
HAL Id: hal-00858390
https://hal.science/hal-00858390v1

Submitted on 5 Sep 2013 (v1), last revised 6 Sep 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Markov Random Field Modeling, Inference & Learning
in Computer Vision & Image Understanding: A Survey

Chaohui Wang, Nikos Komodakis, Nikos Paragios

To cite this version:
Chaohui Wang, Nikos Komodakis, Nikos Paragios. Markov Random Field Modeling, Inference &
Learning in Computer Vision & Image Understanding: A Survey. Computer Vision and Image Un-
derstanding, 2013, 117 (11), pp.Page 1610-1627. �10.1016/j.cviu.2013.07.004�. �hal-00858390v1�

https://hal.science/hal-00858390v1
https://hal.archives-ouvertes.fr


Markov Random Field Modeling, Inference & Learning in
Computer Vision & Image Understanding: A Survey

Chaohui Wanga,b, Nikos Komodakisc, Nikos Paragiosa,d

aCenter for Visual Computing, Ecole Centrale Paris, Grande Voie des Vignes, Châtenay-Malabry, France
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Abstract

In this paper, we present a comprehensive survey of Markov Random Fields (MRFs) in

computer vision and image understanding, with respect to the modeling, the inference

and the learning. While MRFs were introduced into the computer vision field about

two decades ago, they started to become a ubiquitous tool forsolving visual percep-

tion problems around the turn of the millennium following the emergence of efficient

inference methods. During the past decade, a variety of MRF models as well as infer-

ence and learning methods have been developed for addressing numerous low, mid and

high-level vision problems. While most of the literature concerns pairwise MRFs, in

recent years we have also witnessed significant progress in higher-order MRFs, which

substantially enhances the expressiveness of graph-basedmodels and expands the do-

main of solvable problems. This survey provides a compact and informative summary

of the major literature in this research topic.

Keywords: Markov Random Fields, Graphical Models, MRFs, MAP Inference,

Discrete Optimization, MRF Learning

1. Introduction

The goal of computer vision is to enable the machine to understand the world -

often calledvisual perception- through the processing of digital signals. Such an

understanding for the machine is done by extracting useful information from the digital

signals and performing complex reasoning. Mathematically, let D denote the observed
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data andx a latent parameter vector that corresponds to a mathematical answer to

the visual perception problem. Visual perception can then be formulated as finding

a mapping fromD to x, which is essentially aninverse problem[1]. Mathematical

methods usually model such a mapping through an optimization problem as follows:

xopt = arg min
x

E(x,D; w) , (1)

where the energy (or cost, objective) functionE(x,D; w) can be regarded as a quality

measure of a parameter configurationx in the solution space given the observed data

D, andw denotes the model parameters1. Hence, visual perception involves three main

tasks: modeling, inferenceand learning. The modeling has to accomplish: (i) the

choice of an appropriate representation of the solution using a tuple of variablesx; and

(ii) the design of the class of energy functionsE(x,D; w) which can correctly measure

the connection betweenx andD. The inference has to search for the configuration ofx

leading to the optimum of the energy function, which corresponds to the solution of the

original problem. The learning aims to select the optimal model parametersw based

on the training data.

The main difficulty in the modeling lies in the fact that most of the vision problems

are inverse, ill-posed and require a large number of latent and/or observed variables to

express the expected variations of the perception answer. Furthermore, the observed

signals are usually noisy, incomplete and often only provide a partial view of the de-

sired space. Hence, a successful model usually requires a reasonableregularization,

a robustdata measure, and a compactstructurebetween the variables of interest to

adequately characterize their relationship (which is usually unknown). In the Bayesian

paradigm, themodel prior, thedata likelihoodand thedependence propertiescorre-

spond respectively to these terms, and the maximization of the posterior probability of

the latent variables corresponds to the minimization of theenergy function in Eq. 1.

In addition to these, another issue that should be taken intoaccount during the model-

1For the purpose of conciseness,D and/or w may not be explicitly written in the energy function in the
following presentation unless it is necessary to do so.
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ing is the tractability of the inference task, in terms of computational complexity and

optimality quality, which introduces additional constraints on the modeling step.

Probabilistic graphical models(usually referred to asgraphical models) combine

probability theory and graph theory towards a natural and powerful formalism for mod-

eling and solving inference and estimation problems in various scientific and engineer-

ing fields. In particular, one important type of graphical models - Markov Random

Fields (MRFs) - has become a ubiquitous methodology for solving visual perception

problems, in terms of both the expressive potential of the modeling process and the

optimality properties of the corresponding inference algorithm, due to their ability to

model soft contextual constraints between variables and the enormous development of

inference methods for such models. Generally speaking, MRFs have the following

major useful properties that one can benefit from during the algorithm design. First,

MRFs provide a modular, flexible and principled way to combine regularization (or

prior), data likelihood terms and other useful cues within asingle graph-formulation,

where continuous and discrete variables can be simultaneously considered. Second,

the graph theoretic side of MRFs provides a simple way to visualize the structure of a

model and facilitates the choice and the design of the model.Third, the factorization of

the joint probability over a graph could lead to inference problems that can be solved

in a computationally efficient manner. In particular, development of inference methods

based on discrete optimization enhances the potential of discrete MRFs and signifi-

cantly enlarges the set of visual perception problems to which MRFs can be applied.

Last but not least, the probabilistic side of MRFs gives riseto potential advantages in

terms of parameter learning (e.g., [2, 3, 4, 5]) and uncertainty analysis (e.g., [6, 7]) over

classic variational methods [8, 9], due to the introductionof probabilistic explanation

to the solution [1]. The aforementioned strengths have resulted in the heavy adop-

tion of MRFs towards solving many computer vision, computergraphics and medical

imaging problems. During the past decade, different MRF models as well as efficient

inference and learning methods have been developed for addressing numerous low, mid

and high-level vision problems. While most of the literatureis on pairwise MRFs, we

have also witnessed significant progress of higher-order MRFs during the recent years,

which substantially enhances the expressiveness of graph-based models and expands
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the domain of solvable problems. We believe that a compact and informative summary

of the major literature in this research topic will be valuable for the reader to rapidly

obtain a global view and hence better understanding of such an important tool.

To this end, we present in this paper a comprehensive survey of MRFs in com-

puter vision and image understanding, with respect to the modeling, the inference and

the learning. The remainder of this paper is organized as follows. Section 2 intro-

duces preliminary knowledge on graphical models. In section 3, different important

subclasses of MRFs as well as their important applications in visual perception are dis-

cussed. Representative techniques for MAP inference in discrete MRFs are presented

in section 4. MRF learning techniques are discussed in section 5. Finally, we conclude

the survey in section 6.

2. Preliminaries

A graphical model consists of a graph where each node is associated with a ran-

dom variable and an edge between a pair of nodes encodes probabilistic interaction

between the corresponding variables. Each of such models provides a compact rep-

resentation for a family of joint probability distributions which satisfy the conditional

independence properties determined by the topology/structure of the graph: the asso-

ciated family of joint probability distributions can be factorized into a product of local

functions each involving a (usually small) subset of variables. Such a factorization is

the key idea of graphical models.

There are two common types of graphical models:Bayesian Networks(also known

asDirected Graphical Modelsor Belief Networks) andMarkov Random Fields(also

known asUndirected Graphical Modelsor Markov Networks), corresponding to di-

rected and undirected graphs, respectively. They are used to model different families

of distributions with different kinds of conditional independences. It is usually con-

venient to covert both of them into a unified representation which is calledFactor

Graph, in particular for better visualizing potential functionsand performing inference

in higher-order models. As preliminaries for the survey, wewill proceed with a brief

presentation on Markov random fields and factor graphs in theremainder of this sec-
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Figure 1: Examples of Markov Random Fields and Factor Graphs.Note that the Markov random field in (a)
can be represented by the two factor graphs (b) and (c). Nevertheless, the factor graph in (c) contains factors
corresponding to non-maximal cliques.

tion. We suggest the reader being interested in a larger and more in depth overview the

following publications [10, 11, 12, 13].

2.1. Notations

Let us introduce the necessary notations that will be used throughout this survey.

For a graphical model, letG = (V,E) denote the corresponding graph which consists

of a setV of nodes and a setE of edges. Then, for each nodei (i ∈ V), let Xi denote

the associated random variable,xi the realization ofXi , andXi the state space ofxi (i.e.,

xi ∈ Xi). Also, let X = (Xi)i∈V denote the joint random variable andx = (xi)i∈V the

realization (configuration) of the graphical model taking values in its spaceX which

is defined as the Cartesian product of the spaces of all individual variables,i.e., X =
∏

i∈V Xi .

For the purposes of simplification and concreteness, “probability distribution” is

used to refer to “probability mass function” (with respect to the counting measure) in

discrete cases and “probability density function” (with respect to the Lebesgue mea-

sure) in continuous cases. Furthermore, we usep(x) to denote the probability distri-

bution on a random variableX, and usexc (c ⊆ V) as the shorthand for a tuplec of

variables,i.e., xc = (xi)i∈c. Due to the one-to-one mapping between a node and the

associated random variable, we often use “node” to refer to the corresponding random

variable in case there is no ambiguity.
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2.2. Markov Random Fields (Undirected Graphical Models)

A Markov Random Field (MRF)has the structure of an undirected graphG, where

all edges ofE are undirected (e.g., Fig. 1(a)), and holds the following local indepen-

dence assumptions (referred to aslocal Markov property) which impose that a node is

independent of any other node given all its neighbors:

∀ i ∈ V,Xi⊥XV−{i}|XNi , (2)

whereNi = { j|{i, j} ∈ E} denotes the set of neighbors of nodei in the graphG, and

Xi⊥X j |Xk denotes the statement thatXi andX j are independent givenXk. An important

notion in MRFs isclique, which is defined as a fully connected subset of nodes in

the graph. A clique ismaximal if it is not contained within any other larger clique.

The associated family of joint probability distributions are those satisfying the local

Markov property (i.e., Eq. 2). According to Hammersley-Clifford theorem [14, 15],

they areGibbs distributionswhich can be factorized into the following form:

p(x) =
1
Z

∏

c∈C

ψc(xc) , (3)

whereZ is the normalizing factor (also known as thepartition function), ψc(xc) denotes

thepotential functionof a cliquec (or: clique potential) which is a positive real-valued

function on the possible configurationxc of the cliquec, andC denotes a set of cliques2

contained in the graphG. We can also verify that any distribution with the factorized

form in Eq. 3 satisfies the local Markov property in Eq. 2.

Theglobal Markov propertyconsists of all the conditional independences implied

within the structure of MRFs, which are defined as:∀V1, V2, V3 ⊆ V, if any path

from a node inV1 to a node inV2 includes at least one node inV3, thenXV1⊥XV2 |XV3.

2Note that any quantities defined on a non-maximal clique can always be redefined on the corresponding
maximal clique, and thusC can also consist of only the maximal cliques. However, using only maximal
clique potentials may obscure the structure of original cliques by fusing together the potentials defined on a
number of non-maximal cliques into a larger clique potential. Compared with such a maximal representation,
a non-maximal representation clarifies specific features of the factorization and often can lead to computa-
tional efficiency in practice. Hence, without loss of generality, we donot assume thatC consists of only
maximal cliques in this survey.
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Let I(G) denote the set of such conditional independences. The identification of these

independences boils down to a “reachability” problem in graph theory: considering a

graphG′ which is obtained by removing the nodes inV3 as well as the edges con-

nected to these nodes fromG, XV1⊥XV2 |XV3 is true if and only if there is no path in

G′ that connects any node inV1 \ V3 and any node inV2 \ V3. This problem can be

solved using standard search algorithms such as breadth-first search (BFS) [16]. Note

that the local Markov property and the global Markov property are equivalent for any

positive distribution. Hence, if a positive distribution can be factorized into the form

in Eq. 3 according toG, then it satisfies all the conditional independences inI(G).

Nevertheless, an distribution instance that can be factorized overG, may satisfy more

independences than those inI(G) [13].

MRFs provide a principled probabilistic framework to modelvision problems,

thanks to their ability to model soft contextual constraints between random variables

[17, 18]. The adoption of such constraints is important in vision problems, since the

image and/or scene modeling usually involves interactions between a subset of pix-

els and/or scene components. Often, these constraints are referredto as “prior” of the

whole system. Through MRFs, one can use nodes to model variables of interest and

combine different available cues that can be encoded by clique potentials within a uni-

fied probabilistic formulation. Then the inference can be performed viaMaximum a

posteriori(MAP) estimation:

xopt = arg max
x∈X

p(x) . (4)

Since the potential functions are positive, we can defineclique energyθc as a real

function on a cliquec (c ∈ C):

θc(xc) = − logψc(xc) . (5)

Due to the one-to-one mapping betweenθc andψc, we also refer toθc as potential

function(or clique potential) on cliquec in the remainder of this survey, leading to a

7



more convenient representation of the joint distributionp(x):

p(x) =
1
Z

exp{−E(x)} , (6)

whereE(x) denotes theenergyof the MRF and is defined as a sum of clique potentials:

E(x) =
∑

c∈C

θc(xc) . (7)

Since the “-log” transformation between the distributionp(x) and the energyE(x) is

a monotonic function, the MAP inference in MRFs (Eq. 4) is equivalent to the mini-

mization ofE(x) as follows:

xopt = arg min
x∈X

E(x) . (8)

In cases ofdiscrete MRFswhere the random variables are discrete3 (i.e., ∀ i ∈ V,

Xi consists of a discrete set), the above optimization becomesa discrete optimization

problem. Numerous works have been done to develop efficient MRF inference algo-

rithms using discrete optimization theories and techniques (e.g., [23, 24, 25, 26, 27, 28,

29, 30, 31]), which have been successfully employed to efficiently solve many vision

problems using MRF-based methods (e.g., [32, 33, 34, 35, 36]). Due to the advantages

regarding both the modeling and the inference, as discussedpreviously, discrete MRFs

have been widely employed to solve vision problems. We will provide a detailed sur-

vey on an important number of representative MRF-based vision models in section 3

and MAP inference methods in section 4.

2.3. Factor Graphs

Factor graph[37, 38] is a unified representation for both BNs and MRFs, which

uses additional nodes, namedfactor nodes4, to explicitly describe the factorization

3We should note thatcontinuous MRFshave also been used in the literature (e.g., [19, 20, 21]). An
important subset of continuous MRFs that has been well studied isGaussian MRFs[22].

4We call the nodes in original graphsusual nodeswhen an explicit distinction between the two types of
nodes is required to avoid ambiguities.
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of the joint distribution in the graph. More specifically, a set F of factor nodes are

introduced into the graph, each corresponding to an objective function term defined on

a subset of usual nodes. Each factor encodes a potential function defined on a clique

in cases of MRFs5 (see Eq. 3 or 7). The associated joint probability is a product of

factors:

p(x) =
1
Z

∏

f∈F

φ f (xf ) . (9)

Similar to MRFs, we can define the energy of the factor graph as:

E(x) =
∑

f∈F

θ f (xf ) , (10)

whereθ f (xf ) = − logφ f (xf ). Note that there can be more than one factor graphs

corresponding to a BN or MRF. Fig. 1(b-c) shows two examples of factor graphs which

provide two different possible representations for the MRF in Fig. 1(a).

Factor graphs are bipartite, since there are two types of nodes and no edge exists be-

tween two nodes of same types. Such a representation conceptualizes in a clear manner

the underlying factorization of the distribution in the graphical model. In particular for

MRFs, factor graphs provide a feasible representation to describe explicitly the cliques

and the corresponding potential functions when non-maximal cliques are also consid-

ered (e.g., Fig. 1(c)). The same objective can be hardly met using the usual graphical

representation of MRFs. Computational inference is another strength of factor graphs

representations. Thesum-productandmin-sum(or: max-product6) algorithms in the

factor graph [38, 11] generalize the classic counterparts [39, 40] in the sense that the

order of factors can be greater than two (see Algorithm 1). Furthermore, since an

MRF with loops may have no loop in its corresponding factor graph (e.g., see the MRF

in Fig. 1(a) and the factor graphs in Fig. 1(b-c)), in such cases themin-sumalgorithm in

the factor graph can perform the MAP inference exactly with polynomial complexity.

5Each factor encodes a local conditional probability distribution defined on a usual node and its parents
in cases of BNs.

6The max-productalgorithm is to maximize the probabilityp(x) which is a product of local functions
(Eq. 9), while themin-sumalgorithm is to minimize the corresponding energy which is a sumof local energy
functions (Eq. 10). They are essentially the same algorithm.
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Such factor graphs without loop (e.g., Fig. 1(b-c)) are referred to asfactor trees.

3. MRF-based Vision Models

According to the order of interactions between variables, MRF models can be clas-

sified intopairwise modelsandhigher-order models. Another important class isCon-

ditional Random Fields(CRFs). Below, we present these three typical models that are

commonly used in vision community.

3.1. Pairwise MRF Models

The most common type of MRFs that is widely used in computer vision is thepair-

wise MRF, in which the associated energy is factorized into a sum of potential functions

defined on cliques of order strictly less than three. More specifically, a pairwise MRF

consists of a graphG with a set (θi(·))i∈V of unary potentials(also calledsingleton po-

tentials) defined on single variables and a set (θi j (·)){i, j}∈E of pairwise potentialsdefined

on pairs of variables. The MRF energy has the following form:

E(x) =
∑

i∈V

θi(xi) +
∑

{i, j}∈E

θi j (xi j ) . (11)

Pairwise MRFs have attracted the attention of a lot of researchers and numerous

works have been done in past decades, mainly due to the facts that pairwise MRFs in-

herit simplicity and computational efficiency, and that the interaction between pairs of

variables is the most common and fundamental type of interactions required to model

many vision problems. In computer vision, such works include both the modeling of

vision problems using pairwise MRFs (e.g., [41, 42, 43, 36, 44]) and the efficient infer-

ence in pairwise MRFs (e.g., [23, 26, 28, 27, 45]). Two most typical graph structures

used in computer vision aregrid-like structures(e.g., Fig. 2) andpart-based structures

(e.g., Fig. 3). Grid-like structures provide a natural and reasonable representation for

images, while part-based structures are often associated with deformable and/or artic-

ulated objects.
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(a) 4-neighborhood system (b) 8-neighborhood system

Figure 2: Examples of MRFs with Grid-like Structures

3.1.1. Grid-like Models

Pairwise MRFs ofgrid-like structures(Fig. 2) have been widely used in computer

vision to deal with numerous important problems, such as image denoising/restoration

(e.g., [41, 46, 47]), super-resolution (e.g., [48, 49, 50]), stereo vision/multi-view recon-

struction (e.g., [51, 32, 52]), optical flow and motion analysis (e.g., [53, 54, 55, 56]),

image registration and matching (e.g., [33, 57, 58, 59]), segmentation (e.g., [60, 42, 36,

61]) and over-segmentation (e.g., [62, 63, 64]).

In this context, the nodes of an MRF correspond to the latticeof pixels7. The

edges corresponding to pairs of neighbor nodes are considered to encode contextual

constraints between nodes. The random variablexi associated with each nodei rep-

resents a physical quantity specific to problems8 (e.g., an index denoting the segment

to which the corresponding pixel belongs for image segmentation problem, an integral

value between 0 and 255 denoting the intensity of the corresponding pixel for gray im-

age denoising problem,etc.). The data likelihood is encoded by the sum of the unary

potentialsθi(·), whose definition is specific to the considered application(e.g., for im-

age denoising, such unary terms are often defined as a penaltyfunction based on the

deviation of the observed value from the underlying value).The contextual constraints

compose a prior model on the configuration of the MRF, which isusually encoded by

the sum of all the pairwise potentialsθi j (·, ·). The most typical and commonly used

contextual constraint is thesmoothness, which imposes that physical quantities corre-

sponding to the states of nodes varies “smoothly” in the spatial domain as defined by

7Other homogeneously distributed units such as 3D voxels and control points [33] can also be considered
in such MRFs.

8An MRF is calledbinary MRFif each node has only two possible values, 0 or 1.
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the connectivity of the graph. To this end, the pairwise potential θi j (·, ·) between a pair

{i, j} of neighbor nodes is defined as a cost term that penalizes the variation of the states

between the two nodes:

θi j (xi j ) = ρ(xi − x j) , (12)

whereρ(·) is usually an even and non-decreasing function. In computer vision, com-

mon choices forρ(·) are(generalized) Potts model9 [66, 67], truncated absolute dis-

tanceandtruncated quadratic, which are typicaldiscontinuity preservingpenalties:

ρ(xi − x j) =



































wi j · (1− δ(xi − x j)) (Potts models)

min(Ki j , |xi − x j |) (truncated absolute distance)

min(Ki j , (xi − x j)2) (truncated quadratic)

, (13)

wherewi j ≥ 0 is a weight coefficient10 for the penalties, Kronecker deltaδ(x) is equal

to 1 whenx = 0, and 0 otherwise, andKi j is a coefficient representing the maximum

penalty allowed in the truncated models. More discontinuity preserving regularization

functions can be found in for example [68, 69]. Last, it should be mentioned that

pairwise potentials in such grid-like MRFs can also be used to encode other contextual

constraints, such asstar shape priors[70], compact shape priors[71], layer constraints

[62], Hausdorff distance priors[72] andordering constraints[73, 74].

The grid-like MRF presented above can be naturally extendedfrom pixels to other

units. For example, there exist works that use superpixel primitives instead of pixel

primitives when dealing with images (e.g., [75, 76]), mainly aiming to gain computa-

tional efficiency and/or use superpixels as regions of support to compute featuresfor

other mid-level and high-level vision applications. Another important case is the seg-

mentation, registration and tracking of 3D surface meshes (e.g., [77, 78]), where we

aim to infer the configuration of each vertex or facet on the surface. In these cases, the

node of MRFs can be used to model the superpixel, vertex or face, nevertheless, the

topology could be a less regular grid.

9Note thatIsing model[65, 41] is a particular case ofPotts modelwhere each node has two possible
states.

10wi j is a constant for all pairs{i, j} of nodes in the original Potts model in [66].
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(a) Pictorial Structure (b) MRF model corresponding to (a)

Figure 3: Example of MRFs with Pictorial Structures (The original image used in (a) is fromHumanEva-I
database [79]:http://vision.cs.brown.edu/humaneva/.)

3.1.2. Part-based Models

MRFs of pictorial structures(Fig. 3) provide a natural part-based modeling tool

for representing deformable objects and in particular articulated objects. Their nodes

correspond to components of such objects. The corresponding latent variables rep-

resent the spatial pose of the components. An edge between a pair of nodes encode

various interactions such as kinematic constraints between the corresponding pair of

components. In [43],Pictorial model[80] was employed to deal with pose recogni-

tion of human body and face efficiently with dynamic programming. In this work, a

tree-like MRF (see Fig. 3) was employed to model spring-likepriors between pairs of

components through pairwise potentials, while the data likelihood is encoded in the

unary potentials each of which is computed from the appearance model of the corre-

sponding component. The pose parameters of all the components are estimated though

the MAP inference, which can be done very efficiently in such a tree-structured MRF

using dynamic programming [81, 16] (i.e., min-sum belief propagation [39, 40, 11]).

Later, part-based models have been adopted and/or extended to deal with the pose

estimation, detection and tracking of deformable object such as human body [20, 82,

83, 84, 85], hand [86, 87] and other objects [88, 89]. In [88],the part-based model

was extended, with respect to that of [43], regarding the topology of the MRF as well

as the image likelihood in order to deal with the pose estimation of animals such as

cows and horses. The topology of part-based models was also extend to other typical

graphs such ask-fans graphs[90, 91] andout-planer graphs[92]. Pictorial structures

conditioned onposelets[93] were proposed in [85] to incorporate higher-order depen-

dency between the parts of the model while keeping the inference efficient (since the

model becomes tree-structured at the graph-inference stage). Continuous MRFs of pic-
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torial structures were proposed in [20] and [86] to deal withbody and/or hand tracking,

where nonparametric belief propagation algorithms [19, 21] were employed to perform

inference. In the subsequent papers [82, 87], occlusion reasoning was introduced into

their graphical models in order to deal with occlusions between different components.

Indeed, the wide existence of such occlusions in the cases ofarticulated objects is an

important limitation of the part-based modeling. Recently, a rigorous visibility model-

ing in graphical models was achieved in [94] via the proposedjoint 2.5D layered model

where top-down scene-level and bottom-up pixel-level representations are seamlessly

combined through local constraints that involve only pairsof variables (as opposed

to previous 2.5D layered models where the depth ordering was commonly modeled

as a total and strict order between all the objects), based onwhich image segmenta-

tion (pixel-level task), multi-object tracking and depth ordering (scene-level tasks) are

simultaneously performed via a single pairwise MRF model.

The notion of “part” can also refer to a feature point or landmark distributed on

the surface of an object. In such a case, MRFs provide a powerful tool for modeling

prior knowledge (e.g., generality and intra-class variations) on a class of shapes, which

is referred to asstatistical shape modeling[95]. The characterization of shape priors

using local interactions (e.g., statistics on the Euclidean distance) between points can

lead to useful properties such as translation and rotation invariances with respect to the

global pose of the object in the observed image. Together with efficient inference meth-

ods, such MRF-based prior models have been employed to efficiently solving problems

related to the inference of the shape model such as knowledge-based object segmenta-

tion (e.g., [96, 97]). However, the factorization of probability or energy terms into an

MRF can be very challenging, where good approximate solutions may be resorted to

(e.g., [97, 98]). In this line of research, recently [99] proposed to employdivergence

theoremto exactly factorize regional data likelihood in their pairwise MRF model for

object segmentation.

Remark

The computer vision community has primarily focused on pairwise MRF models

where interactions between parameters were often at the level of pairs of variables.
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This was a convenient approach driven mostly from the optimization viewpoint since

pairwise MRFs inherit the lowest rank of interactions between variables and numerous

efficient algorithms exist for performing inference in such models. Such interactions

to certain extent can cope with numerous vision problems (segmentation, estimation,

motion analysis and object tracking, disparity estimationfrom calibrated views,etc.).

However, their limitations manifest when a better performance is desired for those

problems or when graph-based solutions are resorted to for solving more complex

vision problems, where higher-order interactions betweenvariables are needed to be

modeled. One the other hand, the rapid development of computer hardwares in terms

of memory capacity and CPU speed provides the practical baseand motivates the con-

sideration of higher-order interactions in vision models.In such a context, higher-order

MRF models has attracted more and more attentions, and many related vision models

and inference methods have been proposed.

3.2. Higher-order MRF Models

Higher-order MRFs11 involve potential functions that are defined on cliques con-

taining more than two nodes and cannot be further decomposed. Such higher-order

potentials, compared to pairwise ones, allow a better characterization of statistics be-

tween random variables and increase largely the ability of graph-based modeling. We

summary below three main explorations of such advantages insolving vision problems.

First, for many vision problems that already were addressedby pairwise models,

higher-order MRFs are often adopted to model more complex and/or natural statis-

tics as well as richer interactions between random variables, in order to improve the

performance of the method. One can cite for example the higher-order MRF model

proposed in [100, 101] to better characterize image priors,by using the Product-of-

Experts framework to define the higher-order potentials. Such a higher-order model

was successfully applied in image denoising and inpaintingproblems [100, 101].Pn

Potts modelwas proposed in [102, 103], which considers a similar interaction as the

generalized Potts model [67] (see Eq. 13), but betweenn nodes instead of between

11They are also referred to ashigh-order MRFsin part of the literature.
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two nodes, and leads to better performance in image segmentation. This model is a

strict generalization of the generalized Potts model and has been further enriched to-

wardsrobustPn modelin [104, 105]. [106] used higher-order smoothness priors for

addressing stereo reconstruction problems, leading better performance than pairwise

smoothness priors. Other types of higher-order pattern potentials were also consid-

ered in [107] to deal with image/signal denoising and image segmentation problems.

All these works demonstrated that the inclusion of higher-order interactions is able to

significantly improve the performance compared to pairwisemodels in the considered

vision problems.

Higher-order models become even more important in cases where we need to model

measures that intrinsically involve more than two variables. A simple example is the

modeling of second-order derivative (or even higher-orderderivatives), which is often

used to measure bending force in shape prior modeling such asactive contour models

(i.e., “Snake”) [108]. In [109], dynamic programming was adopted to solve “Snake”

model in a discrete setting, which is essentially a higher-order MRF model. A third-

order spatial priors based on second derivatives was also introduced to deal with image

registration in [110]. In the optical flow formulation proposed in [111], higher-order

potentials were used to encode angle deviation prior, non-affine motion prior as well

as the data likelihood. [112] proposed a compact higher-order model that encodes a

curvature prior for pixel labeling problem and demonstrated its performance in im-

age segmentation and shape inpainting problems.Box priorswere introduced in [113]

for performing image segmentation given a user-provided object bounding box, where

topological constraints defined based on the bounding box are incorporated into the

whole optimization formulation and have been demonstratedto be able to prevent the

segmentation result from over-shrinking and ensure the tightness of the object bound-

ary delimited by the user-provided box. [114] proposed a higher-order illumination

model to couple the illumination, the scene and the image together so as to jointly

recover the illumination environment, scene parameters, and an estimate of the cast

shadows given a single image and coarse initial 3D geometry.Another important moti-

vation for employing higher-order models is to characterize statistics that are invariant

with respect to global transformation when dealing with deformable shape inference
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[115, 116]. Such approaches avoid explicit estimation of the global transformation

such as 3D pose (translation, rotation and scaling) and/or camera viewpoint, which is

substantially beneficial to both the learning and the inference of the shape model.

Meanwhile,global models, which include potentials involving all the nodes, have

been developed, together with the inference algorithms forthem. For example, global

connectivity priors (e.g., the foreground segment must be connected) were used in

[117] and [118] to enforce the connectedness of the resulting pixel labeling in binary

image segmentation, which were shown to be able to achieve better performance com-

pared to merely using Potts-model with smoothness terms (see section 3.1.1). In order

to deal with unsupervised image segmentation where the number of segments are un-

known in advance, [119, 120] introduced ‘label costs” [121]into graph-based segmen-

tation formulation, which imposes a penalty to a labell (or a subsetLs of labels) from

the predefined possible label setL if at least one node is labeled asl (or an element in

Ls) in the final labeling result. By doing so, the algorithm automatically determines a

subset of labels fromL that are finally used, which corresponds to a model selection

process. Another work in a similar line of research is presented in [122, 123], where

“object co-occurrence statistics” - a measure of which labels are likely to appear to-

gether in the labeling result - are incorporated within traditional pairwise MRF/CRF

models for addressing object class image segmentation and have been shown to im-

prove significantly the segmentation performance.

3.3. Conditional Random Fields

A Conditional Random Field (CRF) [124, 125] encodes, with the same concept as

the MRF earlier described, a conditional distributionp(X|D) whereX denotes a tuple

of latent variables andD a tuple of observed variables (data). Accordingly, the Markov

properties for the CRF are defined on the conditional distribution p(X|D). The local

Markov properties in such a context become:

∀ i ∈ V,Xi⊥XV−{i}|{XNi ,D} , (14)
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while the global Markov property can also be defined accordingly. The conditional

distribution p(X|D) over the latent variablesX is also a Gibbs distribution and can be

written as the following form:

p(x|D) =
1

Z(D)
exp{−E(x; D)} , (15)

where the energyE(x; D) of the CRF is defined as:

E(x; D) =
∑

c∈C

θc(xc; D) . (16)

We can observe that there is no modeling on the probabilisticdistribution over the vari-

able inD, which relaxes the concern on the dependencies between these observed vari-

ables, whereas such dependencies can be rather complex. Hence, CRFs reduce signifi-

cantly difficulty in modeling the joint distribution of the latent and observed variables,

and consequently, observed variables can be incorporated into the CRF framework in a

more flexible way. Such a flexibility is one of the most important advantages of CRFs

compared with generative MRFs12 when used to model a system. For example, the fact

that clique potentials can be data dependent in CRFs could lead to more informative

interactions than data independent clique potentials. Such an concept was adopted for

example in binary image segmentation [127], where the intensity contrast and the spa-

tial distance between neighbor pixels are employed to modulate the values of pairwise

potentials of a grid-like CRF, as opposed to Potts models (see section 3.1.1). Despite

the difference in the probabilistic explanation, the MAP inferences in generative MRFs

and CRFs boil down to the same problem.

CRFs have been applied to various fields such as computer vision, bioinformatics

and text processing among others. In computer vision, besides [127], grid-like CRFs

were also employed in [128] to model spatial dependencies inthe image, leading to a

data-dependent smoothness terms between neighbor pixels.With the learned parame-

ters from training data, a better performance has been achieved in the image restoration

12Like [126], we use the termgenerative MRFsto distinguish the usual MRFs from CRFs.
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experiments compared to the classic Ising MRF model [41]. Hierarchical CRFs have

also been developed to incorporate features from different levels so as to better perform

object class image segmentation. One can cite for example the multi-scale CRF model

introduced in [129] and “associative hierarchical CRFs” proposed in [130]. Moreover,

CRFs have also been applied for object recognition/detection. For example, a dis-

criminative part-based approach was proposed in [131] to recognize objects based on

a tree-structured CRF. In [132], object detectors were combined within a CRF model,

leading to an efficient algorithm to jointly estimate the class category, location, and

segmentation of objects/regions from 2D images. Last, it is worth mentioning that re-

cently, based on a mean field approximation to the CRF distribution, [133] proposed

a very efficient approximate inference algorithm for fully connectedgrid-like CRFs

where pairwise potentials corresponds to a linear combination of Gaussian kernels, and

demonstrated that such a dense connectivity at the pixel level significantly improves the

accuracy in class segmentation compared to 4-neighborhoodsystem (Fig. 2) [134] and

robustPn model[105]. Their techniques were further adopted and extended to address

optical flow computing [135, 136], and to address cases wherepairwise potentials are

non-linear dissimilarity measures that do not required to be distance metrics [137].

4. MAP Inference Methods

An essential problem regarding the application of MRF models is how to infer the

optimal configuration for each of the nodes. Here, we focus onthe MAP inference

(i.e., Eq. 4) in discrete MRFs, which boils down to an energy minimization problem

as shown in Eq. 8. Such a combinatorial problem is known to be NP-hard in general

[23, 25], except for some particular cases such as MRFs of bounded tree-width [138,

139, 12] (e.g., tree-structured MRFs [39]) and pairwise MRFs with submodular energy

[25, 140].

The most well-known early (before the 1990s) algorithms foroptimizing the MRF

energy wereiterated conditional modes(ICM) [141], simulated annealingmethods

(e.g., [41, 142, 143]) andhighest confidence first (HCF)[144, 145]. While being com-

putational efficient, ICM and HCF suffer from their ability to recover a good optimum.

19



On the other hand, for simulated annealing methods, even if in theory they provide cer-

tain guarantees on the quality of the obtained solution, in practice from computational

viewpoint such methods are impractical. In the 1990s, more advanced methods, such as

loopy belief propagation(LBP) (e.g., [48, 146, 147]) andgraph cutstechniques (e.g.,

[46, 51, 67, 148, 23]), provided powerful alternatives to the aforementioned methods

from both computational and theoretical viewpoints and have been used to solve nu-

merous visual perception problems (e.g., [48, 58, 46, 148, 32, 60, 42]). Since then,

the MRF optimization is experiencing a renaissance, and more and more researchers

have been working on it. For recent MRF optimization techniques, one can cite for ex-

ampleQPBOtechniques (e.g., [149, 150, 151, 152]), LP primal-dual algorithms (e.g.,

[153, 154, 29]) as well as dual methods (e.g., [26, 28, 154, 155]).

There exist three main classes of MAP inference methods for pairwise MRFs and

they also have been extended to deal with higher-order MRFs.In order to provide an

overview of them, in this section we will first reviewgraph cutsand their extensions for

minimizing the energy of pairwise MRFs in section 4.1. Then in section 4.2 and Ap-

pendix B, we will describe themin-sum belief propagationalgorithm in factor trees

and also show its extensions to dealing with an arbitrary pairwise MRF. Following that,

we review in section 4.3 recent developed dual methods for pairwise MRFs, such as

tree-reweighted message passingmethods (e.g., [26, 28]) anddual-decompositionap-

proaches (e.g., [154, 156]). Last but not least, a survey on MRF inference methods for

higher-order MRFs will be provided in section 4.4.

4.1. Graph Cuts and Extensions

Graph cutsconsist of a family of discrete algorithms that usemin-cut/max-flow

techniques to efficiently minimize the energy of discrete MRFs and have been used to

solve many vision problems (e.g., [46, 148, 42, 32, 36, 34]).

The basic idea of graph cuts is to construct a directed graphGst = (Vst,Est) (called

s-t graph13) with two special terminal nodes (i.e., the sources and the sinkt) and non-

negative capacity settingc(i, j) on each directed edge (i, j) ∈ Est, such that the cost

13Note that generations such asmulti-way cutproblem [157] which involves more than two terminal nodes
are NP-hard.
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C(S,T) (Eq. 17) of the s-t cut that partitions the nodes into two disjoint sets (S andT

such thats ∈ S andt ∈ T) is equal to the energy of the MRF with the corresponding

configuration14 x (up to a constant difference):

C(S,T) =
∑

i∈S, j∈T,(i, j)∈Est

c(i, j) . (17)

An MRF that has such an s-t graph is calledgraph-representable15 and can be

solved in polynomial time using graph cuts [25]. The minimization of the energy of

such an MRF is equivalent to the minimization of the cost of the s-t-cut problem (i.e.,

min-cut problem). The Ford and Fulkerson theorem [158] states that the solution of the

min-cut problem corresponds to the maximum flow from the sources to the sinkt (i.e.,

max-flow problem). Such a problem can be efficiently solved in polynomial time using

many existing algorithms such as Ford-Fulkerson style augmenting paths algorithms

[158] and Goldberg-Tarjan style push-relabel algorithms [159]. Note that the min-cut

problem and the max-flow problem are actually dual LP problems of each other [160].

Unfortunately, not all the MRFs are graph-representable. Previous works have been

done to explore the class of graph-representable MRFs (e.g., [161, 24, 25, 140]). They

demonstrated that a pairwise discrete MRF is graph-representable so that the global

minimum of the energy can be achieved in polynomial time via graph cuts, if the energy

function of the MRF is submodular (see Appendix A for the definition of submodular-

ity). However, in numerous vision problems, more challenging energy functions that

do not satisfy the submodular condition (Eq. A.1) are often required. The minimiza-

tion of such non-submodular energy functions is NP-hard in general [23, 25] and an

approximation algorithm would be required to approach the global optimum.

More than two decades ago, [46] first proposed to use min-cut/max-flow techniques

to exactly optimize the energy of a binary MRF (i.e., Ising model) for image restora-

tion in polynomial time. However, the use of such min-cut/max-flow techniques did

14The following rule can be used to associate an s-t cut to an MRFlabeling: for a nodei ∈ Vst − {s, t},
i) if i ∈ S, the labelxi of the corresponding node in the MRF is equal to 0; ii) ifi ∈ T, the labelxi of the
corresponding node in the MRF is equal to 1.

15Note that, in general, such an s-t graph is not unique for a graph-representable MRF.
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not draw much attention in computer vision community in the following decade since

then, probably due to the fact that the work was published in ajournal of statistics com-

munity and/or that the model considered in [46] is quite simple. Such a situation has

changed in late 1990s when a number of techniques based on graph cuts were proposed

to solve more complicated MRFs. One can cite for example the works described in

[67, 51, 148], which proposed to use min-cut/max-flow techniques to minimize multi-

label MRFs. In particular, the work introduced in [67] achieved, based on the proposed

optimization algorithms, much more accurate results than the state-of-the-art in com-

puting stereo depth, and thus motivated the use of their optimization algorithms for

many other problems (e.g., [162, 163, 164]), also leading to excellent performance.

This significantly popularized graph cuts techniques in computer vision community.

Since then, numerous works have been done for exploring larger subsets of MRFs that

can be exactly or approximately optimized by graph cuts and for developing more effi-

cient graph-cuts-based algorithms.

Towards Multi-label MRFs

There are two main methodologies for solving multi-label MRFs based on graph

cuts: label-reductionandmove-making.

The first methodology (i.e., label-reduction) is based on the observation that some

solvable types of multi-label MRFs can be exactly solved in polynomial time using

graph cuts by first introducing auxiliary binary variables each corresponding to a pos-

sible label of a node and then deriving a min-cut problem thatis equivalent to the

energy minimization of the original MRF. We can cite for example an efficient graph

construction method proposed in [24] to deal with arbitraryconvexpairwise MRFs,

which was further extended to submodular pairwise MRFs in [140]. Such a methodol-

ogy can perform MAP inference in some types of MRFs. However,the solvable types

are quite limited, since it is required that the obtained binary MRF (via introducing aux-

iliary binary variables) should be graph-representable. Whereas, the other optimization

methodology (i.e., move-making) provides a very important tool for addressing larger

sub-classes of MRFs.

The main idea ofmove-makingis to optimize the MRF energy by defining a set of
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proposals (i.e., possible “moves”) based on the initial MRF configuration and choosing

the best move as the initial configuration for the next iteration, which is done iteratively

until the convergence when no move leads to a lower energy. The performance of an

algorithm developed based on such a methodology mainly depends on the size (denoted

byM) of the set of proposals at each iteration. For example, ICM [141] iteratively

optimizes the MRF energy with respect to a node by fixing the configuration of all

the other nodes. It can be regarded as the simplest move-making approach, where

M is equal to the number of labels of the node that is consideredto make move at

an iteration. ICM has been shown to perform poorly when dealing with vision MRF

models, due to the small setM of proposals [35].

Graph-cuts-based methods have been proposed to exponentially increase the size

of the setM of proposals, for example, by considering the combination of two pos-

sible values for all the nodes (M = 2|V|). In the representative works of [165, 23],

α-expansionandαβ-swapwere introduced to generalize binary graph cuts to handle

pairwise MRFs withmetric and/or semi-metricenergy. Anα-expansion refers to a

move fromx to x′ such that:xi , x′i ⇒ x′i = α. An αβ-swap means a move fromx

to x′ such that:xi , x′i ⇒ xi , x′i ∈ {α, β}. [165, 23] proposed efficient algorithms for

determining the optimal expansion or swap moves by converting the problems into bi-

nary labeling problems which can be solved efficiently using graph cuts techniques. In

such methods, a drastically largerM compared to that of ICM makes the optimization

less prone to be trapped at local minima and thus leads to muchbetter performance

[35]. Moreover, unlike ICM which has no optimum quality guarantee, the solution ob-

tained byα-expansion has been proven to possess a bounded ratio between the obtained

energy and the global optimal energy [165, 23].

In addition,range movesmethods [166, 167, 168] have been developed based on

min-cut/max-flow techniques to improve the optimum quality in addressing MRFs with

truncated convex priors. Such methods explore a large search space by considering a

range of labels (i.e., an interval of consecutive labels), instead of dealing with one/two

labels at each iteration as what is done inα-expansion orαβ-swap. In particular, range

expansion has been demonstrated in [167] to provide the samemultiplicative bounds as

the standard linear programming (LP) relaxation (see section 4.3) in polynomial time,
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and to provide a faster algorithm for dealing with the class of MRFs with truncated

convex priors compared to LP-relaxation-based algorithmssuch as tree-reweighted

Message Passing (TRW) techniques (see section 4.3). Very recently, [169] proposed

a dynamic-programming-based algorithm for approximatelyperformingα-expansion,

which significantly speeds up the originalα-expansion algorithm [165, 23].

Last, we should note that expansion is a very important concept in optimizing the

energy of a multi-label MRF using graph cuts. Many other works in this direction are

based on or partially related to it, which will be reflected inthe following discussion.

Towards Non-submodular Functions

Graph cuts techniques have also been extended to deal with non-submodular binary

energy functions.Roof dualitywas proposed in [170], which provides an LP relaxation

approach to achieving a partial optimal labeling for quadratic pseudo-boolean func-

tions (the solution will be a complete labeling that corresponds to global optimum if

the energy is submodular). Thepersistencyproperty of roof duality indicates that the

configurations of all the labeled nodes are exactly those corresponding to the global

optimum. Hence, QPBO at least provides us with a partial labeling of the MRF and the

number of unlabeled nodes depends on the number of nonsubmodular terms included

in the MRF. Such a method was efficiently implemented in [149], which is referred to

asQuadratic Pseudo-Boolean Optimization (QPBO)algorithm and can be regarded as

a graph-cuts-based algorithm with a special graph construction where two nodes in s-t

graph are used to represent two complementary states of a node in the original MRF

[150]. By solving min-cut/max-flow in such an s-t graph, QPBO outputs a solution

assigning 0, 1 or12 to each node in the original MRF, where the label1
2 means the

corresponding node isunlabeled.

Furthermore, two different techniques were introduced in order to extend QPBO

towards achieving a complete solution. One isprobing (calledQPBO-P) [151, 152],

which aims to gradually reduce the number of unlabeled nodes(either by finding the

optimal label for certain unlabeled nodes or by regrouping aset of unlabeled nodes)

until convergence by iteratively fixing the label of a unlabeled node and performing

QPBO. The other one isimproving(calledQPBO-I) [152], which starts from a com-
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plete labelingy and gradually improves such a labeling by iteratively fixingthe labels

of a subset of nodes as those specifiedy and using QPBO to get a partial labeling to

updatey.

Besides, QPBO techniques have been further combined with the label-reduction

andmove-makingtechniques presented previously to deal with multi-label MRFs. For

the former case, in [171], a multi-label MRF is converted into an equivalent binary

MRF [24] and then QPBO techniques are employed to solve the linear relaxation of

the obtained binary MRF. It provides a partial optimal labeling for multi-label MRFs.

Nevertheless, a disadvantage of such an approach is the expensive computational com-

plexity. For the latter case, an interesting combination ofQPBO and move-making

techniques was proposed in [172], which is referred to asfusion moves. Given two

arbitrary proposals (x(1), x(2)) of the full labeling of the MRF, fusion moves combine

the proposals together via a binary labeling problem, whichis solved using QPBO

so as to achieve a new labelingx′ such that:∀i, x′i ∈ {x
(1)
i , x(2)

i }. Using the proposed

label selection rule,x′ is guaranteed to have an energy lower or equal than the ener-

gies of both proposals (x(1), x(2)). Hence,fusion movesprovides an effective tool for

addressing the optimization of multi-label discrete/continuous MRFs. In addition, it

turns out that fusion moves generalize some previous graph-cuts-based methods such

asα-expansionandαβ-swap, in the sense that the latter methods can be formulated

as fusion moves with particular choices of proposals. This suggests that fusion moves

can serve as building block within various existing optimization schemes so as to de-

velop new techniques, such as the approaches proposed in [172] for the parallelization

of MRF optimization into several threads and the optimization of continuous-labeled

MRFs with 2D labels.

Towards Improving Efficiency

We should also note that different methods have been developed to increase the

efficiency of graph-cuts-based algorithms, in particular in the context of dynamic MRFs

(i.e., the potential functions vary over time, whereas the change between two successive

instants is usually quite small). Below are several representative works in this line of

research.
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A dynamic max-flow algorithm (referred to asdynamic graph cuts) was proposed

in [173, 27] to accelerate graph cuts when dealing with dynamics MRFs, where the key

idea is to reuse the flow obtained by solving the previous MRF to initialize the min-

cut/max-flow problems so as to significantly reduce the computational time of min-cut.

Another dynamic algorithm was also proposed in [174] to improve the convergence of

optimization for dynamic MRFs, by using the min-cut solution of the previous MRF to

generate an initialization for solving the current MRF.

In [154, 29], a primal-dual scheme based on linear programming relaxation (re-

ferred to asFastPD) was proposed for optimizing the MRF energy, by recovering pair

of solutions for the primal and the dual such that the gap between them is minimized16.

This method exploits information coming from both the original MRF optimization

problem and its dual problem, and achieves a substantial speedup with respect to previ-

ous methods such as [23] and [153]. In addition, it can also speed up the optimization

in the case of dynamic MRFs, where one should expect that the new pair of primal-dual

solutions is closed to the previous one.

Besides, [175, 176] proposed two similar but simpler techniques with respect to that

of [154, 29] to achieve a similar computational efficiency. The main idea of the first

one (referred to asdynamicα-expansion) is to “recycle” results from previous prob-

lem instances. Similar to [173, 27, 174], the flow from the corresponding move in

the previous iteration is reused for solving an expansion move in a particular iteration.

And when dealing with dynamic MRFs, the primal and dual solutions obtained from

the previous MRF are used to initialize the min-cut/max-flow problems for the cur-

rent MRF. The second method aims to simplify the energy function by solving partial

optimal MRF labeling problems [171, 177] and reducing the number of unlabeled vari-

ables, while the dual (flow) solutions of such problems are used to generate a “good”

initialization for the dynamicα-expansion algorithm.

Last but not least, based on the primal-dual interpretationof the expansion algo-

rithm introduced by [154, 29], [178] proposed an approach tooptimize the choice of

the move space for each iteration by exploiting the primal-dual gap. As opposed to

16FastPDcan also be viewed as a generalization ofα-expansion.
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traditional move-making methods that search for better solutions in some pre-defined

moves spaces around the current solution, such an approach aims to greedily determine

the move-space (e.g., the optimal value ofα in the context ofα-expansion) that will

lead to largest decrease in the primal-dual gap at each iteration. It was demonstrated

experimentally to increase significantly the optimizationefficiency.

4.2. Belief Propagation Algorithms

Belief propagation algorithms use local message passing toperform inference on

graphical models. They provide an exact inference algorithm for tree-structured dis-

crete MRFs, while an approximate solution can be achieved for a loopy graph. In

particular, for those loopy graphs with low tree-widths such as cycles, extended belief

propagation methods such asjunction tree algorithm[138, 139, 12] provide an efficient

algorithm to perform exact inference. These belief propagation algorithms have been

adopted to perform MAP inference in MRF models for a variety of vision problems

(e.g., [43, 48, 58, 179, 92]).

4.2.1. Belief Propagation in Tree

Belief propagation (BP)[39, 40, 11] was proposed originally for exactly solv-

ing MAP inference (min-sumalgorithm) and/or maximum-marginal inference (sum-

productalgorithm) in a tree-structured graphical model in polynomial time. This type

of methods can be viewed as a special case ofdynamic programmingin graphical mod-

els [81, 16, 180]. A representative vision model that can be efficiently solved by BP is

the pictorial model [80, 43] (see section 3.1.2).

In themin-sumalgorithm17 for a tree-structured MRF, a particular node is usually

designated as the “root” of the tree. Then messages are propagated inwards from the

leaves of the tree towards the root, where each node sends itsmessage to its parent

once it has received all incoming messages from its children. During the message

passing, a local lookup table is generated for each node, recording the optimal labels of

17Note that all the BP-based algorithms presented in section 4.2 include bothmin-sumandsum-product
versions. We focus here on themin-sumversion. Nevertheless, thesum-productversion can be easily
obtained by replacing the message computation with the sum of the product of function terms. We refer the
reader to [38, 11, 12] for more details.
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all children for each of its possible labels. Once all messages arrive at the root node, a

minimization is performed over the sum of the messages and the unary potentials of the

root node, giving the minimum value for the MRF energy as wellas the optimal label

for the root node. In order to determine the labels for the other nodes, the optimal label

is then propagated outwards from the root to the leaves of thetree, simply via checking

the lookup tables obtained previously, which is usually referred to asback-tracking. A

detailed algorithm is provided in Algorithm 1 (Appendix B) based on the factor graph

representation [38, 11], since as we mentioned in section 2.3, the factor graph makes

the BP algorithm applicable to more cases compared to the classic min-sum algorithm

applied on a usual pairwise MRF [48].

Note thatreparameterization(also known asequivalent transformation) of the

MRF energy (e.g., [181, 28]) is an important concept in MRF optimization. Two dif-

ferent settings of potentials (e.g., θi , θi j in Eq. 11) leading to the same MRF energy

(up to a constant difference) for any MRF configuration differ by a reparameterization.

Reparameterization provides an alternative interpretation of belief propagation, which

for example leads to a memory-efficient implementation of belief propagation [28].

Meanwhile, max-flow based algorithms also have been shown torelate to the principle

of reparameterization[27]. Such a relationship (via reparameterization) sheds light on

some connection between max-flow and message passing based algorithms.

4.2.2. Loopy Belief Propagation

The tree-structured constraint limits the use of the standard belief propagation algo-

rithm presented above, whereas loopy MRFs are often required to model vision prob-

lems. Hence, researchers have investigated to extend the message passing concept for

minimization of arbitrary graphs.

Loopy belief propagation (LBP), a natural step towards this direction, performs

message passing iteratively in the graph (e.g., [182, 48, 146, 147]) despite of the exis-

tence of loops. We refer the reader to [48, 146] for the details and discussion on the

LBP algorithm. Regarding the message passing scheme in loopy graphs, there are two

possible choices:parallel or sequential. In the parallel scheme, messages are com-

puted for all the edges at the same time and then the messages are propagated for the
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next round of message passing. Whereas in the sequential scheme, a node propagates

the message to one of its neighbor node at each round and such amessage will be used

to compute the messages sent by that neighbor node. [183] showed empirically that the

sequential scheme was significantly faster than the parallel one, while the performance

of both methods was almost the same.

A number of works have been done to improve the efficiency of message passing by

exploiting particular types of graphs and/or potential functions (e.g., [147, 184, 185]).

For example, based on the distance transform algorithm [186], [147] introduced a strat-

egy for speeding up belief propagation for a subclass of pairwise potentials that only

depend on the difference of the variables such as those defined in Eq. 13, which reduces

the complexity of a message passing operation between two nodes from quadratic

to linear in the number of possible labels per node. Techniques have also been pro-

posed for accelerating the message passing in bipartite graphs and/or grid-like MRFs

[147, 185], and inrobust truncated modelswhere a pairwise potential is equal to a

constant for most of the possible state combinations of the two nodes [184]. Recently,

[187] proposed a parallel message computation scheme, inspired from [147] but appli-

cable to a wider subclass of MRFs than [147]. Together with a GPU implementation,

such a scheme substantially reduces the running time in various MRF models for low-

level vision problems.

Despite the fact that LBP performed well for a number of vision applications such

as [48, 58], they cannot guarantee to converge to a fixed point, while their theoretical

properties are not well understood. Last but not least, their solution is generally worse

than more sophisticated generalizations of message passing algorithms (e.g., [26, 28,

45]) that will be presented in section 4.3 [35].

4.2.3. Junction Tree Algorithm

Junction tree algorithm (JTA)is an exact inference method in arbitrary graphical

models [138, 139, 12]. The key idea is to make systematic use of the Markov properties

implied in graphical models to decompose a computation of the joint probability or

energy into a set of local computations. Such an approach bears strong similarities

with message passing in the standard belief propagation or dynamic programming. In
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Figure 4: Example of Junction Tree. (a) Original undirected graphical model; (b) Triangulation of the graph
in (a); (c) A junction tree for the graphs in (a) and (b); (d) A clique tree which is not junction tree. In (c-d),
we use a square box to represent a separator being associatedto an edge and denoting the intersection of the
two cliques connected by the edge. A maximal spanning tree is a tree that connects all the nodes and has the
maximal sum of the cardinals of the separators among all possible trees.

this sense, we regard JTA as an extension of the standard belief propagation.

An undirected graph has ajunction treeif and only if it is triangulated (i.e., there

is no chordless18 cycle in the graph). For any MRF, we can obtain a junction tree

by first triangulating the original graph (i.e., making the graph triangulated by adding

additional edges) and then finding a maximal spanning tree for the maximal cliques

contained in the triangulated graph (e.g., Fig. 4). Based on the obtained junction tree,

we can perform local message passing to do the exact inference, which is similar to

standard belief propagation in factor trees. We refer the reader to [139, 12] for details.

The complexity of the inference in a junction tree for a discrete MRF is exponen-

tial with respect to itswidth W, which is defined as the maximum cardinal over all the

maximal cliques minus 1. Hence, the complexity is dominatedby the largest maximal

cliques in the triangulated graph. However, the triangulation process may produce large

maximal cliques, while finding of an optimal junction tree with the smallest width for

an arbitrary undirected graph is an NP-hard problem. Furthermore, MRFs with dense

initial connections could lead to maximal cliques of very high cardinal even if an op-

timal junction tree could be found [12]. Due to the computational complexity, the

junction tree algorithm becomes impractical when the tree width is high, although it

provides an exact inference approach. Thus it has been only used in some specific

scenarios or some special kinds of graphs that have low tree widths (e.g., cycles and

18A cycle is said to bechordlessif there is no edge between two nodes that are not successors in the cycle.
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outer-planar graphs whose widths are equal to 2). For example, JTA was employed

in [179] to deal with simultaneous localization and mapping(SLAM) problem, and

was also adopted in [92] to perform exactly inference in outer-planar graphs within

the whole dual-decomposition framework. In order to reducethe complexity,nested

junction treetechnique was proposed in [188] to further factorize large cliques. Never-

theless, the gain of such a process depends directly on the initial graph structure and is

still insufficient to make JTA widely applicable in practice.

4.3. Dual Methods

The MAP inference in pairwise MRFs (Eqs. 8 and 11), can be reformulated as the

integer linear programming (ILP)[189] as follows:

min
τ

E(θ, τ) = 〈θ, τ〉 =
∑

i∈V

∑

a∈Xi

θi;aτi;a +
∑
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(a,b)∈Xi×X j

θi j ;abτi j ;ab

s.t. τ ∈ τG =































































τ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

a∈Xi

τi;a = 1 ∀ i ∈ V

∑

a∈Xi

τi j ;ab = τ j;b ∀ {i, j} ∈ E,b ∈ X j

τi;a ∈ {0,1} ∀ i ∈ V,a ∈ Xi

τi j ;ab ∈ {0,1} ∀ {i, j} ∈ E, (a,b) ∈ Xi × X j































































.

(18)

whereθi;a = θi(a), θi j ;ab = θi j (a,b), binary variables19 τi;a = [xu = a] and τi j ;ab =

[xi = a, x j = b], τ denotes the concatenation of all these binary variables which can

be defined as ((τi;a)i∈V,a∈Xi , (τi j ;ab){i, j}∈E,(a,b)∈Xi×X j ), andτG denotes the domain ofτ. We

will useMRF-MAPto refer to this original MAP inference problem. Unfortunately, the

above ILP problem is NP-hard in general20. Many approximation algorithms of MRF

optimization have been developed based on solving some relaxation to such a problem.

Linear Programming (LP)relaxation has been widely adopted to address the MRF-

MAP problem in Eq. 18, aiming to minimizeE(θ, τ) in a relaxed domain̂τG (called

local marginal polytope) which is obtained by simply replacing the integer constraints

19[·] is equal to one if the argument is true and zero otherwise.
20Note that, very recently, [190] experimentally demonstratedthat for a subclass of small-size MRFs,

advanced integer programming algorithms based on cutting-plane and branch-and-bound techniques can
have global optimality property while being computational efficient.
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in Eq. 18 by non-negative constraints (i.e., τi;a ≥ 0 andτi j ;ab ≥ 0). Such a relaxed prob-

lem will be referred to asMRF-LP. It is generally infeasible to directly apply generic

LP algorithms such asinterior point methods[191] to solve MRF-LP for MRF models

in computer vision [192], due to the fact that the number of variables involved inτ

is usually huge. Instead, many methods have been designed based on solving some

dual to MRF-LP, i.e., maximizing the lower bound ofE(θ, τ) provided by the dual.

An important class of such methods are referred to astree-reweighted message pass-

ing (TRW)techniques (e.g., [26, 28]), which approach the solution to MRF-LP via a

dual problem defined by a convex combination of trees. The optimal value of such

a dual problem and that of MRF-LP coincide [26]. In [26], TRW was introduced to

solve MRF-MAP by using edge-based and tree-based message passing schemes (called

TRW-EandTRW-Trespectively), which can be viewed as combinations of reparam-

eterization and averaging operations on the MRF energy. However, the two schemes

do not guarantee the convergence of the algorithms and the value of the lower bound

may fall into a loop. Later, a sequential message passing scheme (known asTRW-S)

was proposed in [28]. It updates messages in a sequential order instead of a parallel

order used in TRW-E and TRW-T, which makes the lower bound will not decrease in

TRW-S. Regarding the convergence, TRW-S will attain a pointthat satisfies a condition

referred to asweak tree agreement (WTA)[193] and the lower bound will not change

any more since then21. Regarding the optimality, TRW-S cannot guarantee the global

maximum of the lower bound in general. Nevertheless, for thecase of binary pairwise

MRFs, a WTA fixed point corresponds to the global maximum of thelower bound, and

thus the global minimum of MRF-LP [193]. Furthermore, if a binary pairwise MRF is

submodular, a WTA fixed point always achieves the global optimum of the MRF-MAP

problem. In [35], a set of experimental comparisons betweenICM, LBP, α-expansion,

αβ-swap and TRW-S were done based on MRFs with smoothness priors, showing that

TRW-S andα-expansion perform much better than the others. For other representative

methods solving a dual to MRF-LP, one can cite for example themessage passingal-

21[28] observed in the experiments that TRW-S would finally converge to a fixed point but such a conver-
gence required a lot of time after attaining WTA. Nevertheless, such a convergence may not be necessary in
practice, since the lower bound will not change any more afterattaining WTA.

32



gorithm based onblock coordinate descentproposed in [194], themin-sum diffusion

algorithm [195] and theaugmenting DAGalgorithm22 [196], etc. Note that, since the

LP-relaxation can be too loose to approach the solution of the MRF-MAP problem,

the tightening of the LP-relaxation has also been investigated for achieving a better

optimum of the MRF-MAP problem (e.g., [197, 198, 199, 30, 200, 201]).

Another important relaxation (i.e., Lagrangian relaxation) to MRF-MAP is related

to dual-decomposition[202], which is a very important optimization methodology.

Dual-decompositionwas employed in [45, 156] for addressing the MRF-MAP prob-

lem (referred to asMRF-DD). The key idea is: instead of minimizing directly the

energy of the original MRF-MAP problem which is too complex to solve directly, we

decompose the original problem into a set of subproblems which are easy to solve.

Based on a Lagrangian dual of theMRF-MAPproblem, the sum of the minima of the

subproblems provides alower boundon the energy of the original MRF. This sum

is maximized usingprojected subgradientmethod so that a solution to the original

problem can be extracted from the Lagrangian solutions [156]. This leads to an MRF

optimization framework with a high flexibility, generalityand convergence property.

First, the Lagrangian dual problem can be globally optimized due to the convexity of

the dual function, which is a more desired property than WTA condition guaranteed by

TRW-S. Second, different decompositions can be considered to deal with MRF-MAP,

leading to different relaxations. In particular, when the master problem is decomposed

into a set of trees, the obtained Lagrangian relaxation is equivalent to the LP relax-

ation of MRF-MAP. However, more sophisticated decompositions23 can be considered

to tighten the relaxation (e.g., decompositions based on outer-planar graphs [92] and

k-fan graphs [91]). Third, there is no constraint on how the inference in slave problems

is done and one can apply specific optimization algorithms tosolve slave problems. A

number of interesting applications have been proposed within such a framework, which

include the graph matching method proposed in [203], the higher-order MRF inference

method developed in [107], and the algorithm introduced in [204] for jointly inferring

22Both themin-sum diffusionalgorithm and theaugmenting DAGalgorithm were reviewed in [155].
23A theoretical conclusion regarding the comparison the tightness between two different decompositions

has been drawn in [156].
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image segmentation and appearance histogram models. In addition, various techniques

have been proposed to speed up the convergence of MRF-DD algorithms. For exam-

ple, two approaches were introduced in [31]. One is to use a multi-resolution hierarchy

of dual relaxations, and the other consists of a decimation strategy that gradually fixes

the labels for a growing subset of nodes as well as their dual variables during the pro-

cess. [205] proposed to construct a smooth approximation ofthe energy function of

the master problem by smoothing the energies of the slave problems so as to achieve

a significant acceleration of the MRF-DD algorithm. A distributed implementation of

graph cuts was introduced in [206] to solve the slave problems in parallel.

Last, it is worth mentioning that an advantage of all dual methods is that we can

tell how far the solution of MRF-MAP is from the global optimum, simply by measur-

ing the gap between the lower bound obtained from solving thedual problem and the

energy of the obtained MRF-MAP solution.

4.4. Inference in Higher-order MRFs

Recent development of higher-order MRF models for vision problems has been

shown in section 3.2. In such a context, numerous works have been devoted in the

past decade to search for efficient inference algorithms in higher-order models, towards

expanding their use in vision problems that usually involvea large number of variables.

One can cite for example [100, 101], where a simple inferencescheme based on a

conjugate gradient method was developed to solve their higher-order model for image

restoration. Since then, besides a number of methods for solving specific types of

higher-order models (e.g., [102, 207, 118, 119, 122]), various techniques have also

been proposed to deal with more general MRF models (e.g., [208, 209, 107, 210, 211]).

These inference methods are highly inspired from the ones for pairwise MRFs. Thus,

similar to pairwise MRFs, there are also three main types of approaches for solving

higher-order MRFs,i.e., algorithms based onorder reductionandgraph cuts, higher-

order extensions ofbelief propagation, anddual methods.
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4.4.1. Order Reduction and Graph Cuts

Most of existing methods tackle inference in higher-order MRFs using a two-stage

approach: first to reduce a higher-order model to a pairwise one with the same min-

imum, and then to apply standard methods such as graph cuts tosolve the obtained

pairwise model.

The idea of order reduction exists for long time. More than thirty years ago, a

method (referred to asvariable substitution) was proposed in [212] to perform order

reduction for models of any order, by introducing auxiliaryvariables to substitute prod-

ucts of variables24. However, this approach leads to a large number of non-submodular

components in the resulting pairwise model. This is due to the hard constraints involved

in the substitution, which causes large difficulty in solving the obtained pairwise model.

This may explain why its impact is rather limited in the literature [161, 213], since our

final interest is solving higher-order models. In [213], QPBO was employed to solve

the resulting pairwise model, nevertheless, only third-order potentials were tested in

the experiments.

A better reduction method that generally produces fewer non-submodular compo-

nents was proposed in [25], in order to construct s-t graph for a third-order binary

MRF. This reduction method was studied from an algebraic viewpoint in [214] and led

to some interesting conclusions towards extending this method to models of an arbi-

trary order. Based on these works, [210, 215] proposed a generalized technique that

can reduce any higher-order binary MRF into a pairwise one, which can then be solved

by QBPO. Furthermore, [210, 215] also extended such a technique to deal with multi-

label MRFs by using fusion moves [172]. Very recently, aiming to obtain a pairwise

model that is as easy as possible to solve (i.e., has as few as possible non-submodular

terms), [216] proposed to approach order reduction as an optimization problem, where

different factors are allowed to choose different reduction methods in order to optimize

an objective function defined using a special graph (referred to asorder reduction infer-

ence graph). In the same line of research, [211] proposed to perform order reduction on

24Here, we consider binary higher-order MRFs and their energyfunctions can be represented in form of
pseudo-Boolean functions[161].
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a group of higher-order terms at the same time instead of on each term independently

[210, 215], which has been demonstrated both theoreticallyand experimentally to lead

to better performance compared to [210, 215].

Graph-cuts techniques have also been considered to cope either with specific vision

problems or certain classes of higher-order models. For example, [102, 103] character-

ized a class of higher-order potentials (i.e.,Pn Potts model). It was also showed that the

optimal expansion and swap moves for these higher-order potentials can be computed

efficiently in polynomial time, which leads to an efficient graph-cuts-based algorithm

for solving such models. Such a technique was further extended in [104, 105] to a wider

class of higher-order models (i.e., robustPn model). In addition, graph-cuts-based ap-

proaches were also proposed in [122, 123, 119, 120, 217] to perform inference in their

higher-order MRFs with global potentials that encodeco-occurrence statisticsand/or

label costs. Despite the fact that such methods were designed for a limited range of

problems that often cannot be solved by a general inference method, they better cap-

ture the characteristics of the problems and are able to solve the problems relatively

efficiently.

4.4.2. Belief-propagation-based Methods

As mentioned in section 4.2, the factor graph representation of MRFs enables

the extension of classic min-sum belief propagation algorithm to higher-order cases.

Hence, loopy belief propagation in factor graphs provides astraightforward way to

deal with inference in higher-order MRFs. Such an approach was adopted in [208] to

solve their higher-order Fields-of-Experts model.

A practical problem for propagating messages in higher-order MRFs is that the

complexity increases exponentially with respect to the highest order among all cliques.

Various techniques have been proposed to accelerate the belief propagation in spe-

cial families of higher-order potentials. For example, [218, 209] and [219] proposed

efficient message passing algorithms for some families of potentials such aslinear con-

straint potentialsandcardinality-based potentials. Recently, the max-product message

passing was accelerated in [220] by exploiting the fact thata clique potential often

consists of a sum of potentials each involving only a sub-clique of variables, whose
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expected computational time was further reduced in [221].

4.4.3. Dual Methods

The LP relaxation of the MRF-MAP problem for pairwise MRFs (see section 4.3)

can be generalized to the cases of higher-order MRFs. Such a generalization was stud-

ied in [222, 200], wheremin-sum diffusion[195] was adopted to achieve a method for

optimizing the energy of higher-order MRFs, which is referred to asn-ary min-sum

diffusion25. Recently, such techniques were adopted in [223] to efficiently solve in a

parallel/distributed fashion higher-order MRF models of triangulated planar structure.

The dual-decompositionframework [202, 154], which has been presented in sec-

tion 4.3, can also be adopted to deal with higher-order MRFs.This was first demon-

strated in [107], where inference algorithms were introduced for solving a wide class of

higher-order potential referred to aspattern-based potentials26. Also based on the dual-

decomposition framework, [115] proposed to solved their higher-order MRF model by

decomposing the original problem into a series of subproblems each corresponding to a

factor tree. In [224], such a framework was combined with order-reduction [210, 215]

and QPBO techniques [150] to solve higher-order graph-matching problems.

Exploitation of the Sparsity of Potentials

Last, it is worth mentioning that the sparsity of potentialshas been exploited, ei-

ther explicitly or implicitly, in many of the above higher-order inference methods. For

example, [225] proposed a compact representation for “sparse” higher-order potentials

(except a very small subset, the labelings are almost impossible and have the same high

energy), via which a higher-order model can be converted into a pairwise one by in-

troducing only a small number of auxiliary variables and then pairwise MRF inference

methods such as graph cuts can be employed to solve the problem. In the same line of

research, [226] studied and characterized some classes of higher-order potentials (e.g.,

Pn Potts model [103]) that can be represented compactly as upper or lower envelope

25The method was originally calledn-ary max-sum diffusionin [222, 200] due to the fact that a maximiza-
tion of objective function was considered.

26For example,Pn Potts model [103] is a sub-class ofpattern-based potentials.
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of linear functions. Furthermore, it was demonstrated in [226] that these higher-order

models can be converted into pairwise models with the addition of a small number of

auxiliary variables. [227] proposed to optimize the energyof “sparse” higher-order

models by transforming the original problem into a relatively small instance of sub-

modular vertex-cover, which can then be optimized by standard algorithms such as

belief propagation and QPBO. This approach has been shown toachieve much better

efficiency than applying those standard algorithms to address the original problem di-

rectly. Very recently, [228] took a further step along this line of research by exploring

the intrinsic dimensions of higher-order cliques, and proposed a powerful MRF-based

modeling/inference framework (calledNC-MRF) which significantly broadens the ap-

plicability of higher-order MRFs in visual perception.

5. MRF Learning Methods

On top of inference, another task of great importance is MRF learning/training,

which aims to select the optimal model from its feasible set based on the training data.

In this case, the input is a set ofK training samples{dk, xk}Kk=1, wheredk andxk rep-

resent the observed data and the ground truth MRF configuration of thek-th sample,

respectively. Moreover, it is assumed that the unary potentials θk
i and the pairwise po-

tentialsθk
i j of thek-th MRF training instance can be expressed linearly in termsof fea-

ture vectors extracted from the observed datadk, that is, it holdsθk
i (xi) = wTgi(xi ,dk),

θk
i j (xi , x j) = wTgi j (xi , x j ,dk), wheregi(·, ·) andgi j (·, ·) represent some known vector-

valued feature functions (which are chosen based on the computer vision application

at hand) andw is an unknown vector of parameters. The goal of MRF learning boils

down to estimating this vectorw using as input the above training data.

Both generative (e.g., maximum-likelihood) and discriminative (e.g., max-margin)

MRF learning approaches have been applied for this purpose.In the former case, one

seeks to maximize (possibly along with an L2-norm regularization term) the prod-

uct of posterior probabilities of the ground truth MRF labelings
∏

k P(xk; w), where

P(x; w) ∝ exp
(

E(x; w)
)

denotes the probability distribution induced by an MRF model

with energyE(x; w). This leads to a convex differentiable objective function that can
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be optimized using gradient ascent. However, computing thegradient of this function

involves taking expectations of the feature functions,gi(·) andgi j (·), with respect to the

MRF distributionP(x; w). One therefore needs to perform probabilistic MRF infer-

ence, which is nevertheless intractable in general. As a result, approximate inference

techniques (e.g., loopy belief propagation) are often used for approximating the MRF

marginals required for the estimation of the gradient. Thisis the case, for instance, in

[5], where the authors demonstrate how to train a CRF model for stereo matching, as

well as in [3], or in [2], where a comparison with other CRF training methods such as

pseudo-likelihood and MCMC-based contrastive divergenceis also included.

In the case of max-margin learning [229, 230], on the other hand, one seeks to

adjust the vectorw such that the energyE(xk; w) of the desired ground truth solution

xk is smaller by∆(x, xk) than the energyE(x; w) of any other solutionx, that is,

E(xk; w) ≤ E(x; w) − ∆(x, xk) + ξk . (19)

In the above set of linear inequality constraints with respect to w, ∆(x, x′) represents a

user-specified distance function that measures the dissimilarity between any two solu-

tionsx andx′ (obviously it should hold∆(x, x) = 0), while ξk is a non-negative slack

variable that has been introduced for ensuring that a feasible solutionw does exist.The

distance function∆(x, x′) modulates the margin according to how “far” an MRF label-

ing differs from the ground truth labeling. In practice, its choice is largely constrained

by the tractability of the whole learning algorithm. The Hamming distance is often

used in the literature [231, 232], due to the fact that it can be decomposed into a sum of

unary terms and integrated easily in the MRF energy without increasing the order of the

MRF model. However, visual perception often prefers more sophisticated task-specific

distances that can better characterize the physical meaning of the labeling. For ex-

ample, [233, 234] have investigated the incorporation of various higher-order distance

functions in MRF learning for the image segmentation task.

Ideally,w should be set such that eachξk ≥ 0 can take a value as small as possible

(so that the amount of violation of the above constraints is minimal). As a result, during
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the MRF learning, the following constrained optimization problem is solved:

min
w,{ξk}

µ · R(w) +
K
∑

k=1

ξk, s.t. constraints (19). (20)

In the above problem,µ is a user-specified hyperparameter andR(w) represents a reg-

ularization term whose role is to prevent overfitting duringthe learning process (e.g.,

it can be set equal to||w||2 or to a sparsity inducing norm such as||w||1). The slack

variableξk can also be expressed as the following hinge-loss term:

Loss(xk; w) = E(xk; w) −min
x

(

E(x; w) − ∆(x, xk)
)

. (21)

This leads to the following equivalent unconstrained formulation:

min
w

µ · R(w) +
K
∑

k=1

Loss(xk; w) . (22)

One class of methods [235, 236] aim to solve the constrained optimization problem

(20) by the use of a cutting-plane approach whenR(w) = ||w||2. In this case, the above

problem is equivalent to a convex quadratic program (QP) butwith an exponential

number of linear inequality constraints. Given that only a small fraction of them will be

active at an optimal solution, cutting plane methods proceed by solving a small QP with

a growing number of constraints at each iteration (where this number is polynomially

upper-bounded). One drawback of such an approach relates tothe fact that computing

a violated constraint requires solving at each iteration a MAP inference problem that

is NP-hard in general. For the special case of submodular MRFs, [237] shows how to

express the above constraints (19) in a compact form, which allows for a more efficient

MRF learning to take place in this case.

Another class of methods tackle instead the unconstrained formulation (22). This

is, e.g., the case for the recently proposed framework by [238], which addresses the

above mentioned drawbacks of the cutting plane method by relying on the dual de-

composition approach for MRF-MAP inference discussed previously in section 4.3.

By using such an approach, this framework reduces the task oftraining an arbitrar-
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ily complex MRF to that of training in parallel a series of simpler slave MRFs that

are much easier to handle within a max-margin framework. Theconcurrent training

of the slave MRFs takes place through a very efficient stochastic subgradient learning

scheme. Moreover, such a framework can efficiently handle not only pairwise but also

high-order MRFs, as well as any convex regularizerR(w).

There have also been developed learning methods [239, 240, 241] that aim to deal

with the training of MRFs that containlatent variables,i.e., variables that remain un-

known during both training and testing. Such MRF models are often encountered in

vision applications due to the fact that in many cases full annotation is difficult or at

least very time consuming to be provided (especially for large scale datasets). As a

result, one often has to deal with datasets that are only partially annotated (weakly

supervised learning).

Last but not least, there have also been proposed learning algorithms that are ap-

propriate for handling the discriminative training of continuous MRF models [242].

6. Conclusion

In order to conclude this survey, let us first recall that developing MRF-based meth-

ods for vision problems and efficient inference algorithms has been a dominant re-

search direction in computer vision during the past decade.The main stream referred

to pairwise formulations, whereas more and more focus has been recently transferred to

higher-order MRFs in order to achieve superior solutions for a wider set of vision prob-

lems. Moreover, machine learning techniques have been combined more and more with

MRFs towards image/scene understanding as well as parameter learning and structure

learning of MRF models. All these suggest that MRFs will keepbeing a major research

topic and offer more promise than ever before.
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Appendix A. Submodularity of MRFs

There are various definitions ofsubmodularenergy functions of pairwise discrete

MRFs in the literature that are equivalent. We consider herethe one presented in [140].

Let us assume the configuration spaceXi for a nodei ∈ V to be a completely ordered

set, the energy function of a pairwise discrete MRF issubmodularif each pairwise

potential termθi j (∀ {i, j} ∈ E) satisfies:∀ x1
i , x

2
i ∈ Xi s.t. x1

i ≤ x2
i , and∀ x1

j , x
2
j ∈

X j s.t. x1
j ≤ x2

j ,

θi j (x
1
i , x

1
j ) + θi j (x

2
i , x

2
j ) ≤ θi j (x

1
i , x

2
j ) + θi j (x

2
i , x

1
j ) . (A.1)

For binary cases whereXi = {0,1} (∀ i ∈ V), the condition is reduced to that each

pairwise potentialθi j (∀ {i, j} ∈ E) satisfy:

θi j (0,0)+ θi j (1,1) ≤ θi j (0,1)+ θi j (1,0) . (A.2)

One can refer to [25] for generalizing the submodularity to higher-order MRFs.
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Appendix B. Min-sum Belief Propagation in Factor Tree

Algorithm 1 Min-sum Belief Propagation in Factor Tree
Require: Factor treeT = (V ∪ F ,E) with usual node setV, factor node setF and

edge setE
Require: Factor potentials (θ f (·)) f∈F

Ensure: The optimal configurationxopt = argminx
∑

f∈F θ f (xf )
Choose a node ˆr ∈ V as the root of the tree
ConstructΠ s.t. Π(i) denotes the parent of nodei ∈ V ∪ F
ConstructC s.t. C(i) denotes the set of children of nodei ∈ V ∪ F
Psend← NodeOrdering(T , r̂) {see Algorithm 2}
for k = 1→ length(Psend) − 1 do

i ← Psend(k)
parent nodep← Π(i)
child node setC ← C(i)
if i ∈ V then

if |C| > 0 then
mi→p(xi)←

∑

j∈Cmj→i(xi)
else

mi→p(xi)← 0
end if

else
if |C| > 0 then

mi→p(xp)← minxC(φ(xi) +
∑

j∈Cmj→i(x j))
si(xp)← argminxC(φ(xi) +

∑

j∈Cmj→i(x j))
else

mi→p(xp)← φ(xp) {p is the unique variable contained in factori in this case.}
end if

end if
end for
xopt

r̂ ← argminxr̂

∑

j∈C(r̂) mj→r̂ (xr̂ )
for k = length(Psend) − 1→ 1 do

i ← Psend(k)
if i ∈ F then

parent nodep← Π(i)
child node setC ← C(i)
xopt
C
← si(xp)

end if
end for
return xopt
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Algorithm 2 Ordering of the Nodes for Sending Messages In a Tree
Require: TreeT = (V,E) with node setV and edge setE

Require: Root node ˆr ∈ V

Ensure: Psend = NodeOrdering(T , r̂), wherePsend is a list denoting the ordering of

the nodes in treeT for sending messages

Psend← (r̂)

if |V| > 1 then

Get the setC of child nodes:C ← {i|i ∈ V, {i, r̂} ∈ E}

for all c ∈ C do

Get child treeTc with rootc

Psend← (NodeOrdering(T , r̂),Psend) {Psendis ordered from left to right}

end for

end if

return Psend
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