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Abstract

In this paper, we present a comprehensive survey of Markod&a Fields (MRFs) in
computer vision and image understanding, with respectaartbdeling, the inference
and the learning. While MRFs were introduced into the compugon field about
two decades ago, they started to become a ubiquitous tosbfeing visual percep-
tion problems around the turn of the millennium followingetemergence offgcient
inference methods. During the past decade, a variety of MBé&efs as well as infer-
ence and learning methods have been developed for addyessirerous low, mid and
high-level vision problems. While most of the literature cems pairwise MRFs, in
recent years we have also witnessed significant progresghierorder MRFs, which
substantially enhances the expressiveness of graph-basgels and expands the do-
main of solvable problems. This survey provides a compatttigfiormative summary
of the major literature in this research topic.

Keywords: Markov Random Fields, Graphical Models, MRFs, MAP Infernc

Discrete Optimization, MRF Learning

1. Introduction

The goal of computer vision is to enable the machine to unaiedsthe world -
often calledvisual perception through the processing of digital signals. Such an
understanding for the machine is done by extracting usefaiination from the digital

signals and performing complex reasoning. Mathematiciaityp denote the observed
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data andx a latent parameter vector that corresponds to a mathematisaer to
the visual perception problem. Visual perception can therfdomulated as finding
a mapping fromD to x, which is essentially aimverse problenfl]. Mathematical

methods usually model such a mapping through an optimizatioblem as follows:
x°Pt = arg minE(x, D;w) , (1)

where the energy (or cost, objective) functig(x, D; w) can be regarded as a quality
measure of a parameter configuratiom the solution space given the observed data
D, andw denotes the model parameterslence, visual perception involves three main
tasks: modeling inferenceandlearning The modeling has to accomplish: (i) the
choice of an appropriate representation of the solutionguaituple of variables; and

(i) the design of the class of energy functida&, D; w) which can correctly measure
the connection betweenandD. The inference has to search for the configuratiox of
leading to the optimum of the energy function, which coroeggs to the solution of the
original problem. The learning aims to select the optimatielgparameterss based

on the training data.

The main dificulty in the modeling lies in the fact that most of the visianlgems
are inverse, ill-posed and require a large number of latedibaobserved variables to
express the expected variations of the perception answethdfmore, the observed
signals are usually noisy, incomplete and often only preadoartial view of the de-
sired space. Hence, a successful model usually requiressarrablaegularization
a robustdata measureand a compacstructurebetween the variables of interest to
adequately characterize their relationship (which is iguaknown). In the Bayesian
paradigm, thenodel prior, the data likelihoodand thedependence propertieorre-
spond respectively to these terms, and the maximizatioheoposterior probability of
the latent variables corresponds to the minimization ofehergy function in Eq. 1.

In addition to these, another issue that should be takeraitttount during the model-

1For the purpose of concisene&sandor w may not be explicitly written in the energy function in the
following presentation unless it is necessary to do so.



ing is the tractability of the inference task, in terms of gatational complexity and
optimality quality, which introduces additional constriai on the modeling step.
Probabilistic graphical modelgusually referred to agraphical modelscombine
probability theory and graph theory towards a natural amegpful formalism for mod-
eling and solving inference and estimation problems inotaziscientific and engineer-
ing fields. In particular, one important type of graphicaldats - Markov Random
Fields (MRFs) - has become a ubiquitous methodology forisglvisual perception
problems, in terms of both the expressive potential of theleting process and the
optimality properties of the corresponding inference athm, due to their ability to
model soft contextual constraints between variables amétiormous development of
inference methods for such models. Generally speaking, Mirive the following
major useful properties that one can benefit from during thershm design. First,
MRFs provide a modular, flexible and principled way to congbiegularization (or
prior), data likelihood terms and other useful cues withsiragle graph-formulation,
where continuous and discrete variables can be simultaheoansidered. Second,
the graph theoretic side of MRFs provides a simple way toalize the structure of a
model and facilitates the choice and the design of the mddhéid, the factorization of
the joint probability over a graph could lead to inferencelpems that can be solved
in a computationally #icient manner. In particular, development of inference im@sh
based on discrete optimization enhances the potentialsofete MRFs and signifi-
cantly enlarges the set of visual perception problems telwMRFs can be applied.
Last but not least, the probabilistic side of MRFs gives t@spotential advantages in
terms of parameter learning.§, [2, 3, 4, 5]) and uncertainty analyse.g, [6, 7]) over
classic variational methods [8, 9], due to the introductiéprobabilistic explanation
to the solution [1]. The aforementioned strengths haveltexsun the heavy adop-
tion of MRFs towards solving many computer vision, compuggephics and medical
imaging problems. During the past decaddfedient MRF models as well agfieient
inference and learning methods have been developed foes&ldg numerous low, mid
and high-level vision problems. While most of the literatigen pairwise MRFs, we
have also witnessed significant progress of higher-ordeF#/iRiring the recent years,

which substantially enhances the expressiveness of drapbd models and expands



the domain of solvable problems. We believe that a compatirdarmative summary
of the major literature in this research topic will be vallgafor the reader to rapidly
obtain a global view and hence better understanding of sad@mp@ortant tool.

To this end, we present in this paper a comprehensive sufvBiRés in com-
puter vision and image understanding, with respect to theetirtg, the inference and
the learning. The remainder of this paper is organized dewisl Section 2 intro-
duces preliminary knowledge on graphical models. In sacBipdifferent important
subclasses of MRFs as well as their important applicationgsual perception are dis-
cussed. Representative techniques for MAP inference oretss MRFs are presented
in section 4. MRF learning techniques are discussed inasebti Finally, we conclude

the survey in section 6.

2. Preliminaries

A graphical model consists of a graph where each node is iatsdavith a ran-
dom variable and an edge between a pair of nodes encodedpigitrainteraction
between the corresponding variables. Each of such modelsdess a compact rep-
resentation for a family of joint probability distributisrwhich satisfy the conditional
independence properties determined by the topgstgycture of the graph: the asso-
ciated family of joint probability distributions can be fadzed into a product of local
functions each involving a (usually small) subset of vadeab Such a factorization is
the key idea of graphical models.

There are two common types of graphical modBlayesian Network&lso known
asDirected Graphical Model®r Belief Network}s and Markov Random Fieldgalso
known asUndirected Graphical Modelsr Markov Network} corresponding to di-
rected and undirected graphs, respectively. They are wsetbdel diferent families
of distributions with diferent kinds of conditional independences. It is usually-con
venient to covert both of them into a unified representatidnctv is calledFactor
Graph, in particular for better visualizing potential functioasd performing inference
in higher-order models. As preliminaries for the survey,witk proceed with a brief

presentation on Markov random fields and factor graphs img¢h®inder of this sec-



Figure 1: Examples of Markov Random Fields and Factor Graghte that the Markov random field in (a)
can be represented by the two factor graphs (b) and (c). Neless, the factor graph in (c) contains factors
corresponding to non-maximal cliques.

tion. We suggest the reader being interested in a larger anel im depth overview the
following publications [10, 11, 12, 13].

2.1. Notations

Let us introduce the necessary notations that will be usexligihout this survey.

For a graphical model, l& = (V, &) denote the corresponding graph which consists
of a set’V of nodes and a sé of edges. Then, for each nodé € V), let X; denote
the associated random variabethe realization oK;, andX; the state space of (i.e.,
X € Xj). Also, letX = (X)iey denote the joint random variable ard= (X)iey the
realization (configuration) of the graphical model takirejues in its spac& which
is defined as the Cartesian product of the spaces of all ohaiivariablesij.e., X =
[Tiev Xi-

For the purposes of simplification and concreteness, “fnitibadistribution” is
used to refer to “probability mass function” (with respezthe counting measure) in
discrete cases and “probability density function” (witlspect to the Lebesgue mea-
sure) in continuous cases. Furthermore, we p(s& to denote the probability distri-
bution on a random variabl¥, and usex. (c € V) as the shorthand for a tupteof
variables,i.e., X = (X)icc. Due to the one-to-one mapping between a node and the
associated random variable, we often use “node” to refdrea@orresponding random

variable in case there is no ambiguity.



2.2. Markov Random Fields (Undirected Graphical Models)

A Markov Random Field (MRR)as the structure of an undirected gr&ptwhere
all edges of€ are undirectedd.g, Fig. 1(a)), and holds the following local indepen-
dence assumptions (referred tolasal Markov property which impose that a node is

independent of any other node given all its neighbors:
VieV, XiJ_Xry,{i}|XNi , (2)

whereN; = {jl{i, j} € &} denotes the set of neighbors of ndde the graphg, and

Xi LXj|X, denotes the statement thgtandX; are independent givex,.. An important
notion in MRFs isclique, which is defined as a fully connected subset of nodes in
the graph. A clique isnaximalif it is not contained within any other larger clique.
The associated family of joint probability distributionseahose satisfying the local
Markov property i.e., Eq. 2). According to Hammersley-@trd theorem [14, 15],

they areGibbs distributionavhich can be factorized into the following form:

09.= 3 [ [ @
whereZ is the normalizing factor (also known as thartition functior), ¥(x:) denotes
the potential functiorof a cliquec (or: clique potentigl which is a positive real-valued
function on the possible configuratiomof the cliquec, andC denotes a set of cliqués
contained in the grapfg. We can also verify that any distribution with the factodze
form in Eq. 3 satisfies the local Markov property in Eq. 2.
Theglobal Markov propertyconsists of all the conditional independences implied

within the structure of MRFs, which are defined &V, V,, V3 C V, if any path

from a node iV, to a node iV, includes at least one nodedrs, thenXqy, L X, | X,.

’Note that any quantities defined on a non-maximal clique caaya\we redefined on the corresponding
maximal clique, and thu€ can also consist of only the maximal cliques. However, usifyg oraximal
clique potentials may obscure the structure of originalugig by fusing together the potentials defined on a
number of non-maximal cliques into a larger clique potentiaim@ared with such a maximal representation,
a non-maximal representation clarifies specific featureseofabtorization and often can lead to computa-
tional dficiency in practice. Hence, without loss of generality, wend assume that consists of only
maximal cliques in this survey.



Let 7(G) denote the set of such conditional independences. Théfidation of these
independences boils down to a “reachability” problem inpgréheory: considering a
graphG’ which is obtained by removing the nodesWg as well as the edges con-
nected to these nodes frogh Xy, L Xv,|Xy, is true if and only if there is no path in
G’ that connects any node i, \ V3 and any node irV, \ V3. This problem can be
solved using standard search algorithms such as breasitisdarch (BFS) [16]. Note
that the local Markov property and the global Markov propate equivalent for any
positive distribution. Hence, if a positive distributioarcbe factorized into the form
in Eq. 3 according t@, then it satisfies all the conditional independenceg (§).
Nevertheless, an distribution instance that can be fagdroverg, may satisfy more
independences than thosefi(g) [13].

MRFs provide a principled probabilistic framework to modesion problems,
thanks to their ability to model soft contextual constraibetween random variables
[17, 18]. The adoption of such constraints is important sion problems, since the
image angbr scene modeling usually involves interactions betweenbset of pix-
els angor scene components. Often, these constraints are retersed“prior” of the
whole system. Through MRFs, one can use nodes to model iesiabinterest and
combine diferent available cues that can be encoded by clique potemtitin a uni-
fied probabilistic formulation. Then the inference can b&grened viaMaximum a

posteriori(MAP) estimation:

x%Pt = arg maxp(x) . (4)
xeX

Since the potential functions are positive, we can defliteie energy. as a real

function on a clique (c € C):

Oc(Xc) = —logye(Xe) - )

Due to the one-to-one mapping betwegnandy., we also refer t@. as potential

function(or clique potentia) on cliquec in the remainder of this survey, leading to a



more convenient representation of the joint distributgx):

) = 5 exA-EGI) ©

whereE(x) denotes thenergyof the MRF and is defined as a sum of clique potentials:

E() = > 0c(x) - (7)

ceC
Since the “-log” transformation between the distributiofx) and the energ¥(x) is
a monotonic function, the MAP inference in MRFs (Eq. 4) isiegient to the mini-

mization ofE(x) as follows:
x°P = arg minE(x) . (8)
xeX

In cases offiscrete MRFsvhere the random variables are disctdiee., Vi € <V,
Xj consists of a discrete set), the above optimization becankscrete optimization
problem. Numerous works have been done to devefiipient MRF inference algo-
rithms using discrete optimization theories and techrsdesy, [23, 24, 25, 26, 27, 28,
29, 30, 31]), which have been successfully employedficiently solve many vision
problems using MRF-based methodgy [32, 33, 34, 35, 36]). Due to the advantages
regarding both the modeling and the inference, as discuyssewusly, discrete MRFs
have been widely employed to solve vision problems. We wiljie a detailed sur-
vey on an important number of representative MRF-basedrvisiodels in section 3

and MAP inference methods in section 4.

2.3. Factor Graphs

Factor graph[37, 38] is a unified representation for both BNs and MRFs,civhi

uses additional nodes, naméattor node$, to explicitly describe the factorization

3We should note thatontinuous MRFéhave also been used in the literatueeg( [19, 20, 21]). An
important subset of continuous MRFs that has been well diugi@aussian MRF§22].

“We call the nodes in original graplisual nodesvhen an explicit distinction between the two types of
nodes is required to avoid ambiguities.



of the joint distribution in the graph. More specifically, et § of factor nodes are
introduced into the graph, each corresponding to an okgfiinction term defined on
a subset of usual nodes. Each factor encodes a potentigidiurefined on a clique
in cases of MRFs(see Eq. 3 or 7). The associated joint probability is a prodiic

factors:

P09 = 3 [ Jorx0) ©

fer

Similar to MRFs, we can define the energy of the factor graph as

E() = > 05(x) (10)
feF
where6;(x;) = —loge¢:(xs). Note that there can be more than one factor graphs

corresponding to a BN or MRF. Fig. 1(b-c) shows two examptdaaor graphs which
provide two diferent possible representations for the MRF in Fig. 1(a).

Factor graphs are bipartite, since there are two types @sadd no edge exists be-
tween two nodes of same types. Such a representation caatizes in a clear manner
the underlying factorization of the distribution in the ghécal model. In particular for
MRFs, factor graphs provide a feasible representationgordee explicitly the cliques
and the corresponding potential functions when non-malxafigues are also consid-
ered .9, Fig. 1(c)). The same objective can be hardly met using sualgraphical
representation of MRFs. Computational inference is amattrength of factor graphs
representations. Theum-producand min-sum(or: max-produc®) algorithms in the
factor graph [38, 11] generalize the classic counterp&s40] in the sense that the
order of factors can be greater than two (see Algorithm 1)rtheamore, since an
MRF with loops may have no loop in its corresponding factepdr €.g, see the MRF
in Fig. 1(a) and the factor graphs in Fig. 1(b-c)), in suctesahemin-sumalgorithm in

the factor graph can perform the MAP inference exactly wittypomial complexity.

SEach factor encodes a local conditional probability distiion defined on a usual node and its parents
in cases of BNs.

6The max-productalgorithm is to maximize the probabilitg(x) which is a product of local functions
(Eq. 9), while themin-sumalgorithm is to minimize the corresponding energy which is a stitocal energy
functions (Eg. 10). They are essentially the same algorithm.



Such factor graphs without loop.@, Fig. 1(b-c)) are referred to &actor trees

3. MRF-based Vision M odels

According to the order of interactions between variableRRMnodels can be clas-
sified intopairwise modelsandhigher-order modelsAnother important class ion-
ditional Random Field¢CRFs). Below, we present these three typical models tleat ar

commonly used in vision community.

3.1. Pairwise MRF Models

The most common type of MRFs that is widely used in computoniis thepair-
wise MRF in which the associated energy is factorized into a sum targ@l functions
defined on cliques of order strictly less than three. Moreiigally, a pairwise MRF
consists of a grapy with a set §i(-))icy Of unary potentialgalso calledsingleton po-
tentialg defined on single variables and a ggit(())i ;e Of pairwise potentialsiefined

on pairs of variables. The MRF energy has the following form:

EC) = > 605+ D 05(x) - (11)
=% {i.jje&

Pairwise MRFs have attracted the attention of a lot of retess and numerous
works have been done in past decades, mainly due to the fiattgadirwise MRFs in-
herit simplicity and computationakigciency, and that the interaction between pairs of
variables is the most common and fundamental type of intierecrequired to model
many vision problems. In computer vision, such works inelbdth the modeling of
vision problems using pairwise MRFs.¢, [41, 42, 43, 36, 44]) and thefeient infer-
ence in pairwise MRFs(g, [23, 26, 28, 27, 45]). Two most typical graph structures
used in computer vision aggid-like structureqe.g, Fig. 2) andpart-based structures
(e.g, Fig. 3). Grid-like structures provide a natural and readde representation for
images, while part-based structures are often associatkdlieformable anr artic-

ulated objects.
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(a) 4-neighborhood system (b) 8-neighborhood system

Figure 2: Examples of MRFs with Grid-like Structures

3.1.1. Grid-like Models

Pairwise MRFs ofjrid-like structureqFig. 2) have been widely used in computer
vision to deal with numerous important problems, such agedenoisingestoration
(e.g, [41, 46, 47]), super-resolutioer.g, [48, 49, 50]), stereo visigmulti-view recon-
struction €.g, [51, 32, 52]), optical flow and motion analysi.¢, [53, 54, 55, 56]),
image registration and matching.g, [33, 57, 58, 59]), segmentatioe.§, [60, 42, 36,
61]) and over-segmentation.(}, [62, 63, 64]).

In this context, the nodes of an MRF correspond to the latticpixels’. The
edges corresponding to pairs of neighbor nodes are corsiderencode contextual
constraints between nodes. The random variapkssociated with each nodeep-
resents a physical quantity specific to problérfesg, an index denoting the segment
to which the corresponding pixel belongs for image segntiemtaroblem, an integral
value between 0 and 255 denoting the intensity of the cooredipg pixel for gray im-
age denoising problengtc). The data likelihood is encoded by the sum of the unary
potentialss;(-), whose definition is specific to the considered applicateog, for im-
age denoising, such unary terms are often defined as a pémadtyon based on the
deviation of the observed value from the underlying valdé)e contextual constraints
compose a prior model on the configuration of the MRF, whialmsisally encoded by
the sum of all the pairwise potentiadg(-,-). The most typical and commonly used
contextual constraint is tremoothnessvhich imposes that physical quantities corre-

sponding to the states of nodes varies “smoothly” in theigbabmain as defined by

“Other homogeneously distributed units such as 3D voxels amitlat points [33] can also be considered
in such MRFs.
8An MRF is calledbinary MRFif each node has only two possible values, 0 or 1.
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the connectivity of the graph. To this end, the pairwise ptigd6;;(-, -) between a pair
{i, j} of neighbor nodes is defined as a cost term that penalizestlaion of the states

between the two nodes:

6ij(%ij) = p(% — X;) , (12)

wherep(-) is usually an even and non-decreasing function. In commpuigen, com-
mon choices fop() are (generalized) Potts mode]66, 67], truncated absolute dis-

tanceandtruncated quadraticwhich are typicatiscontinuity preservingenalties:

wij - (1-8(x — x))) (Potts models)
p(X = Xj) =4 min(Kij, [x - Xj) (truncated absolute distance), (13)

min(Kij, (x — X))  (truncated quadratic)

wherew;; > 0 is a weight cofficient? for the penalties, Kronecker delféx) is equal
to 1 whenx = 0, and 0 otherwise, ani;j is a codficient representing the maximum
penalty allowed in the truncated models. More discontinpieserving regularization
functions can be found in for example [68, 69]. Last, it skdlobeé mentioned that
pairwise potentials in such grid-like MRFs can also be usezhtode other contextual
constraints, such asar shape prior$70], compact shape priof§ 1], layer constraints
[62], Hausdoyf distance priord72] andordering constraint$73, 74].

The grid-like MRF presented above can be naturally exteifided pixels to other
units. For example, there exist works that use superpixelifives instead of pixel
primitives when dealing with images.g, [75, 76]), mainly aiming to gain computa-
tional dficiency angor use superpixels as regions of support to compute featores
other mid-level and high-level vision applications. Anetlimportant case is the seg-
mentation, registration and tracking of 3D surface meshes, (77, 78]), where we
aim to infer the configuration of each vertex or facet on these. In these cases, the
node of MRFs can be used to model the superpixel, vertex e, faavertheless, the

topology could be a less regular grid.

9Note thatlsing model[65, 41] is a particular case ¢fotts modewhere each node has two possible
states.
lOWij is a constant for all pairg, j} of nodes in the original Potts model in [66].
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(a) Pictorial Structure (b) MRF model corresponding to (a)

Figure 3: Example of MRFs with Pictorial Structures (The oré image used in (a) is frodumanEva-I
database [79http://vision.cs.brown.edu/humaneva/.)

3.1.2. Part-based Models

MRFs of pictorial structures(Fig. 3) provide a natural part-based modeling tool
for representing deformable objects and in particulacaldited objects. Their nodes
correspond to components of such objects. The correspgnaient variables rep-
resent the spatial pose of the components. An edge betweain afmodes encode
various interactions such as kinematic constraints betwiee corresponding pair of
components. In [43]Pictorial model[80] was employed to deal with pose recogni-
tion of human body and facdteiently with dynamic programming. In this work, a
tree-like MRF (see Fig. 3) was employed to model spring-tikers between pairs of
components through pairwise potentials, while the dailibod is encoded in the
unary potentials each of which is computed from the appearamdel of the corre-
sponding component. The pose parameters of all the commaenestimated though
the MAP inference, which can be done vefii@ently in such a tree-structured MRF
using dynamic programming [81, 16]€., min-sum belief propagation [39, 40, 11]).

Later, part-based models have been adoptegbaedtended to deal with the pose
estimation, detection and tracking of deformable objechsas human body [20, 82,
83, 84, 85], hand [86, 87] and other objects [88, 89]. In [8B§ part-based model
was extended, with respect to that of [43], regarding theltyy of the MRF as well
as the image likelihood in order to deal with the pose estonadf animals such as
cows and horses. The topology of part-based models was xksadeto other typical
graphs such as-fans graphg90, 91] andout-planer graphg92]. Pictorial structures
conditioned orposelet493] were proposed in [85] to incorporate higher-order aepe
dency between the parts of the model while keeping the inéer@ficient (since the

model becomes tree-structured at the graph-inference)st@gntinuous MRFs of pic-

13



torial structures were proposed in [20] and [86] to deal Witkly angor hand tracking,
where nonparametric belief propagation algorithms [19w&ke employed to perform
inference. In the subsequent papers [82, 87], occlusisoreag was introduced into
their graphical models in order to deal with occlusions lestwdiferent components.
Indeed, the wide existence of such occlusions in the casesiofilated objects is an
important limitation of the part-based modeling. Receralyigorous visibility model-
ing in graphical models was achieved in [94] via the propgeed 2.5D layered model
where top-down scene-level and bottom-up pixel-levelesentations are seamlessly
combined through local constraints that involve only paifyariables (as opposed
to previous 5D layered models where the depth ordering was commonly ladde
as a total and strict order between all the objects), basedhich image segmenta-
tion (pixel-level task), multi-object tracking and deptidering (scene-level tasks) are
simultaneously performed via a single pairwise MRF model.

The notion of “part” can also refer to a feature point or ladkndistributed on
the surface of an object. In such a case, MRFs provide a polted! for modeling
prior knowledge €.g, generality and intra-class variations) on a class of sbaphich
is referred to astatistical shape modelin5]. The characterization of shape priors
using local interactionse(g, statistics on the Euclidean distance) between points can
lead to useful properties such as translation and rotatiariances with respect to the
global pose of the object in the observed image. Togethéreffitient inference meth-
ods, such MRF-based prior models have been employdti¢eatly solving problems
related to the inference of the shape model such as knowlealged object segmenta-
tion (e.g, [96, 97]). However, the factorization of probability anexgy terms into an
MRF can be very challenging, where good approximate saiatinay be resorted to
(e.g, [97, 98]). In this line of research, recently [99] propodde employdivergence
theoremto exactly factorize regional data likelihood in their paise MRF model for

object segmentation.

Remark
The computer vision community has primarily focused onwige MRF models

where interactions between parameters were often at tle¢ dé\pairs of variables.
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This was a convenient approach driven mostly from the ogtition viewpoint since
pairwise MRFs inherit the lowest rank of interactions betwgariables and numerous
efficient algorithms exist for performing inference in such misd Such interactions
to certain extent can cope with numerous vision problemgnisatation, estimation,
motion analysis and object tracking, disparity estimafimm calibrated viewsetc).
However, their limitations manifest when a better perfonoceis desired for those
problems or when graph-based solutions are resorted toofeing more complex
vision problems, where higher-order interactions betwesrables are needed to be
modeled. One the other hand, the rapid development of canpatdwares in terms
of memory capacity and CPU speed provides the practicaldraenotivates the con-
sideration of higher-order interactions in vision modétssuch a context, higher-order
MRF models has attracted more and more attentions, and reatga vision models

and inference methods have been proposed.

3.2. Higher-order MRF Models

Higher-order MRF$! involve potential functions that are defined on cliques con-
taining more than two nodes and cannot be further decompadSadh higher-order
potentials, compared to pairwise ones, allow a better cheniaation of statistics be-
tween random variables and increase largely the abilityraplg-based modeling. We
summary below three main explorations of such advantagasving vision problems.

First, for many vision problems that already were addresgepairwise models,
higher-order MRFs are often adopted to model more compleoamatural statis-
tics as well as richer interactions between random varsabiteorder to improve the
performance of the method. One can cite for example the higtteer MRF model
proposed in [100, 101] to better characterize image prioysising the Product-of-
Experts framework to define the higher-order potentialschSa higher-order model
was successfully applied in image denoising and inpaintimadplems [100, 101]#"
Potts modelwas proposed in [102, 103], which considers a similar imtgoa as the

generalized Potts model [67] (see Eq. 13), but betwe@ndes instead of between

1They are also referred to aigh-order MRFsn part of the literature.
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two nodes, and leads to better performance in image segtioentd his model is a
strict generalization of the generalized Potts model arsddegen further enriched to-
wardsrobust?" modelin [104, 105]. [106] used higher-order smoothness priors fo
addressing stereo reconstruction problems, leadingrigttéormance than pairwise
smoothness priors. Other types of higher-order patteranpiais were also consid-
ered in [107] to deal with imagsignal denoising and image segmentation problems.
All these works demonstrated that the inclusion of higheleointeractions is able to
significantly improve the performance compared to pairwieelels in the considered
vision problems.

Higher-order models become even more important in casesewmieeneed to model
measures that intrinsically involve more than two variabl& simple example is the
modeling of second-order derivative (or even higher-odigivatives), which is often
used to measure bending force in shape prior modeling suabti&s contour models
(i.e., “Snake”) [108]. In [109], dynamic programming was adapte solve “Snake”
model in a discrete setting, which is essentially a highdeoMRF model. A third-
order spatial priors based on second derivatives was aismlirced to deal with image
registration in [110]. In the optical flow formulation proged in [111], higher-order
potentials were used to encode angle deviation prior, idgmeamotion prior as well
as the data likelihood. [112] proposed a compact higheeronagodel that encodes a
curvature prior for pixel labeling problem and demonstlaits performance in im-
age segmentation and shape inpainting probldBns.priorswere introduced in [113]
for performing image segmentation given a user-providgdabtibounding box, where
topological constraints defined based on the bounding bexraorporated into the
whole optimization formulation and have been demonstraidae able to prevent the
segmentation result from over-shrinking and ensure then&gss of the object bound-
ary delimited by the user-provided box. [114] proposed aéigprder illumination
model to couple the illumination, the scene and the imagetltmg so as to jointly
recover the illumination environment, scene parameterd,am estimate of the cast
shadows given a single image and coarse initial 3D geom&trgther important moti-
vation for employing higher-order models is to charactestatistics that are invariant

with respect to global transformation when dealing withodefable shape inference
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[115, 116]. Such approaches avoid explicit estimation ef global transformation
such as 3D pose (translation, rotation and scalingjarchmera viewpoint, which is
substantially beneficial to both the learning and the infeeeof the shape model.
Meanwhile,global modelswhich include potentials involving all the nodes, have
been developed, together with the inference algorithmghiem. For example, global
connectivity priors €.g, the foreground segment must be connected) were used in
[117] and [118] to enforce the connectedness of the resguftirel labeling in binary
image segmentation, which were shown to be able to achidter performance com-
pared to merely using Potts-model with smoothness terness@etion 3.1.1). In order
to deal with unsupervised image segmentation where the auoflsegments are un-
known in advance, [119, 120] introduced ‘label costs” [11i¢ graph-based segmen-
tation formulation, which imposes a penalty to a lab@r a subset’s of labels) from
the predefined possible label s£if at least one node is labeled bgr an element in
L) in the final labeling result. By doing so, the algorithm augdically determines a
subset of labels frond that are finally used, which corresponds to a model selection
process. Another work in a similar line of research is pressim [122, 123], where
“object co-occurrence statistics” - a measure of which Igkee likely to appear to-
gether in the labeling result - are incorporated within itradal pairwise MRFCRF
models for addressing object class image segmentation aredbeen shown to im-

prove significantly the segmentation performance.

3.3. Conditional Random Fields

A Conditional Random Field (CRF) [124, 125] encodes, with $hme concept as
the MRF earlier described, a conditional distributiofX|D) whereX denotes a tuple
of latent variables anD a tuple of observed variables (data). Accordingly, the Mark
properties for the CRF are defined on the conditional distidim p(X|D). The local

Markov properties in such a context become:

VievV, XiJ-X(Vflill{xNi’ D} , (14)
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while the global Markov property can also be defined accgiginThe conditional
distribution p(X|D) over the latent variableX is also a Gibbs distribution and can be

written as the following form:

p(XID) = ﬁ exp—E(x; D)} . (15)

where the energf(x; D) of the CRF is defined as:

E(x;D) = ) 6(x: D) . (16)
ceC

We can observe that there is no modeling on the probabitistcbution over the vari-
able inD, which relaxes the concern on the dependencies betweendhesrved vari-
ables, whereas such dependencies can be rather complece , HBRFs reduce signifi-
cantly dificulty in modeling the joint distribution of the latent andsaloved variables,
and consequently, observed variables can be incorporatethe CRF framework in a
more flexible way. Such a flexibility is one of the most impaoittadvantages of CRFs
compared with generative MRFsvhen used to model a system. For example, the fact
that clique potentials can be data dependent in CRFs coatttte more informative
interactions than data independent clique potentialsh @aaconcept was adopted for
example in binary image segmentation [127], where the gitgontrast and the spa-
tial distance between neighbor pixels are employed to natelthe values of pairwise
potentials of a grid-like CRF, as opposed to Potts modeks ¢setion 3.1.1). Despite
the difference in the probabilistic explanation, the MAP inferenioegenerative MRFs
and CRFs boil down to the same problem.

CRFs have been applied to various fields such as computenyisioinformatics
and text processing among others. In computer vision, begitl7], grid-like CRFs
were also employed in [128] to model spatial dependenci#iseiimage, leading to a
data-dependent smoothness terms between neighbor piXglsthe learned parame-

ters from training data, a better performance has beemahie the image restoration

12 jke [126], we use the terrgenerative MRF$o distinguish the usual MRFs from CRFs.
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experiments compared to the classic Ising MRF model [41graithical CRFs have
also been developed to incorporate features frdfemint levels so as to better perform
object class image segmentation. One can cite for examplmtiti-scale CRF model
introduced in [129] and “associative hierarchical CRFs3gwsed in [130]. Moreover,
CRFs have also been applied for object recognjitietection. For example, a dis-
criminative part-based approach was proposed in [131]dogmize objects based on
a tree-structured CRF. In [132], object detectors were éoetbwithin a CRF model,
leading to an fiicient algorithm to jointly estimate the class categoryatamn, and
segmentation of objegtegions from 2D images. Last, it is worth mentioning that re-
cently, based on a mean field approximation to the CRF digtab, [133] proposed
a very dficient approximate inference algorithm for fully connectgdl-like CRFs
where pairwise potentials corresponds to a linear comioimaf Gaussian kernels, and
demonstrated that such a dense connectivity at the pixaldgynificantly improves the
accuracy in class segmentation compared to 4-neighbordystidm (Fig. 2) [134] and
robustP" model[105]. Their techniques were further adopted and extendeddress
optical flow computing [135, 136], and to address cases wpa@irevise potentials are

non-linear dissimilarity measures that do not requiredeialistance metrics [137].

4. MAP Inference Methods

An essential problem regarding the application of MRF medehow to infer the
optimal configuration for each of the nodes. Here, we focushenMAP inference
(i.e., Eq. 4) in discrete MRFs, which boils down to an energy mination problem
as shown in Eqg. 8. Such a combinatorial problem is known to Behhird in general
[23, 25], except for some particular cases such as MRFs afdexlitree-width [138,
139, 12] .9, tree-structured MRFs [39]) and pairwise MRFs with suboiadenergy
[25, 140].

The most well-known early (before the 1990s) algorithmsofatimizing the MRF
energy werdterated conditional modedCM) [141], simulated annealingnethods
(e.g, [41, 142, 143]) anthighest confidence first (HCIF144, 145]. While being com-

putational éicient, ICM and HCF sfiier from their ability to recover a good optimum.
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On the other hand, for simulated annealing methods, evaeritilgory they provide cer-
tain guarantees on the quality of the obtained solutionracgce from computational
viewpoint such methods are impractical. In the 1990s, mdvaraced methods, such as
loopy belief propagatiofLBP) (e.g, [48, 146, 147]) andiraph cutstechniques€.g,
[46, 51, 67, 148, 23]), provided powerful alternatives te #forementioned methods
from both computational and theoretical viewpoints andehlagen used to solve nu-
merous visual perception problemesd, [48, 58, 46, 148, 32, 60, 42]). Since then,
the MRF optimization is experiencing a renaissance, ancerand more researchers
have been working on it. For recent MRF optimization teche& one can cite for ex-
ampleQPBOtechniques€.g, [149, 150, 151, 152]), LP primal-dual algorithnesd,
[153, 154, 29]) as well as dual methodsd, [26, 28, 154, 155]).

There exist three main classes of MAP inference methodsdiowise MRFs and
they also have been extended to deal with higher-order MRFstder to provide an
overview of them, in this section we will first reviegvaph cutsand their extensions for
minimizing the energy of pairwise MRFs in section 4.1. Therséction 4.2 and Ap-
pendix B, we will describe thenin-sum belief propagatioalgorithm in factor trees
and also show its extensions to dealing with an arbitrarpseé MRF. Following that,
we review in section 4.3 recent developed dual methods fowEe MRFs, such as
tree-reweighted message passingthods €.g, [26, 28]) anddual-decompositio@ap-
proaches€.g, [154, 156]). Last but not least, a survey on MRF infereneghmods for
higher-order MRFs will be provided in section 4.4.

4.1. Graph Cuts and Extensions

Graph cutsconsist of a family of discrete algorithms that usén-cutmax-flow
techniques toficiently minimize the energy of discrete MRFs and have beend ts
solve many vision problemg(g, [46, 148, 42, 32, 36, 34]).

The basic idea of graph cuts is to construct a directed ggiph (V= &) (called
s-t grapH®) with two special terminal nodes€., the sources and the sink) and non-

negative capacity setting(i, j) on each directed edgé {) € &%, such that the cost

13Note that generations suchmsilti-way cutproblem [157] which involves more than two terminal nodes
are NP-hard.
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C(S,T) (Eqg. 17) of the s-t cut that partitions the nodes into twgait sets § andT
such thats € S andt € T) is equal to the energy of the MRF with the corresponding

configuratiod* x (up to a constant dierence):

csmn= >  cii. (17)
€S, jeT (i, ))es

An MRF that has such an s-t graph is caligph-representablé and can be
solved in polynomial time using graph cuts [25]. The miniatian of the energy of
such an MRF is equivalent to the minimization of the cost efgk-cut problemi(e.,
min-cut problem). The Ford and Fulkerson theorem [158gst#iat the solution of the
min-cut problem corresponds to the maximum flow from the sesto the sinkt (i.e.,
max-flow problem). Such a problem can iBaently solved in polynomial time using
many existing algorithms such as Ford-Fulkerson style aumimg paths algorithms
[158] and Goldberg-Tarjan style push-relabel algorith&&9]. Note that the min-cut
problem and the max-flow problem are actually dual LP probklefreach other [160].

Unfortunately, not all the MRFs are graph-representabieviBus works have been
done to explore the class of graph-representable MBIgs [161, 24, 25, 140]). They
demonstrated that a pairwise discrete MRF is graph-reptaisie so that the global
minimum of the energy can be achieved in polynomial time vép cuts, if the energy
function of the MRF is submodular (see Appendix A for the dééin of submodular-
ity). However, in numerous vision problems, more challaggenergy functions that
do not satisfy the submodular condition (Eqg. A.1) are oftegquired. The minimiza-
tion of such non-submodular energy functions is NP-hardenegal [23, 25] and an
approximation algorithm would be required to approach tbéa optimum.

More than two decades ago, [46] first proposed to use mifmextflow techniques
to exactly optimize the energy of a binary MRiFe(, Ising model) for image restora-

tion in polynomial time. However, the use of such min/max-flow techniques did

14The following rule can be used to associate an s-t cut to an MB&ling: for a nodé € VSt — (st}
i) if i € S, the labelx; of the corresponding node in the MRF is equal to O; ii) & T, the labelx; of the
corresponding node in the MRF is equal to 1.

15Note that, in general, such an s-t graph is not unique for phgrapresentable MRF.
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not draw much attention in computer vision community in thkofving decade since
then, probably due to the fact that the work was publishedanimal of statistics com-
munity andor that the model considered in [46] is quite simple. Suchwatbn has
changed in late 1990s when a number of techniques basedmma@urts were proposed
to solve more complicated MRFs. One can cite for example theksvdescribed in
[67, 51, 148], which proposed to use minJ/toiéx-flow techniques to minimize multi-
label MRFs. In particular, the work introduced in [67] aclgd, based on the proposed
optimization algorithms, much more accurate results tharstate-of-the-art in com-
puting stereo depth, and thus motivated the use of theimigdtion algorithms for
many other problemse(g, [162, 163, 164]), also leading to excellent performance.
This significantly popularized graph cuts techniques in gotar vision community.
Since then, numerous works have been done for exploringratgsets of MRFs that
can be exactly or approximately optimized by graph cuts andéveloping morefé-

cient graph-cuts-based algorithms.

Towards Multi-label MRFs

There are two main methodologies for solving multi-label FFbased on graph
cuts:label-reductionandmove-making

The first methodologyi ., label-reduction is based on the observation that some
solvable types of multi-label MRFs can be exactly solved aftypomial time using
graph cuts by first introducing auxiliary binary variablegk corresponding to a pos-
sible label of a node and then deriving a min-cut problem thaquivalent to the
energy minimization of the original MRF. We can cite for exdenan dficient graph
construction method proposed in [24] to deal with arbitreoypvexpairwise MRFs,
which was further extended to submodular pairwise MRFs4®]1Such a methodol-
ogy can perform MAP inference in some types of MRFs. Howebersolvable types
are quite limited, since it is required that the obtaine@byrMRF (via introducing aux-
iliary binary variables) should be graph-representableei®as, the other optimization
methodology i(e., move-makingprovides a very important tool for addressing larger
sub-classes of MRFs.

The main idea omove-makings to optimize the MRF energy by defining a set of
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proposalsi(e., possible “moves”) based on the initial MRF configuratiown @hoosing
the best move as the initial configuration for the next iiergtwhich is done iteratively
until the convergence when no move leads to a lower energg.pEnformance of an
algorithm developed based on such a methodology mainlymdispen the size (denoted
by M) of the set of proposals at each iteration. For example, IC¥L] iteratively
optimizes the MRF energy with respect to a node by fixing thefigaration of all
the other nodes. It can be regarded as the simplest moveigakiproach, where
M is equal to the number of labels of the node that is consideredake move at
an iteration. ICM has been shown to perform poorly when dgalith vision MRF
models, due to the small satl of proposals [35].

Graph-cuts-based methods have been proposed to expdigenteease the size
of the setM of proposals, for example, by considering the combinatibtwo pos-
sible values for all the nodes\{ = 2"). In the representative works of [165, 23],
a-expansiorand ap-swapwere introduced to generalize binary graph cuts to handle
pairwise MRFs withmetric andor semi-metricenergy. Ana-expansion refers to a
move fromx to X’ such that:x, # X = X = a. An af-swap means a move from
to x’” such that:x; # X' = x,X € {a,8}). [165, 23] proposedficient algorithms for
determining the optimal expansion or swap moves by comgettie problems into bi-
nary labeling problems which can be solvefiaéently using graph cuts techniques. In
such methods, a drastically largkt compared to that of ICM makes the optimization
less prone to be trapped at local minima and thus leads to toeitér performance
[35]. Moreover, unlike ICM which has no optimum quality gaatee, the solution ob-
tained bya-expansion has been proven to possess a bounded ratio heheesbtained
energy and the global optimal energy [165, 23].

In addition,range movesnethods [166, 167, 168] have been developed based on
min-cuymax-flow techniques to improve the optimum quality in addirg MRFs with
truncated convex priors. Such methods explore a large lsspace by considering a
range of labelsi(e., an interval of consecutive labels), instead of dealinty wnegtwo
labels at each iteration as what is doneexpansion or3-swap. In particular, range
expansion has been demonstrated in [167] to provide the sautiplicative bounds as

the standard linear programming (LP) relaxation (see aeeti3) in polynomial time,
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and to provide a faster algorithm for dealing with the clab#&Fs with truncated
convex priors compared to LP-relaxation-based algoritlsosh as tree-reweighted
Message Passing (TRW) techniques (see section 4.3). Vesnthec[169] proposed
a dynamic-programming-based algorithm for approximapelsforminga-expansion,
which significantly speeds up the originalexpansion algorithm [165, 23].

Last, we should note that expansion is a very important qarineoptimizing the
energy of a multi-label MRF using graph cuts. Many other gdrkthis direction are

based on or partially related to it, which will be reflectedhe following discussion.

Towards Non-submodular Functions

Graph cuts techniques have also been extended to deal withummodular binary
energy functionsRoof dualitywas proposed in [170], which provides an LP relaxation
approach to achieving a partial optimal labeling for quédrpseudo-boolean func-
tions (the solution will be a complete labeling that corewis to global optimum if
the energy is submodular). Tipersistencyroperty of roof duality indicates that the
configurations of all the labeled nodes are exactly thoseesponding to the global
optimum. Hence, QPBO at least provides us with a partialilafpef the MRF and the
number of unlabeled nodes depends on the number of nonsuitendelms included
in the MRF. Such a method waffieiently implemented in [149], which is referred to
asQuadratic Pseudo-Boolean Optimization (QPBaljorithm and can be regarded as
a graph-cuts-based algorithm with a special graph cortgiruehere two nodes in s-t
graph are used to represent two complementary states ofeaindlde original MRF
[150]. By solving min-cytmax-flow in such an s-t graph, QPBO outputs a solution
assigning 0, 1 o% to each node in the original MRF, where the Iaéeﬂneans the
corresponding node isnlabeled

Furthermore, two dierent techniques were introduced in order to extend QPBO
towards achieving a complete solution. Ongiishing (called QPBO-B [151, 152],
which aims to gradually reduce the number of unlabeled néeitizer by finding the
optimal label for certain unlabeled nodes or by regroupirsgtaof unlabeled nodes)
until convergence by iteratively fixing the label of a unlEgenode and performing
QPBO. The other one improving(called QPBO-I) [152], which starts from a com-
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plete labelingy and gradually improves such a labeling by iteratively fixthg labels
of a subset of nodes as those specifieahd using QPBO to get a partial labeling to
updatey.

Besides, QPBO techniques have been further combined wéttaliel-reduction
andmove-makingechniques presented previously to deal with multi-labelRdRFor
the former case, in [171], a multi-label MRF is convertedian equivalent binary
MRF [24] and then QPBO techniques are employed to solve tigatirelaxation of
the obtained binary MRF. It provides a partial optimal labglfor multi-label MRFs.
Nevertheless, a disadvantage of such an approach is thessx@eomputational com-
plexity. For the latter case, an interesting combinatioQ®BO and move-making
techniques was proposed in [172], which is referred tduagon moves Given two
arbitrary proposalsx(™, x@) of the full labeling of the MRF, fusion moves combine
the proposals together via a binary labeling problem, wickolved using QPBO
so as to achieve a new labelimgsuch that:vi, x € {xi(l), @) Using the proposed
label selection rulex’ is guaranteed to have an energy lower or equal than the ener-
gies of both proposalx{®,x®). Hence,fusion moveprovides an fective tool for
addressing the optimization of multi-label discyetsmtinuous MRFs. In addition, it
turns out that fusion moves generalize some previous geapibased methods such
as a-expansionand ¢3-swap in the sense that the latter methods can be formulated
as fusion moves with particular choices of proposals. Thggiests that fusion moves
can serve as building block within various existing optiatian schemes so as to de-
velop new techniques, such as the approaches proposeif¢t The parallelization
of MRF optimization into several threads and the optim@aatdf continuous-labeled
MRFs with 2D labels.

Towards Improving Ficiency

We should also note thatftierent methods have been developed to increase the
efficiency of graph-cuts-based algorithms, in particular édbntext of dynamic MRFs
(i.e., the potential functions vary over time, whereas the chdregween two successive
instants is usually quite small). Below are several repregie works in this line of

research.
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A dynamic max-flow algorithm (referred to @ynamic graph cujswas proposed
in [173, 27] to accelerate graph cuts when dealing with dyinamRFs, where the key
idea is to reuse the flow obtained by solving the previous M&Ritialize the min-
cufmax-flow problems so as to significantly reduce the companatitime of min-cut.
Another dynamic algorithm was also proposed in [174] to iovprthe convergence of
optimization for dynamic MRFs, by using the min-cut soluatiaf the previous MRF to
generate an initialization for solving the current MRF.

In [154, 29], a primal-dual scheme based on linear progrargmelaxation (re-
ferred to ag-astPD) was proposed for optimizing the MRF energy, by recoveriaig p
of solutions for the primal and the dual such that the gap eetvthem is minimizeld.
This method exploits information coming from both the anagi MRF optimization
problem and its dual problem, and achieves a substantiatisipevith respect to previ-
ous methods such as [23] and [153]. In addition, it can alsedp the optimization
in the case of dynamic MRFs, where one should expect thaktlgoair of primal-dual
solutions is closed to the previous one.

Besides, [175, 176] proposed two similar but simpler teghes with respect to that
of [154, 29] to achieve a similar computationdlieiency. The main idea of the first
one (referred to adynamica-expansiohis to “recycle” results from previous prob-
lem instances. Similar to [173, 27, 174], the flow from theresponding move in
the previous iteration is reused for solving an expansioneniio a particular iteration.
And when dealing with dynamic MRFs, the primal and dual sohg obtained from
the previous MRF are used to initialize the min/ouax-flow problems for the cur-
rent MRF. The second method aims to simplify the energy fandby solving partial
optimal MRF labeling problems [171, 177] and reducing thembar of unlabeled vari-
ables, while the dual (flow) solutions of such problems aexlus generate a “good”
initialization for the dynamie-expansion algorithm.

Last but not least, based on the primal-dual interpretadfothe expansion algo-
rithm introduced by [154, 29], [178] proposed an approacbptimize the choice of

the move space for each iteration by exploiting the primatdjap. As opposed to

18FastPDcan also be viewed as a generalizatiom-afxpansion.
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traditional move-making methods that search for bettartgwis in some pre-defined
moves spaces around the current solution, such an apprimashoegreedily determine
the move-spacee(g, the optimal value ofr in the context ofw-expansion) that will

lead to largest decrease in the primal-dual gap at eachiderdt was demonstrated

experimentally to increase significantly the optimizatésinciency.

4.2. Belief Propagation Algorithms

Belief propagation algorithms use local message passipgrform inference on
graphical models. They provide an exact inference algorifbr tree-structured dis-
crete MRFs, while an approximate solution can be achieved floopy graph. In
particular, for those loopy graphs with low tree-widthsisas cycles, extended belief
propagation methods suchjasction tree algorithnj138, 139, 12] provide anficient
algorithm to perform exact inference. These belief progiagaalgorithms have been
adopted to perform MAP inference in MRF models for a varietyision problems
(e.g, [43, 48, 58, 179, 92)).

4.2.1. Belief Propagation in Tree

Belief propagation (BP)39, 40, 11] was proposed originally for exactly solv-
ing MAP inference ifin-sumalgorithm) angbr maximum-marginal inferencesym-
productalgorithm) in a tree-structured graphical model in polymartime. This type
of methods can be viewed as a special casynmic programming graphical mod-
els [81, 16, 180]. A representative vision model that canfbeiently solved by BP is
the pictorial model [80, 43] (see section 3.1.2).

In the min-sumalgorithmt’ for a tree-structured MRF, a particular node is usually
designated as the “root” of the tree. Then messages aregatguhinwards from the
leaves of the tree towards the root, where each node sende#isage to its parent
once it has received all incoming messages from its childi@aring the message

passing, a local lookup table is generated for each noderdieg the optimal labels of

1"Note that all the BP-based algorithms presented in sect®indlude bothmin-sumandsum-product
versions. We focus here on timin-sumversion. Nevertheless, ttum-productversion can be easily
obtained by replacing the message computation with the suheqirbduct of function terms. We refer the
reader to [38, 11, 12] for more details.
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all children for each of its possible labels. Once all messagrive at the root node, a
minimization is performed over the sum of the messages andrthry potentials of the
root node, giving the minimum value for the MRF energy as wslthe optimal label
for the root node. In order to determine the labels for theotiodes, the optimal label
is then propagated outwards from the root to the leaves dféleesimply via checking
the lookup tables obtained previously, which is usuallgmnefd to adack-tracking A
detailed algorithm is provided in Algorithm 1 (Appendix Baded on the factor graph
representation [38, 11], since as we mentioned in secti®ntie factor graph makes
the BP algorithm applicable to more cases compared to tlssiclenin-sum algorithm
applied on a usual pairwise MRF [48].

Note thatreparameterizationalso known asequivalent transformatignof the
MRF energy €.g, [181, 28]) is an important concept in MRF optimization. ohaif-
ferent settings of potential®.@, 6, 6; in Eq. 11) leading to the same MRF energy
(up to a constant flierence) for any MRF configurationftér by a reparameterization.
Reparameterization provides an alternative interpi@taif belief propagation, which
for example leads to a memoryieient implementation of belief propagation [28].
Meanwhile, max-flow based algorithms also have been showeldte to the principle
of reparameterizatiofi27]. Such a relationship (via reparameterization) shigitg bn

some connection between max-flow and message passing hgsethms.

4.2.2. Loopy Belief Propagation

The tree-structured constraint limits the use of the stahidelief propagation algo-
rithm presented above, whereas loopy MRFs are often ratjtorenodel vision prob-
lems. Hence, researchers have investigated to extend tbsagespassing concept for
minimization of arbitrary graphs.

Loopy belief propagation (LBR) natural step towards this direction, performs
message passing iteratively in the graply( [182, 48, 146, 147]) despite of the exis-
tence of loops. We refer the reader to [48, 146] for the detaild discussion on the
LBP algorithm. Regarding the message passing scheme iy graphs, there are two
possible choicesparallel or sequential In the parallel scheme, messages are com-

puted for all the edges at the same time and then the messageopagated for the

28



next round of message passing. Whereas in the sequentiahechenode propagates
the message to one of its neighbor node at each round and suessage will be used
to compute the messages sent by that neighbor node. [188gshempirically that the
sequential scheme was significantly faster than the phoaiée while the performance
of both methods was almost the same.

A number of works have been done to improve therncy of message passing by
exploiting particular types of graphs godpotential functionse.g, [147, 184, 185]).
For example, based on the distance transform algorithni[{1B&7] introduced a strat-
egy for speeding up belief propagation for a subclass ofapsér potentials that only
depend on the éierence of the variables such as those defined in Eq. 13, wéticites
the complexity of a message passing operation between tdesnfsom quadratic
to linear in the number of possible labels per node. Teclasdave also been pro-
posed for accelerating the message passing in bipartihgr@angor grid-like MRFs
[147, 185], and inrobust truncated modelahere a pairwise potential is equal to a
constant for most of the possible state combinations ofitleentodes [184]. Recently,
[187] proposed a parallel message computation schemeérgddpom [147] but appli-
cable to a wider subclass of MRFs than [147]. Together wittPd@nplementation,
such a scheme substantially reduces the running time inu@NRF models for low-
level vision problems.

Despite the fact that LBP performed well for a number of visépplications such
as [48, 58], they cannot guarantee to converge to a fixed,paiite their theoretical
properties are not well understood. Last but not leastr #odution is generally worse
than more sophisticated generalizations of message gaalgjarithms é.g, [26, 28,
45]) that will be presented in section 4.3 [35].

4.2.3. Junction Tree Algorithm

Junction tree algorithm (JTAs an exact inference method in arbitrary graphical
models [138, 139, 12]. The key idea is to make systematic itbe dlarkov properties
implied in graphical models to decompose a computation efjdint probability or
energy into a set of local computations. Such an approacts ls#e@ng similarities

with message passing in the standard belief propagatiogr@ndic programming. In
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@ (b)
Figure 4: Example of Junction Tree. (a) Original undirectepical model; (b) Triangulation of the graph
in (a); (c) A junction tree for the graphs in (a) and (b); (d) ligae tree which is not junction tree. In (c-d),
we use a square box to represent a separator being assdoiateddge and denoting the intersection of the

two cliques connected by the edge. A maximal spanning treeéedhat connects all the nodes and has the
maximal sum of the cardinals of the separators among all pessé#s.

this sense, we regard JTA as an extension of the standaed pepagation.

An undirected graph hasjanction treeif and only if it is triangulatedi(e., there
is no chordles$® cycle in the graph). For any MRF, we can obtain a junction tree
by first triangulating the original graph€., making the graph triangulated by adding
additional edges) and then finding a maximal spanning tre¢hio maximal cliques
contained in the triangulated graphg, Fig. 4). Based on the obtained junction tree,
we can perform local message passing to do the exact infereviuch is similar to
standard belief propagation in factor trees. We refer tadeeto [139, 12] for detalils.

The complexity of the inference in a junction tree for a diterMRF is exponen-
tial with respect to itsvidth W, which is defined as the maximum cardinal over all the
maximal cliques minus 1. Hence, the complexity is domin&igthe largest maximal
cliguesin the triangulated graph. However, the triangohgprocess may produce large
maximal cliques, while finding of an optimal junction treettivthe smallest width for
an arbitrary undirected graph is an NP-hard problem. Foritbee, MRFs with dense
initial connections could lead to maximal cliques of vergthicardinal even if an op-
timal junction tree could be found [12]. Due to the computadil complexity, the
junction tree algorithm becomes impractical when the trathwis high, although it
provides an exact inference approach. Thus it has been @ely in some specific

scenarios or some special kinds of graphs that have low tigthsve.g, cycles and

187 cycle is said to behordlessf there is no edge between two nodes that are not successiies gycle.
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outer-planar graphs whose widths are equal to 2). For exanipA was employed
in [179] to deal with simultaneous localization and mapp{8{AM) problem, and
was also adopted in [92] to perform exactly inference in pptanar graphs within
the whole dual-decomposition framework. In order to redii@ecomplexity,nested
junction treetechnique was proposed in [188] to further factorize lalgpies. Never-
theless, the gain of such a process depends directly onitla gmaph structure and is

still insufficient to make JTA widely applicable in practice.

4.3. Dual Methods

The MAP inference in pairwise MRFs (Egs. 8 and 11), can bemafitated as the

integer linear programming (ILP)189] as follows:

mTin E@,7)=(0,7) = Z Z OaTia + Z Z Bij;abTij;ab

i€V acX; (i.))€& (ab)eXixX;
aeX; 18
G ZTij;ab:Tj;b V{i,j}eS,beXi ( )
st. tet¥ =471 aX,

Ti;ae{o,l} ViG(V,aGXi
Tijap €401} Vi, j} €& (ab) € Xi x X

whereb;.a = 6i(a), 6;j.a0 = 6;j(a,b), binary variable¥ 7., = [x, = a] and Tijab =
[x = a x; = b], T denotes the concatenation of all these binary variablesiwtan
be defined as t{.a)icv.acx;» (Tij:ab)i.jjes.@b)exixX; ) andr9 denotes the domain ef We
will use MRF-MAPTto refer to this original MAP inference problem. Unfortuelgt the
above ILP problem is NP-hard in geneéfalMany approximation algorithms of MRF
optimization have been developed based on solving sonmat&la to such a problem.
Linear Programming (LP)elaxation has been widely adopted to address the MRF-
MAP problem in Eq. 18, aiming to minimizE(6, ) in a relaxed domaif¢ (called

local marginal polytopgwhich is obtained by simply replacing the integer constsai

1911 is equal to one if the argument is true and zero otherwise.

2ONote that, very recently, [190] experimentally demonstrateat for a subclass of small-size MRFs,
advanced integer programming algorithms based on cuttintepdad branch-and-bound techniques can
have global optimality property while being computation@ilogent.
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in Eq. 18 by non-negative constraint®e(, 7. > 0 andr;j;ap > 0). Such a relaxed prob-
lem will be referred to aMRF-LP. It is generally infeasible to directly apply generic
LP algorithms such asterior point method$191] to solve MRF-LP for MRF models
in computer vision [192], due to the fact that the number afaldes involved int

is usually huge. Instead, many methods have been desigised ba solving some
dual to MRF-LP,i.e., maximizing the lower bound dE(6, r) provided by the dual.
An important class of such methods are referred ttreesreweighted message pass-
ing (TRW)techniques€.g, [26, 28]), which approach the solution to MRF-LP via a
dual problem defined by a convex combination of trees. Thenaptvalue of such
a dual problem and that of MRF-LP coincide [26]. In [26], TRVé&sintroduced to
solve MRF-MAP by using edge-based and tree-based messssjagpachemes (called
TRW-Eand TRW-Trespectively), which can be viewed as combinations of i@par
eterization and averaging operations on the MRF energy. edery the two schemes
do not guarantee the convergence of the algorithms and the wéthe lower bound
may fall into a loop. Later, a sequential message passingnset{known a§RW-$
was proposed in [28]. It updates messages in a sequential imstead of a parallel
order used in TRW-E and TRW-T, which makes the lower bountnvait decrease in
TRW-S. Regarding the convergence, TRW-S will attain a pibiat satisfies a condition
referred to asveak tree agreement (WT)93] and the lower bound will not change
any more since théh Regarding the optimality, TRW-S cannot guarantee theailob
maximum of the lower bound in general. Nevertheless, foctse of binary pairwise
MRFs, a WTA fixed point corresponds to the global maximum ofiéier bound, and
thus the global minimum of MRF-LP [193]. Furthermore, if a&iy pairwise MRF is
submodular, a WTA fixed point always achieves the global optinéithe MRF-MAP
problem. In [35], a set of experimental comparisons betw€am, LBP, a-expansion,
aB-swap and TRW-S were done based on MRFs with smoothness slwowing that
TRW-S anda-expansion perform much better than the others. For otipeesentative

methods solving a dual to MRF-LP, one can cite for examplenteesage passirg-

21128] observed in the experiments that TRW-S would finally @ge to a fixed point but such a conver-
gence required a lot of time after attaining WTA. Nevertheleash a convergence may not be necessary in
practice, since the lower bound will not change any more atteining WTA.
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gorithm based omlock coordinate descemtroposed in [194], thenin-sum dfusion
algorithm [195] and th@augmenting DAGalgorithn?? [196], etc Note that, since the
LP-relaxation can be too loose to approach the solution @MiRF-MAP problem,
the tightening of the LP-relaxation has also been invet@yor achieving a better
optimum of the MRF-MAP probleme(g, [197, 198, 199, 30, 200, 201]).

Another important relaxation.é., Lagrangian relaxation) to MRF-MAP is related
to dual-decompositiorji202], which is a very important optimization methodology.
Dual-decompositiowas employed in [45, 156] for addressing the MRF-MAP prob-
lem (referred to adMRF-DD). The key idea is: instead of minimizing directly the
energy of the original MRF-MAP problem which is too complexsblve directly, we
decompose the original problem into a set of subproblemshware easy to solve.
Based on a Lagrangian dual of tMRF-MAPproblem, the sum of the minima of the
subproblems provides lawer boundon the energy of the original MRF. This sum
is maximized usingprojected subgradientethod so that a solution to the original
problem can be extracted from the Lagrangian solutions][IB6is leads to an MRF
optimization framework with a high flexibility, generalignd convergence property.
First, the Lagrangian dual problem can be globally optimiidee to the convexity of
the dual function, which is a more desired property than WTAdition guaranteed by
TRW-S. Second, dlierent decompositions can be considered to deal with MRF-MAP
leading to diferent relaxations. In particular, when the master probkedecomposed
into a set of trees, the obtained Lagrangian relaxation isvatent to the LP relax-
ation of MRF-MAP. However, more sophisticated decompos® can be considered
to tighten the relaxatione(g, decompositions based on outer-planar graphs [92] and
k-fan graphs [91]). Third, there is no constraint on how tiferience in slave problems
is done and one can apply specific optimization algorithmsotee slave problems. A
number of interesting applications have been proposedmstich a framework, which
include the graph matching method proposed in [203], thedrigrder MRF inference
method developed in [107], and the algorithm introduced®b¥] for jointly inferring

22Both themin-sum dfusionalgorithm and th@ugmenting DAGlgorithm were reviewed in [155].
23/ theoretical conclusion regarding the comparison the tigh$ between two fiierent decompositions
has been drawn in [156].
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image segmentation and appearance histogram models. ittoagddarious techniques
have been proposed to speed up the convergence of MRF-Dithigs. For exam-
ple, two approaches were introduced in [31]. One is to usela-negolution hierarchy
of dual relaxations, and the other consists of a decimati@aegy that gradually fixes
the labels for a growing subset of nodes as well as their dargdbles during the pro-
cess. [205] proposed to construct a smooth approximatiagheo&nergy function of
the master problem by smoothing the energies of the slayg@gms so as to achieve
a significant acceleration of the MRF-DD algorithm. A distried implementation of
graph cuts was introduced in [206] to solve the slave problenparallel.

Last, it is worth mentioning that an advantage of all duallnods is that we can
tell how far the solution of MRF-MAP is from the global optimmy simply by measur-
ing the gap between the lower bound obtained from solvingitia problem and the

energy of the obtained MRF-MAP solution.

4.4. Inference in Higher-order MRFs

Recent development of higher-order MRF models for visioobfgms has been
shown in section 3.2. In such a context, numerous works haea blevoted in the
past decade to search fdfieient inference algorithms in higher-order models, toward
expanding their use in vision problems that usually inva\Varge number of variables.
One can cite for example [100, 101], where a simple inferesudeme based on a
conjugate gradient method was developed to solve theiehigtder model for image
restoration. Since then, besides a number of methods feingospecific types of
higher-order modelse(g, [102, 207, 118, 119, 122]), various techniques have also
been proposed to deal with more general MRF modets, (208, 209, 107, 210, 211)).
These inference methods are highly inspired from the ormegdiowise MRFs. Thus,
similar to pairwise MRFs, there are also three main typesppf@aches for solving
higher-order MRFsi.e., algorithms based oorder reductionandgraph cuts higher-

order extensions dielief propagationanddual methods
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4.4.1. Order Reduction and Graph Cuts

Most of existing methods tackle inference in higher-ordéM8 using a two-stage
approach: first to reduce a higher-order model to a pairwmgewith the same min-
imum, and then to apply standard methods such as graph catdvie the obtained
pairwise model.

The idea of order reduction exists for long time. More thaintthyears ago, a
method (referred to agariable substitutiohwas proposed in [212] to perform order
reduction for models of any order, by introducing auxiliagyiables to substitute prod-
ucts of variable¥. However, this approach leads to a large number of non-sdblao
components in the resulting pairwise model. This is duegddird constraints involved
in the substitution, which causes largéidulty in solving the obtained pairwise model.
This may explain why its impact is rather limited in the lag&ure [161, 213], since our
final interest is solving higher-order models. In [213], @PRBas employed to solve
the resulting pairwise model, nevertheless, only thirdeompotentials were tested in
the experiments.

A better reduction method that generally produces fewersudomodular compo-
nents was proposed in [25], in order to construct s-t graptafthird-order binary
MRF. This reduction method was studied from an algebraiwp@nt in [214] and led
to some interesting conclusions towards extending thisatkto models of an arbi-
trary order. Based on these works, [210, 215] proposed argleresl technique that
can reduce any higher-order binary MRF into a pairwise oméglvcan then be solved
by QBPO. Furthermore, [210, 215] also extended such a tqabrib deal with multi-
label MRFs by using fusion moves [172]. Very recently, aighto obtain a pairwise
model that is as easy as possible to sohe, (has as few as possible non-submodular
terms), [216] proposed to approach order reduction as amization problem, where
different factors are allowed to chooséelient reduction methods in order to optimize
an objective function defined using a special graph (reflel@sorder reduction infer-

ence graph In the same line of research, [211] proposed to perforrararetuction on

24Here, we consider binary higher-order MRFs and their engarggtions can be represented in form of
pseudo-Boolean functiof$61].
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a group of higher-order terms at the same time instead of om team independently
[210, 215], which has been demonstrated both theoretiaaliiyexperimentally to lead
to better performance compared to [210, 215].

Graph-cuts techniques have also been considered to chpe with specific vision
problems or certain classes of higher-order models. Fanpie [102, 103] character-
ized a class of higher-order potentialg.( " Potts model). It was also showed that the
optimal expansion and swap moves for these higher-ordenpiats can be computed
efficiently in polynomial time, which leads to affieient graph-cuts-based algorithm
for solving such models. Such atechnique was further egtgimd[104, 105] to a wider
class of higher-order modelsd,, robust”" model). In addition, graph-cuts-based ap-
proaches were also proposed in [122, 123, 119, 120, 217Fforpeinference in their
higher-order MRFs with global potentials that enc@teoccurrence statisticandor
label costs Despite the fact that such methods were designed for aelilménge of
problems that often cannot be solved by a general infererathad, they better cap-
ture the characteristics of the problems and are able t@ sbkr problems relatively

efficiently.

4.4.2. Belief-propagation-based Methods

As mentioned in section 4.2, the factor graph represemtaifioMRFs enables
the extension of classic min-sum belief propagation athorito higher-order cases.
Hence, loopy belief propagation in factor graphs providesraightforward way to
deal with inference in higher-order MRFs. Such an approaa$ adopted in [208] to
solve their higher-order Fields-of-Experts model.

A practical problem for propagating messages in higheeoMRFs is that the
complexity increases exponentially with respect to théégg order among all cliques.
Various techniques have been proposed to accelerate tieé pedpagation in spe-
cial families of higher-order potentials. For example,§2209] and [219] proposed
efficient message passing algorithms for some families of piatesuch asinear con-
straint potentialsandcardinality-based potential®Recently, the max-product message
passing was accelerated in [220] by exploiting the fact ¢hatique potential often

consists of a sum of potentials each involving only a sutediof variables, whose
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expected computational time was further reduced in [221].

4.4.3. Dual Methods

The LP relaxation of the MRF-MAP problem for pairwise MRFedssection 4.3)
can be generalized to the cases of higher-order MRFs. Suehaajization was stud-
ied in [222, 200], wherenin-sum dffusion[195] was adopted to achieve a method for
optimizing the energy of higher-order MRFs, which is rederto asn-ary min-sum
diffusiort®. Recently, such techniques were adopted in [223]ficiently solve in a
parallefdistributed fashion higher-order MRF models of triangedaplanar structure.

The dual-decompositioframework [202, 154], which has been presented in sec-
tion 4.3, can also be adopted to deal with higher-order MRIFgs was first demon-
strated in [107], where inference algorithms were intralior solving a wide class of
higher-order potential referred to pattern-based potenti?& Also based on the dual-
decomposition framework, [115] proposed to solved thejhkir-order MRF model by
decomposing the original problem into a series of subprobleach corresponding to a
factor tree. In [224], such a framework was combined witheomgduction [210, 215]
and QPBO techniques [150] to solve higher-order graphimagcoproblems.

Exploitation of the Sparsity of Potentials

Last, it is worth mentioning that the sparsity of potentiaés been exploited, ei-
ther explicitly or implicitly, in many of the above higherder inference methods. For
example, [225] proposed a compact representation for sgpaigher-order potentials
(except a very small subset, the labelings are almost infesnd have the same high
energy), via which a higher-order model can be convertea anpairwise one by in-
troducing only a small number of auxiliary variables anchtpairwise MRF inference
methods such as graph cuts can be employed to solve the iproloi¢he same line of
research, [226] studied and characterized some classaghefrforder potentialss(g,

P" Potts model [103]) that can be represented compactly as @ppgewer envelope

25The method was originally callet-ary max-sum gfusionin [222, 200] due to the fact that a maximiza-
tion of objective function was considered.
26For example®" Potts model [103] is a sub-classmdttern-based potentials
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of linear functions. Furthermore, it was demonstrated B6]2hat these higher-order
models can be converted into pairwise models with the amdif a small number of
auxiliary variables. [227] proposed to optimize the eneofiysparse” higher-order
models by transforming the original problem into a reldtivemall instance of sub-
modular vertex-cover, which can then be optimized by stehdégorithms such as
belief propagation and QPBO. This approach has been shoachieve much better
efficiency than applying those standard algorithms to addheseriginal problem di-
rectly. Very recently, [228] took a further step along thieel of research by exploring
the intrinsic dimensions of higher-order cliques, and psgal a powerful MRF-based
modelinginference framework (calleNC-MRF) which significantly broadens the ap-

plicability of higher-order MRFs in visual perception.

5. MRF Learning Methods

On top of inference, another task of great importance is M&fringtraining,
which aims to select the optimal model from its feasible sesiglol on the training data.
In this case, the input is a set Kftraining samplegd®, x}X , whered* andx* rep-
resent the observed data and the ground truth MRF configarafithek-th sample,
respectively. Moreover, it is assumed that the unary p'[ailesr@.k and the pairwise po-
tentialseikj of thek-th MRF training instance can be expressed linearly in tevhisa-
ture vectors extracted from the observed dtathat is, it hold(x) = w'g;(x;, d¥),

05 (%, Xj) = w'gij(x, xj,d*), wheregi(-,-) andgj(-,-) represent some known vector-
valued feature functions (which are chosen based on the wempision application
at hand) andv is an unknown vector of parameters. The goal of MRF learnimits b
down to estimating this vectav using as input the above training data.

Both generatived.g, maximume-likelihood) and discriminative.@, max-margin)
MRF learning approaches have been applied for this purdogee former case, one
seeks to maximize (possibly along with an L2-norm reguédian term) the prod-
uct of posterior probabilities of the ground truth MRF Iabgb [, P(x¥; w), where
P(x; w) o« exp(E(x; w)) denotes the probability distribution induced by an MRF mode

with energyE(x; w). This leads to a convex filerentiable objective function that can
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be optimized using gradient ascent. However, computingjthdient of this function
involves taking expectations of the feature functiapé) andg;; (-), with respect to the
MRF distribution P(x; w). One therefore needs to perform probabilistic MRF infer-
ence, which is nevertheless intractable in general. Asutregpproximate inference
techniques€.g, loopy belief propagation) are often used for approxingathe MRF
marginals required for the estimation of the gradient. Thibhe case, for instance, in
[5], where the authors demonstrate how to train a CRF modetéseo matching, as
well as in [3], or in [2], where a comparison with other CRFrirag methods such as
pseudo-likelihood and MCMC-based contrastive divergesedso included.

In the case of max-margin learning [229, 230], on the otherdh@ane seeks to
adjust the vectow such that the energi(x¥; w) of the desired ground truth solution

xK is smaller byA(x, x¥) than the energ§(x; w) of any other solutior, that is,
E(Xw) < EOGW) — A, XK) + & (19)

In the above set of linear inequality constraints with respew, A(x, X’) represents a
user-specified distance function that measures the dissityibetween any two solu-
tionsx andx’ (obviously it should hold\(x, xX) = 0), while & is a non-negative slack
variable that has been introduced for ensuring that a feesitiutionw does exist. The
distance functiom\(x, x’) modulates the margin according to how “far” an MRF label-
ing differs from the ground truth labeling. In practice, its chogargely constrained
by the tractability of the whole learning algorithm. The Haing distance is often
used in the literature [231, 232], due to the fact that it caxlécomposed into a sum of
unary terms and integrated easily in the MRF energy withwergiasing the order of the
MRF model. However, visual perception often prefers moph&iicated task-specific
distances that can better characterize the physical mgafithe labeling. For ex-
ample, [233, 234] have investigated the incorporation oious higher-order distance
functions in MRF learning for the image segmentation task.

Ideally,w should be set such that eagih> 0 can take a value as small as possible

(so that the amount of violation of the above constraintsirsmal). As a result, during
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the MRF learning, the following constrained optimizatiaoiplem is solved:

K
min - R(w) + ka, s.t. constraints (19) (20)
w,{éi) =
In the above probleny is a user-specified hyperparameter &a) represents a reg-
ularization term whose role is to prevent overfitting durthg learning proces®(g,
it can be set equal thw||*> or to a sparsity inducing norm such #s||;). The slack

variable&y can also be expressed as the following hinge-loss term:
Loss&®; w) = E(xX; w) — mxin(E(x; w) — A(x, xk)) . (21)

This leads to the following equivalent unconstrained fdatian:

min 4 - Rw) + kZK; LossiX; w) . (22)

One class of methods [235, 236] aim to solve the constraipgchzation problem
(20) by the use of a cutting-plane approach wR@n) = |w||. In this case, the above
problem is equivalent to a convex quadratic program (QP)watit an exponential
number of linear inequality constraints. Given that onlyrea$§ fraction of them will be
active at an optimal solution, cutting plane methods prddsesolving a small QP with
a growing number of constraints at each iteration (wher®rthimber is polynomially
upper-bounded). One drawback of such an approach relaties fact that computing
a violated constraint requires solving at each iteration/PNMnference problem that
is NP-hard in general. For the special case of submodulardViRB7] shows how to
express the above constraints (19) in a compact form, whii@vafor a more éicient
MREF learning to take place in this case.

Another class of methods tackle instead the unconstrammaduiation (22). This
is, e.g, the case for the recently proposed framework by [238]ctvl@iddresses the
above mentioned drawbacks of the cutting plane method lgyngebn the dual de-
composition approach for MRF-MAP inference discussed iptsly in section 4.3.

By using such an approach, this framework reduces the taskioing an arbitrar-
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ily complex MRF to that of training in parallel a series of giler slave MRFs that
are much easier to handle within a max-margin framework. ddreurrent training
of the slave MRFs takes place through a velfificeent stochastic subgradient learning
scheme. Moreover, such a framework céiceently handle not only pairwise but also
high-order MRFs, as well as any convex regulariénw).

There have also been developed learning methods [239, 24Dttt aim to deal
with the training of MRFs that contailatent variables,.e., variables that remain un-
known during both training and testing. Such MRF models dtenoencountered in
vision applications due to the fact that in many cases fullodation is dfficult or at
least very time consuming to be provided (especially fogdascale datasets). As a
result, one often has to deal with datasets that are onlyaflprannotated (weakly
supervised learning).

Last but not least, there have also been proposed learrgogtaims that are ap-

propriate for handling the discriminative training of cimnious MRF models [242].

6. Conclusion

In order to conclude this survey, let us first recall that dmyieg MRF-based meth-
ods for vision problems andfficient inference algorithms has been a dominant re-
search direction in computer vision during the past decatie. main stream referred
to pairwise formulations, whereas more and more focus has feeently transferred to
higher-order MRFs in order to achieve superior solutiomsfeider set of vision prob-
lems. Moreover, machine learning techniques have beenioethtmore and more with
MRFs towards imagecene understanding as well as parameter learning andusguc
learning of MRF models. All these suggest that MRFs will kbeng a major research

topic and ¢fer more promise than ever before.
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Appendix A. Submodularity of MRFs

There are various definitions sfibmodularenergy functions of pairwise discrete
MRFs in the literature that are equivalent. We consider tte@ne presented in [140].
Let us assume the configuration spagdor a nodei € <V to be a completely ordered
set, the energy function of a pairwise discrete MRISubmodularif each pairwise
potential term@;; (V{i, j} € &) satisfies:V x!,x? € Xistxt < »?, andejl, xJ? €
Xjst le < xj?,

6 (6, X5) + 6 0, ) < 6 (X ) + 6 (0, 7). (A1)

i i

For binary cases whei®; = {0,1} (Vi € V), the condition is reduced to that each

pairwise potentiad;; (¥ {i, j} € &) satisfy:
6i;(0,0) + 6;;(1,1) < 6;;(0,1) + 6;;(1,0) . (A.2)

One can refer to [25] for generalizing the submodularityiggher-order MRFs.
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Appendix B. Min-sum Belief Propagation in Factor Tree

Algorithm 1 Min-sum Belief Propagation in Factor Tree
Require: Factor tree/” = (V U ¥, E) with usual node seV, factor node sef and
edge seb
Require: Factor potentialsé (-)) fer
Ensure: The optimal configuratior®* = argmin, Y s 65 (X¢)
Choose a node € V as the root of the tree
Construct s.t I1(i) denotes the parent of node V U ¥
ConstructC s.t C(i) denotes the set of children of node V U
Psend < NodeOrderingl’, ) {see Algorithm 2
for k=1 — length@Pseng — 1 do
i PsendK)
parent nodeg « TI(i)
child node seC « C(i)
if i € Vthen
if |C] > Othen
m—>p(xi) <« ZjeC mj—>i(xi)
else
m_p(X) < 0
end if
else
if |C] > Othen
Misp(Xp)  Min (3(X) + Xjec Mj-i(X)))
5(%) — argmin ($(x) + X jec Mi—i(X)))
else
M p(Xp) « ¢(Xp) {pis the unique variable contained in factdn this case.
end if
end if
end for
P argming ¥ jcop) Mior (%)
for k = lengthPsend — 1 — 1 do
i — PsendK)
if i € 7 then
parent node « II(i)
child node seC « C(i)
xgpt — S(Xp)
end if
end for
return x°rt
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Algorithm 2 Ordering of the Nodes for Sending Messages In a Tree
Require: Tree7 = (V, &) with node setV and edge s&t

Require: Root node e vV
Ensure: Pseng = NodeOrdering[(, f), wherePsengis a list denoting the ordering of
the nodes in tre@ for sending messages
Psend < (F)
if ['V|> 1then
Get the seC of child nodesC « {ili € V,{i,f} € &}
for all ce C do
Get child treef with rootc
Psend — (NodeOrderindgl’, F), Psend {PsenqiS ordered from left to right
end for
end if

I‘eturn psend
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