimal representation
of all scenarios that lead to the system failure rather than
expressing all of them. This minimal representation is done
through what have been called Minimal Cut Sequences
(MCS), translating the minimal cuts from static systems
to dynamic ones. Obtaining MCS for dynamic systems
composed of repairable components is a major challenge
because of mainly two difficulties. The first one is that reli-
ability models give an implicit description of the sequences
of fault and repair events that are possible, rather than
expressing them explicitly. The second one is that these
models describe an infinity of sequences, since modeled
systems have repairable components.

In order to perform qualitative reliability analyses of
binary dynamic and repairable systems, whatever the
initial reliability model used, a unified formal definition of
Minimal Cut sequences is proposed in this paper, as well
as a way to compute them. Since this definition needs to be
independent of the model, we have choosen to use Finite
Automata (FA) to represent all scenarios that may lead to
system failure. In order to limit the qualitative analysis to
the Minimal Cut Sequences whithout loss of exhaustivity,
it must be proven that they are necessary and sufficient to
represent the whole set of scenarios that lead to the system
failure. To do that, this paper proposes a transposition of
the coherence rules, initially defined for static systems, for
dynamic and repairable systems. Afterward, these rules

are used as a way to generate larger sets of dysfunctionnal
sequences from a shorter one leading to a formal definition
of the Minimal Cut Sequences set.

2. PROBLEM STATEMENT

2.1 Binary, dynamic and repairable systems

The following study focuses on binary dynamic and re-
pairable systems. A system is considered as binary if its
failure can be modeled by a Boolean variable. A dynamic
system is a system where the order of the component
failures has an impact on the system failure (by opposition
to static systems); a repairable system is composed of at
least one repairable component.

2.2 Necessity of a formal definition for Minimal Cut
sequences

A Cut was initially defined for binary coherent static
systems in Birnbaum et al. (1961) as a set of failed compo-
nents that leads to the system failure. The structure func-
tion of such systems has been represented by a Boolean
function which can be modeled using fault trees (Fussell
(1976)). A minimal cut has then been defined as a prime
implicant (McCluskey Jr (1956)) of this structure function
(Rauzy (2001)) on coherent systems.

Dynamic Fault Trees (DFT) (Dugan et al. (1992)) is
one of the models which extend fault trees to perform
the modeling and analysis of the reliability of dynamic
systems. As the coherence rules were not defined for
dynamic systems, several semi-formal definitions, mostly
adapted from the minimal cuts definition, were given

for Minimal Cut Sequences. (Tang and Dugan (2004))
defined MCS as minimal cuts whose component failures
have been ordered. In (Merle et al. (2011)) an algebraic
framework based on the Boolean algebra associated with
temporal operators is proposed to express a dynamic
structure function which can be simplified using associated
theorems. Some differences can be observed on results
when both definitions are applied on the same system such
as the one presented in (Boudali and Dugan (2005)). While
the first one allows the computation of a super-set of the
MCS set, some of which being not possible in the model,
the second one only gives an algebraic representation of
MCS without enumerating them. Since both definitions
are based on the non-repairable component hypothesis,
they cannot be applied for dynamic repairable systems.
Another definition have been given in (Walker et al.
(2007)), where a MCS is a reduced element from the Base
Temporal Form, computed from a Qualitative Fault Tree.

The Boolean logic Driven Markov Processes (BDMP) for-
malism (Bouissou and Bon (2003)) is a fault tree based
model which allows the representation of the reliability
of dynamic repairable systems while modelling reconfig-
urations at the level of components and/or sub-systems.
(Bouissou (2006)) proposed a first definition using FA of
minimal cut sequences where a MCS is considered as a se-
quence leading to the system failure where no sub-sequence
leading to the system failure can be found. Since we have
shown in (Chaux et al. (2012)) that some of the MCS
cannot be found by the previous algorithms, this paper
proposes a new MCS definition and a way to compute
them exhaustively.

In an informal way, the Minimal Cut Sequences can be
defined as the minimal set of sequences of minimal length
that are necessary and sufficient to describe the whole set
of cut sequences.

2.3 Formal Framework

q0

q2q1 q3

q5 q6q4 q7

q8 q9

f3f1
f2

f1 f2

r3

f3f2

r1

f3 f1

r2

f3

r1

r2

f2

r1r3

f1

r2 r3

f3

r1

r2

r3
r1r2 r3r1
r2

Fig. 1. Example of a FA model of a system

The structure function of a reliability model can be de-
scribed as the relation between the scenarios of failure and

repair events described by the model and the resulting
state of the system (faulty/working). In this study, we
assume that a structure function of a dynamic repairable
system can always be represented by a finite automaton
such as the one presented in fig.1. This hypothesis is
for example validated for the DFT model using a failure
automaton (Coppit et al. (2000)), for the BDMP model
(Chaux et al. (2011)) or for Altarica models using the
accessibility graph (Rauzy (2002)).

This system is composed of 3 components {1, 2, 3}, the
system is faulty if 3 is faulty or if the last fault of 1 has
occurred before the last fault of 2 and if both components
are faulty. Each component of the system can only be
faulty or operational and is associated to only one repair
and one fault event. In the initial state of the system, all
components are operational.

This work focusses on the minimal deterministic automa-
ton (as defined in Hopcroft (2008)) representing the
structure function of a dynamic repairable system (Chaux
et al. (2012)). This automaton can be defined by the 5-
tuple < Σ, Q, q0, QM , δ >, where :

• Σ is the finite alphabet of repair and failure events,
• Q is the finite set of states of the automaton,
• q0 is the single initial state,
• QM is the set of marked states,
• δ is the structure function.

The marked states represents the states where the system
is faulty. As this automaton is minimal, there is only one
initial state, and no equivalent states (Hopcroft (2008)).
Furthermore, each transition of the transition function δ
between two distinct states is labelled with only one event
of failure or repair. δ(qi, u) = qj represents that the qj
state is reached from the qi state when the event u occurs;
δ(qi, σ) = qk represents that qk is the state reached from
qi at the end of the sequence σ.

The automaton of fig.1 describes two languages. The
dysfunctional language (LD) that is generated by the
automaton, is the language composed of all dysfunctional
sequences. LD contains all possible scenarios in the system,
that might, or not, lead to the system failure. The failure
language (LF) is the language marked by the automaton,
composed of all failure sequences, containing all scenarios
leading to the system failure. An additional language
can be defined as the set of cut sequences (LCS). A cut
sequence is defined in this work as a failure sequence that
leads to a marked state of the FA while going through
only non-marked states. LCS is composed of all sequences
leading to the first system failure. The relation between
those languages is:

LCS ⊂ LF ⊂ LD (1)

In order to identify which components are faulty at the end
of a sequence σ, a FC(σ) (Failed Components) function is
also defined.

FC : LD → C
FC(σ) =

{

ci ∈ C|Proj(σ/Σci)|Proj(σ/Σci
)| ∈ Σci,F

}

(2)
The equation looks at the projections of the sequence σ
onto each of the component alphabets (Σci = {fi, ri}). If
the last event of the projection (Proj(σ/Σci)|Proj(σ/Σci

)|)

is a failure event then the component is faulty at the end
of the sequence σ. If there is no event from the component
or if the last event is a repair event then the component
is operational in the last state reached by σ. For example
if we consider the sequence f1f2r1, the projected sequence
on the component 1 alphabet is f1r1, since the last event is
a repair, component 1 is operational. Since the last event
that occurs on component 2 is a failure, 2 is the only failed
component in the last state reached by σ, what is denoted
as FC(f1f2r1) = {2}.

3. COHERENCE OF DYNAMIC REPAIRABLE
SYSTEMS

Our strategy for determining the minimal description of
the failure language, i.e. the set of minimal cut sequences,
is the same as the one that has been used for static systems
by using the concept of coherence. A transposition of
the coherence rules for dynamic and repairable systems
is given in the following.

The coherence of a system has initially been defined for
static systems (Birnbaum et al. (1961)) as a relation be-
tween sets of faulty components and the resulting system
fault. This relation is composed of two concepts. First the
semi-coherence of a system is intuitively describing that,
if a system is working (failed) with a given set of faulty
components, it has to remain operational (failed) with one
less (more) faulty component. Furthermore the coherence
of a semi-coherent system expresses that a system must be
faulty (working) if all (none) components are faulty.

In the field of qualitative analysis of static systems, the
coherence of a system is used for the computation of a min-
imal representation of the system failure, i.e. the cut sets
(Rauzy (2001)). In the following, we define the paradigm
of coherence for dynamic and repairable systems whose
structure function is represented by a finite automaton as
stated in section 2.3.

3.1 Semi-coherence and coherence of a dynamic system

The failure of a dynamic system depends on both the set
of faulty components at the end of a given sequence of
the dysfunctional language and the order in which these
components have failed. Therefore semi-coherence needs to
be defined as a relation between the growth of a sequence
length, the set of faulty components at the end of the
considered sequence and the preservation of the system
state (faulty or working).

The main goal of this study being qualitative reliability
analysis, we will only consider how a failure sequence can
be modified to make its length larger while allowing the
preservation of the system failure.

3.2 System failure preservation by adding a single event

Let us consider a failure sequence σ ∈ LF .The first
way to increase the length of σ is to add an event into
this sequence. The obtained sequence is denoted σ′. This
sequence is described in the model (and thus possible) if it
belongs to the dysfunctional language LD. The resulting
set of faulty components FC(σ′) at the end of σ′ may be
larger or smaller than the original set of faulty components

FC(σ) (but it cannot be equal since the added event
is either a repair or a failure event from one of the
components). Under the hypothesis that a failure event
of a component cannot prevent the system failure, only
the case where the new set FC(σ′) has one more faulty
component than FC(σ) (FC(σ′) ⊃ FC(σ)) preserves the
system failure.This property that must be verified for all
failure sequences in order for the system to be considered
as semi-coherent is formalized by proposition 3.

∀σ ∈ LF , ∀(σ1, σ2) ∈ (Σ∗)2|σ = σ1σ2, ∀u ∈ ΣF :
σ′ = σ1uσ2

σ′ ∈ LD

FC(σ′) ⊃ FC(σ)

⇒ σ′ ∈ LF
(3)

This property can be illustrated by considering the failure
sequence f1f2 from the fig.1 and by adding the f3 event
into this sequence. Since the system is considered as being
coherent, all obtained sequences must be failure sequences;
this is verified and illustrated by fig.2.

q0 q1 q4 q8

q5 q8q2

f1 f2 f3

f3
f2

f3
f1

Fig. 2. Adding f3 into the failure sequence f1f2

In the same way it is possible to envisage the addition of
an event inside a non-failure dysfunctional sequence. If the
added event reduces the set of faulty components at the
end of the sequence (repair event), the resulting sequences
are also non-failure dysfunctional sequences.

3.3 System failure preservation by an ordered distribution
of events

A second way to increase the length of a given faulty
sequence σ while keeping an identical set of failed com-
ponents is to ”shuffle” it with another sequence δ. Only
the possible resulting dysfunctional sequences σ′ are con-
sidered. Such a shuffle can be expressed by proposition 4,
where σ′ ⊇ σ expresses that σ is a sub-sequence of σ′.

σ ∈ LD, δ ∈ Σ∗,

σ′ ∈ LD

|σ′| = |σ|+ |δ|
σ′ ⊇ σ
σ′ ⊇ δ

(4)

Since both sequences σ and σ′ have the same set of failed
components (FC(σ′) = FC(σ)) the objective is to define
how a sequence δ can be shuffled with σ in order to still
have a faulty (or working) system at the end of the newly
built sequences σ′. This conservation of the system state
(faulty or working) between two sequences σ and σ′ is
expressed by proposition 5.

(σ, σ′) ∈ (LD)2,

FC(σ′) = FC(σ)
σ ∈ LD \ LF ⇒ σ′ ∈ LD \ LF

σ ∈ LF ⇒ σ′ ∈ LF

(5)

The first step, for shuffling a given sequence δ with the
considered σ sequence, is to identify where the events from
δ can be inserted inside σ without effect on the state of the

system at the end of the sequence or on the set of failed
components. This case can be expressed by proposition 6.

∀σ ∈ LD, (σ1, σ2, σ3) ∈ (Σ∗)3|σ = σ1σ2σ3

∀(σ21, σ22) ∈ (Σ∗)2|σ2 = σ21σ22,
∀δ ∈ Σ∗∀σ′ ∈ {σ1σ21δ

∗σ22σ3},

σ′ ∈ LD ⇒

FC(σ′) = FC(σ)
σ ∈ LD \ LF ⇒ σ′ ∈ LD \ LF

σ ∈ LF ⇒ σ′ ∈ LF

(6)

The subword σ2 of the σ sequence, where the inclusions
of events from δ will not have any effect, is then formally
expressed as the subword of σ where δ can be inserted
any number of times without having any effect on any of
the obtained sequences σ′. This can be illustrated on the
automaton from fig.1 considering σ = f1f2 and δ = f3r3.

q0 q1 q4

q2 q5 q8

f1 f2

f3 r3 f3 r3 f3 r3

Fig. 3. Adding the f3r3 sequence into the f1f2 sequence .

As shown on fig.3, f3r3 can be inserted any number
of times anywhere inside the sequence σ. Therefore the
subword σ2 where the shuffle with δ will not have any
effect is: σ2 = σ, σ1 = ǫ, σ3 = ǫ.

After a subword σ2 has been identified for a given couple
(σ, δ), the semi-coherence condition is that any dysfunc-
tional sequence σ′ obtained by shuffling δ inside σ2 must
allow to conserve the state of failure of the system at
the end of the σ′ sequence. If σ leads to a system failure
(respectively a working system state), then all σ′ must lead
to a system failure (respectively an working system state).
The relation between the couple (σ, δ) and the shuffled
sequences σ′ is expressed by the proposition 7.

σ = σ1σ2σ3 ∈ LD, δ ∈ Σ∗,

∀σ′ ∈ LD,

σ′ = σ1σ
′
2σ3

|σ′
2| = |σ2|+ |δ|

σ′
2 ⊇ σ2

σ′
2 ⊇ δ

⇒

FC(σ′) = FC(σ)
σ ∈ LD \ LF ⇒ σ′ ∈ LD \ LF

σ ∈ LF ⇒ σ′ ∈ LF

(7)

On the example from fig.3 where f3r3 is to be shuffled
with f1f2, all possible resulting sequences are shown on
fig.4. Since the system from fig.1 is considered as being
coherent, all the last states reached by the σ′ sequences
must be marked, what is verified in this case.

Using the two previously described methods to increase the
length of a failure sequence, it is possible to consider the
shuffle with a sequence δ that increases the set of faulty
components if it is decomposed into several additions of
event or shuffling of sequences.

3.4 Functional modelling of semi-coherence

In the previous sections we described how the coherence
for dynamic repairable systems can be used as a way

q4

q4

q4

q4

q8

q1

q8

q1

q4

q5

q5

q0

q1

q2

q0

f1

f3

f2

f3

f1

r3

f3

f2

r3

f2

r3

f1

r3

f2

r3

f2

Fig. 4. Generated sequences by ordered distribution of the
f3r3 sequence into the f1f2 sequence.

to generate a new set of failure sequences from a given
failure sequence, by adding failure events or by shuffling
the considered sequence with another one.

In order to express this generation, the coherence rule is
seen as a function. This function, denoted CR(S) allows
from a set a failure sequences to generate a larger set
of failure sequences by any number of event additions or
sequences shuffling. The function can be expressed by the
proposition 8.

CR : LF
3,6,7
−−−→ LF

: S
3,6,7
−−−→ S′, (S, S′) ∈ (LF)

2, S′ ⊇ S
(8)

Since any sequence σ from the initial set S can be shuffled
with δ = ǫ, then all sequences from S are also in the S′

set. The larger set which can be used as an initial set of
sequences is the whole LF language, which is also its own
image by the CR function.

4. KERNEL OF THE FAILURE LANGUAGE,
MINIMAL CUT SEQUENCES SET

In this section, the concepts of Kernel of the failure
language and of Language of Minimal cut sequences are
defined. They are finite and minimal representations of re-
spectively the failure language LF and of the cut sequences
LCS , which are both of infinite size for repairable systems.

4.1 Kernel of the failure language: definition and properties

We define the Kernel of the failure language (Kern(LF))
as the minimal set of failure sequences that are necessary
and sufficient to generate the whole failure language using
the coherence property defined in proposition 8. A formal
definition of Kern(LF) can therefore be given as:

{

Kern(LF)
CR
−−→ LF , with Kern(LF) ⊆ LF

∄S ⊂ Kern(LF), S
CR
−−→ LF

(9)

This definition is composed of two parts. The first one
expresses that the kernel is a subset of the failure language
from which the whole failure language can be generated
using the coherence property. The second one expresses
that the kernel is the minimal set that allows such a
generation.

Several theorems, that will be useful for the computation
of the Kernel, can now be given.

Theorem 1. Every sequence of the kernel can only be
generated by itself.

∀σ ∈ Kern(LF), ∄σ
′ 6= σ

σ′ ∈ LF , {σ
′}

CR
−−→ S, σ ∈ S

(10)

Proof. Let σ be a sequence of the kernelKern(LF) which
can be generated using another shorter sequence σ′:

∃σ′ 6= σ, σ′ ∈ LF , {σ
′}

CR
−−→ S, σ ∈ S

It is then possible to remove σ from Kern(LF) and still
be able to generate the full failure language LF :

Kern(LF) \ {σ}
CR
−−→ LF

In this case, the kernel do not comply with the minimality
property expressed in its definition (proposition 9).

Theorem 2. The kernel of a given failure languageKern(LF)
is unique.

Proof. Let Kern1(LF) and Kern2(LF) be two distinct
kernels as defined by (9). Let us consider two disjointed
kernels (Kern1(LF) ∩ Kern2(LF) = ∅). Let σ be a se-
quence belonging to only one kernel (σ ∈ Kern1(LF), σ /∈
Kern2(LF)). If σ /∈ Kern2(LF) then ∃σ′ 6= σ, σ′ ∈

LF , {σ
′}

CR
−−→ S, σ ∈ S. If σ ∈ Kern1(LF) then ∄σ′ 6=

σ, σ′ ∈ LF , {σ
′}

CR
−−→ S, σ ∈ S. These two propositions

are contradictory then the two kernels cannot be dis-
joint Kern1(LF) ∩ Kern2(LF) 6= ∅. Moreover, as σ /∈

Kern2(LF) then ∃σ′ 6= σ, σ′ ∈ LF , {σ
′}

CR
−−→ S, σ ∈ S,

then by definition σ which can be generated cannot be
in Kern1(LF) since a shorter sequence can generate it
(theorem 1) then σ /∈ Kern1(LF). If no sequence can be
in only one of the kernels then Kern1(LF) = Kern2(LF).

Theorem 3. No sequence from Kern(LF) can go through
a state of the automaton twice.

Proof. Let σ be a sequence from Kern(LF) which goes
through one state twice. Let σ = σ1σ2σ3 with σ2 6= ǫ be a
decomposition of σ such that the state reached by σ1 be
the same state as the one reached by the σ1σ2 sequence. In
this case, σ can be generated using the shorter sequence
σ1σ3 as σ2 can be inserted inside σ after σ1 and before
σ3 any number of times without changing FC(σ) or the
resulting system failure. Since σ can be generated by the
shorter sequence σ1σ3, it cannot be an element of the
kernel Kern(LF) (theorem 1).

Theorem 4. Kern(LF) is a finite language.

Proof. Accordingly to theorem 3, no sequence σ of the
kernel can go through the same state twice. All σ sequences
are sequences of the language generated by a finite au-
tomaton. Since a finite automaton is composed of a finite
number of states, the maximum length of a σ sequence of
the kernel is |σ| ≤ (Card(Q) − 1) where Q is the set of
states of the automaton.

4.2 Minimal cut sequences set: definition and properties

Cut sequences are the sequences of the failure language
(LF) whose only the last reached state is marked (repre-
senting the system failure). The set of all these sequences

is called the Cut sequences language LCS . The minimal
representation of LCS is called the language of minimal cut
sequences LMCS . A minimal cut sequence σ is then defined
as a sequence belonging to LMCS and can be defined by
the following proposition:
{

LMCS
CR
−−→ S, S ⊇ LCS with S ⊆ LF and LMCS ⊆ LCS

∄S′ ⊂ LMCS
CR
−−→ S, S ⊇ LCS with S ⊆ LF

(11)
Like for the definition of the kernel, the MCS language
definition is composed of two parts. The first one expresses
that it is possible to generate at least all cut sequences from
the MCS, and the second part expresses the minimality of
LMCS . Since the generation of longer sequences using a
cut sequence with the coherence function is not limited to
cut sequences, the minimal cut sequences language cannot
be defined as the set that allows the exact generation of
the cut sequences language.

In order to benefit from the proven theorems on the kernel
of the failure language, an additional theorem is needed:

Theorem 5. Any sequence from the Minimal cut sequences
language LMCS is a sequence of the kernel Kern(LF).

σ ∈ LMCS =⇒ σ ∈ Kern(LF) (12)

Proof. Let σ ∈ LMCS be a MCS which is not an element
of the kernel (σ /∈ Kern(LF)). If σ /∈ Kern(LF) then

∃σ′ 6= σ, σ′ ∈ LCS , {σ
′}

CR
−−→ S, σ ∈ S, since it can be

generated by the cut sequence σ′, LMCS \{σ} can be used
to generate the whole cut sequence language LCS . In this
case the initial LMCS does not comply with the minimality
criteria expressed by proposition 11.

Therefore the minimal cut sequences language is a subset
of the kernel:

LMCS ⊆ Kern(LF) (13)

Since LMCS is also a subset of LCS a second definition of
the minimal cut sequences language can be given as:

LMCS = LCS ∩Kern(LF) (14)

As LMCS is a subset of a finite language, LMCS is also
finite. Since it can be defined as the intersection of two
unique languages, LMCS is also unique.

Summarizing, for a coherent dynamic repairable
system, a unique and finite set of failure sequences
can represent all cut sequences. This set of sequences,
defined as the Minimal Cut Sequences, is the most
compact explicit description of cut sequences that are
necessary and sufficient to represent all sequences that lead
to the first system failure.

5. MCS COMPUTATION, PRACTICAL RESULTS

The goal of this section is to give a brief description on
how the minimal cut sequences language can be computed
from an automaton. Seeing that a sequence can be gen-
erated using different ways using the CR function, CR
is non-injective. For example f1f3f2r1 can be generated
by adding f2 in f1f3r1 or by shuffling f1r1 with the
failure sequence f3f2. CR being not injective, CR is not
bijective, and consequently the inverse function CR−1 that
could allow the direct computation of the MCS using the

whole cut sequences language, does not exist. That is the
reason why we propose a computation process that aims at
reducing a starting set of sequences to the MCS language
by removing the sequences which can be computed using
the CR function. This computation process is composed
of 3 main steps:

(1) First, a finite set of failure sequences that may be-
long to the MCS language is generated by exploring
the automaton. This set contains all non-looped se-
quences (theorem 3) whose only the last state reached
is marked (CS definition).

(2) A second finite set of failure sequences that may be
used to compute a sequence from the first set using
the CR function is generated. This set contains all
failure sequences whose size is strictly lower than the
longest sequence obtained in the first step.

(3) Every sequence σ from the first set is compared to
every shorter sequence σ′ from the second set to
evaluate if it can be generated using σ′ with the CR
function. If the generation is possible, σ cannot be
an element of the MCS language and is therefore
removed from the first set.

At the end of the process only the sequences that are
elements of the MCS language are left in the first set of
generated sequences. The worst case complexity of this
algorithm is O(q!qq) if there is one transition between each
different states and if the longest non looped sequence is
of length q. On the general case, the algorithm complexity
is far less.

On the example of fig.1 only the sequences f3 and f1f2 are
identified as Minimal Cut Sequences among the 161 non-
looped sequences included into this automaton LMCS =
{f3, f1f2}. In this case, the kernel (which can be computed
in a similar way) is only composed of MCS Kern(LF) =
LMCS = {f3, f1f2}, but in the general case, those two sets
of sequences are different.

6. CONCLUSIONS

In this paper we proposed a formal definition of the
minimal cut sequences. Considering that all scenarios
of failure and repair events describing the safety of a
binary dynamic and repairable system can always be
modeled by a finite automaton, this definition is based
on the languages theory. In order to define the minimal
cut sequences, the concept of coherence for dynamic and
repairable systems has been proposed. Since the coherence
provides a way to compute a set of failure sequences
starting from a shorter failure sequence, two minimal
representations have been expressed. While the kernel
provides a finite and unique representation of the infinite
language of sequences that lead to the system failure, the
minimal cut sequences language is defined as a restriction
of the kernel to the only sequences that are necessary to
characterize at least the first system failure.

REFERENCES

Birnbaum, Z., Esary, J., and Saunders, S. (1961). Multi-
component systems and structures and their reliability.
Technometrics, 3(1), 55–77.

Boudali, H. and Dugan, J. (2005). A discrete-time bayesian
network reliability modeling and analysis framework.

Reliability Engineering and System Safety, 87(3), 337–
349.

Bouissou, M. (2006). Détermination efficace de scenarii
minimaux de défaillance pour des systèmes séquentiels.
In 15ème colloque de fiabilité et maintenabilité, Lille
(France).

Bouissou, M. and Bon, J. (2003). A new formalism that
combines advantages of fault-trees and Markov models:
Boolean logic Driven Markov Processes. Reliability
Engineering and System Safety, 82(2), 149–163.

Chaux, P.Y., Roussel, J.M., Lesage, J.J., Deleuze, G., and
Bouissou, M. (2011). Qualitative analysis of a bdmp by
finite automaton. In Advances in Safety Reliability and
risk management, 2055–2057. Taylor & Francis Ed.

Chaux, P.Y., Roussel, J.M., Lesage, J.J., Deleuze, G., and
Bouissou, M. (2012). Systematic extraction of Minimal
Cut Sequences from a BDMP model. In Proc. of the
21th European Safety & Reliability Conf. (ESREL’12),
Helsinki (Finland).

Coppit, D., Sullivan, K., and Dugan, J. (2000). Formal
semantics of models for computational engineering: a
casestudy on dynamic fault trees. In 11th International
Symposium on Software Reliability Engineering, 2000.
ISSRE 2000. San Jose (USA), 270–282.

Dugan, J., Bavuso, S., and Boyd, M. (1992). Dynamic
fault-tree models for fault-tolerant computer systems.
IEEE Transactions on Reliability, 41(3), 363–377.

Fussell, J. (1976). Fault tree analysis: concepts and
techniques. Generic Techniques in System Reliability
Assessment.

Hopcroft, J.E. (2008). Introduction to Automata Theory,
Languages, and Computation, 3/E. Pearson Education
India.

McCluskey Jr, E. (1956). Minimization of boolean func-
tions. Bell System Technical Journal, 35, 1417–1444.

Merle, G., Roussel, J.M., and Lesage, J.J. (2011). Alge-
braic Determination of the Structure Function of Dy-
namic Fault Trees. Reliability Engineering and System
Safety, 96(2), 267–277.

Rauzy, A. (2001). Mathematical foundations of minimal
cutsets. IEEE Transactions on Reliability, 50(4), 389–
396.

Rauzy, A. (2002). Mode automata and their compilation
into fault trees. Reliability Engineering and System
Safety, 78(1), 1–12.

Tang, Z. and Dugan, J. (2004). Minimal cut set/Sequence
generation for dynamic fault trees. In Reliability and
Maintainability, 2004 Annual Symposium-RAMS Los
Angeles (USA), 207–213.

Walker, M., Bottaci, L., and Papadopoulos, Y. (2007).
Compositional temporal fault tree analysis. In Com-
puter Safety, Reliability, and Security: 26th Interna-
tional Conference, SAFECOMP 2007, Nurmberg, Ger-
many, September 18-21, 2007, Proceedings, volume
4680, 106. Springer.

