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Abstract
We determine the influence of the electronic band structure and interlayer coupling on the
superconducting properties of quasi-two-dimensional superconductor (S)–normal metal (N)
nanostructures. An exact analytical solution of the Gor’kov equations which describes the
superconducting properties and the local density of states in S/N/ . . . /N multilayers is found.
We study the influence of the electronic spectra, the interlayer coupling and the total number
of layers on the local density of states and the superconducting properties of S/N/ . . . /N
structures. Moreover, we investigate the impact of the parameters mentioned above on the
critical Josephson current in S/N/ . . . /N/S junctions.

1. Introduction

The high-temperature superconductors discovered in 1986 [1]
are a good example of natural multilayered superconducting
systems. They are characterized by a layered structure [2],
strong anisotropic electronic properties [7, 2–6] and can
be represented by a stack of alternating superconducting
(S), metallic (N) and ferromagnetic (F) layers [2]. These
quasi-bidimensional superconducting structures exhibit a
strong anisotropy of the magnetic critical field Hc2 [8, 7,
9–12]. Strongly anisotropic quasi-2D superconductivity was
also observed in crystalline organic materials [13, 14]. The
most common formalism used to explore the properties
of these compounds is the Ginzburg–Landau theory (see
for example the [15–18]). Superconducting correlations can
be transmitted to non-superconducting materials in contact.
This phenomenon, called the proximity effect, influences the
superconducting properties of multilayered compounds.

We study the proximity effect in multilayer systems
with tunneling coupling composed of an arbitrary number

of layers (see figure 1) considered in the framework of
the Gor’kov formalism. Discovered in superconducting S/N
structures by Meissner [19] and Smith [20], the proximity
effect is characterized by the transmission of superconducting
correlations into non-superconducting materials. In N layers,
the superconducting correlations decrease exponentially with
the distance from the S/N interface over the characteristic
length ξn, also called the correlation length in the N
layer [21]. The usual values of ξn are 100–1000 Å, depending
on the N material and temperature. Microscopically, the
non-elastic process of Andreev reflection occurs at the S/N
interface [22, 23]. The proximity effect also develops in
S/F heterostructures, where the superconducting correlations
in the F layer have an oscillating exponentially decreasing
behavior over a characteristic length ξf, which is of order of
10–100 Å [24–27, 15, 28, 29]. The proximity effect can lead
to transmission of Cooper pairs in superconducting junctions,
known as the Josephson effect [30, 31].

The proximity effect can strongly influence the properties
of the multilayered structure. For example, the competition
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Figure 1. (a) S/N/ . . . /N multilayer of L layers with an interlayer
coupling t. (b) S/N/ . . . /N/S Josephson junction of L layers with an
interlayer coupling t.

between the proximity effect and the Zeeman effect may lead
to overcoming of the classical paramagnetic limit for the
layered compounds with an elementary unit cell being a S/N
or S/S bilayer, as demonstrated in [32, 33]. Other unexpected
phenomena have been observed in cuprate superconductors.

The proximity effect between the high Tc cuprate
superconductors and N materials exhibits a decay over
characteristic lengths much greater than 1000 Å. For
example, Yuasa et al have observed a proximity effect over
a distance about 3000 Å in Bi2Sr2CuO6/Bi2Sr2CaCu2O8
systems [34]. This giant proximity effect has also been
observed in other cuprate superconductors/normal metal
structures [35–40]. Calculations of the critical Josephson
current in S/N′/S, where S is a cuprate superconductor and
N′ a superconductor above its critical temperature, indicate
the possible existence of superconducting puddles in the N′

layers or superconducting filaments connecting the two S
electrodes [41, 42]. Nevertheless, the giant proximity effect
exists also in epitaxial S/N heterostructures in which the
existence of superconducting puddles and inhomogeneities
is not possible [43]. The giant proximity effect may result
from the intrinsic properties of the S and the N layers or the
S/N structures. Theories based on a triplet superconducting
coupling also exist to explain the giant proximity effect in S/F
structures [44].

Moreover, the density of states (DOS) in (S/N)n
multilayers was shown to have a complex dependence on
interlayer coupling [45] and temperature [46]. The DOS and
the critical temperature, Tc, in the S/N bilayer depends on the
thickness of the N layer [47, 48]. However, the DOS in the
N layer exhibits sub-gap features that cannot be explained
by the quasi-classical Usadel equation [49]. The proximity
effect may depend on the characteristics of the electronic
spectrum [50] and the number of metallic layers in proximity
to the S layer.

Many model used to explain these properties are
based on the Bogoliubov–de Gennes theory [21] or on
the Eilenberger [51] or on the Usadel formalism [52].

However, these theories cannot describe, in a simple way,
the tunneling aspect of the multilayered structure and the
details of the electronic spectra in the different layers. We have
proposed a way to resolve the system of Gorkov equations
of a S/N/ . . . /N multilayer and of a S/N/ . . . /N/S Josephson
junction composed of an arbitrary number of layers L (see
figure 1). In this formalism, it is possible to take into account
superconducting properties and intrinsic electronic spectra
particularities in a layered material. Taking into account these
properties could be useful for understanding the physical
properties in such multilayers, such as the pseudo-gap
and giant proximity effect. In section 1, we propose a
way to resolve the Gorkov equation system for S/N/ . . . /N
multilayers (see figure 1(a)) and S/N/ . . . /N/S Josephson
junctions (see figure 1(b)). In section 2, we determine the
superconducting properties and the DOS in S/N/N trilayers.
Moreover, we study the influence of a mismatch between the
S and N layer Fermi surface on the DOS in S/N bilayers. Then,
we generalize the DOS study to S/N/ . . . /N multilayers in the
case of weak interlayer coupling and an energy shifted band
structure. In section 5, we study the superconducting gap and
the critical Josephson current in weakly coupled S/N/ . . . /N/S.
We emphasize the crucial role of electronic band structure on
the properties of the Josephson junction.

2. Theory of multilayer system

We start with a model of alternating superconducting and
atomic metallic layers [53–55]. The electrons’ motion is
described in the N and S layers by the spin-independent
energy spectrum ξs (k) in the S layers and ξn (k) in the N
layers. Two basic parameters characterize the system: t is
the transfer energy between the N and S layers, λ is the
Cooper pairing constant, which is assumed to be nonzero
in S layers only. It is assumed that the coupling between
the layers is realized via the transfer energy t, which is
relatively small (t � EF), implying that Cooper pairs are
mostly confined inside each layer. In the approximation of
linearized electronic spectra, the interlayer coupling can be
considered as independent of momentum, as demonstrated
in [56]. The Hamiltonian of the system can be written as:

H = H0 + HBCS + Ht,

H0 =
∑
n,σ,k

[
ξσ,n (k) ψ+σ,n (k) ψσ,n (k)

]
,

HBCS =∑
n,k

[
1∗nψ

+

↓,n (k) ψ
+

↑,n (−k)+1nψ↑,n (k) ψ↓,n (−k)
]
,

Ht = t
∑
n,σ,k

[
ψ+σ,(n+1) (k) ψσ,n (k)

+ ψ+σ,n (k) ψσ,(n+1) (k)+ H.c
]
, (1)

where ψ+σ,n (k) is the creation operator of an electron with
spin σ and momentum k in the nth layer. The BCS pairing
in the S layer is treated in HBCS within a mean field
approximation [57]. The superconducting order parameter
1n is nonzero only in the S layers. Note that the electrons
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spectra in (1) are calculated from the Fermi energy. As
usual, we introduce the normal Green function Gn,m

σ,σ ′
=

−

〈
Tt

(
ψσ,n (k) ψ+σ ′,m (k)

)〉
and anomalous Green functions

F†n,m
σ,σ ′
= 〈Tt(ψ

+
σ,n(k)ψ

+

σ ′,m(−k))〉 [57], which satisfy the
system of equations:(
iω − ξσ,n (k)

)
Gn,m
σ,σ ′
− tGn−1,m

σ,σ ′

− tGn+1,m
σ,σ ′

+1∗nF†n,m
−σ,σ ′

= δnm(
iω + ξ−σ,n (k)

)
F†n,m
−σ,σ ′

+ tF†n−1,m
−σ,σ ′

+ tF†n+1,m
−σ,σ ′

+1nGn,m
σ,σ ′
= 0,

(2)

where ω = (2l + 1)πTc are the fermionic Matsubara
frequencies, and n and m the layer’s indices. The
superconducting order parameter in the nth layer satisfies the
standard self-consistency equation

1∗n = |λ|T
∑
ω

∑
k

F†n,n
−σ,σ ′

. (3)

Considering an arbitrary number of layers L (see figure 1),
the system of equations (2) contains 2L equations. We
demonstrate that the Green functions taken in the form

Gn,m
σ,σ ′
=
[
Aeqn
+ Be−qn] δσσ ′

F†n,m
−σ,σ ′

=
[
Cẽqn
+ De−̃qn] δσσ ′ (4)

are the solution of the system (2) with m = 0,L. This
decomposition has been used on the Green function in the
Usadel formalism [48]. A,B, C and D are constants that
depend on the other parameters of the studied system. n and
m are the layer’s indices and q and q̃ are the wavevectors. The
absence of interactions which transform the spin implies an
invariance in the spin space. For simplicity, we consider only
the case where σ =↑ and σ ′ =↑. In the paper, the electronic
spectrum in the S layer ξs and in the N layer ξn are not
assumed to be the same. The multilayer system studied is
presented in figure 1. We may easily see that the solution (4)
satisfies the equations (2) when:

cosh(q) =
(iω − ξn)

2t
(5)

q̃ = q∗. (6)

Normally in experiments with STM we can only measure the
local properties of the first and the last layer of the multilayer.
The Green functions which describe the superconducting
properties and DOS are G0,0

σ,σ ′
and F†0,0

−σ,σ ′
in the first layer

and GL,L
σ,σ ′

and F†L,L
−σ,σ ′

in the last layer. These functions depend
on the parameters of the system, t,1, ξs, ξs and on the total
number of layers L.

2.1. Green function in the S/N/ . . . /N multilayer

We study the S/N/ . . . /N system, where the S layer has the
index n = 0 and the normal metal layers have indices from
n = 1 to n = L (see figure 1(a)). The exact solution of the

system of Gorkov equations is detailed in the appendix. The
Green functions in the L metallic layer can be written as

GL,L
↑,↑ = {t

2aL−1̃aL − t[(iω − ξs)aL̃aL − (iω + ξs)aL−1̃aL+1]

+ (ω2
+ ξ2

s + |10|
2)aL̃aL+1}{t(t

2aL̃aL

− t[(iω − ξs)aL+1̃aL − (iω + ξs)aL̃aL+1]

+ (ω2
+ ξ2

s + |10|
2)aL+1̃aL+1)}

−1 (7)

F†L,L
↓,↑ = (1

∗

0a1̃a1){(t
2aL̃aL − t[(iω − ξs)aL+1̃aL

− (iω + ξs)aL̃aL+1]

+ (ω2
+ ξ2

s + |10|
2)aL+1̃aL+1)}

−1 (8)

where an = sinh(qn) and ãn = sinh (̃qn). The Green functions
in the superconducting layer can be written as

F†0,0
↓,↑ = {1

∗

0aL+1̃aL+1}{(ω
2
+ ξ2

s + |10|
2)aL+1̃aL+1

− t[(iω − ξs)aL+1̃aL − (iω + ξs)aL̃aL+1] + t2aL̃aL}
−1

(9)

G0,0
↑,↑ = {−aL+1[(iω + ξs)̃aL+1 + t̃aL]}{(ω

2
+ ξ2

s

+ |10|
2)aL+1̃aL+1 − t[(iω − ξs)aL+1̃aL

− (iω + ξs)aL̃aL+1] + t2aL̃aL}
−1. (10)

From the Green function (9), it is possible to determine the
superconducting properties as a function of the total number
of layers L. The dependence on L of the Green function is
nontrivial. However, it is possible to transform the coefficients
aL and ãL by their explicit forms (see formula (A.2) in
the appendix). This explicit form takes into account the
exponential form of the coefficients aL and ãL, which depend
on ξs, ξn, t and L. In section 3, we study the case of the bilayer
(L = 1) and of the trilayer (L = 2). The multilayer is studied
in the case of weak interlayer coupling t � Tc0, where Tc0 is
the critical temperature of a single S layer. This temperature is
related to the superconducting gap at zero temperature 1(0)
by the relation 1(0) = 1764Tc0.

2.2. Gorkov functions in the S/N/ . . . /N/S Josephson junction

We study the Josephson critical current in a S/N/S junction
with an arbitrary thickness. In this S/N/S system, the
superconducting layers have the indices n = 0 and n = L
whereas the metallic layers have all the indices from n = 1 to
n = L−1 (see figure 1(b)). The exact solution of the system of
Gorkov equations is detailed in the appendix. The anomalous
and normal Green functions in the last superconducting layer
can be written as

GL,L
↑,↑ = {−t3SL−2

L−1 − t2[ω̃∗SL−2
L + 2ω̃SL−1

L−1]

− t[SL−1
L (|ω̃|2 +�2

0)+ ω̃
2SL

L−1] − ω̃�
2
0SL

L}

× {t4SL−2
L−2 + 2t3XL−1

L−2 + t2[(2|ω̃|2 +�2
0 +�

2
L)S

L−1
L−1

+ 2101LS1
1 + ω̃

∗
2
SL

L−2 + ω̃
2SL

L−2]

+ t(�2
0 +�

2
L)X

L
L−1 + SL

L�
2
L�

2
0}
−1 (11)

F†L,L
↓,↑ = {t

21∗0S1
1 +1

∗
L{�

2
0SL

L + t2SL−1
L − tω̃∗SL

L−1

− tω̃SL
L−1}}{t

4SL−2
L−2 + 2t3XL−1

L−2

3



+ t2[(2|ω̃|2 +�2
0 +�

2
L)

× SL−1
L−1 + 2101LS1

1 + ω̃
∗

2
SL

L−2 + ω̃
2SL

L−2]

+ t(�2
0 +�

2
L)X

L
L−1 + SL

L�
2
L�

2
0}
−1 (12)

where an = sinh(qn) and ãn = sinh (̃qn), SM
N = ãMaN, ω̃ =

iω+ξs, ω̃∗ = −iω+ξs = − (iω − ξs),�2
0 = |ω̃|

2
+12

0,�2
L =

|ω̃|2+12
L and XN

M = ω̃SN
M+ω̃

∗SM
N . In the first superconducting

layer, the Green functions can be written as

G0,0
↑,↑ = {−t3SL−2

L−1 − t2[ω̃∗SL−2
L + 2ω̃SL−1

L−1]

− t[SL−1
L (|ω̃|2 +�2

L)+ ω̃
2SL

L−1] − ω̃�
2
LSL

L}

× {t4SL−2
L−2 + 2t3XL−1

L−2 + t2[(2|ω̃|2 +�2
0 +�

2
L)S

L−1
L−1

+ 2101LS1
1 + ω̃

∗
2
SL

L−2 + ω̃
2SL

L−2]

+ t(�2
0 +�

2
L)X

L
L−1 + SL

L�
2
L�

2
0}
−1 (13)

F†0,0
↓,↑ = {t

21∗LS1
1 +1

∗

0{�
2
LSL

L + t2SL−1
L − tω̃∗SL

L−1

− tω̃SL
L−1}}{t

4SL−2
L−2 + 2t3XL−1

L−2

+ t2[(2|ω̃|2 +�2
0 +�

2
L)S

L−1
L−1

+ 2101LS1
1 + ω̃

∗
2
SL

L−2 + ω̃
2SL

L−2]

+ t(�2
0 +�

2
L)X

L
L−1 + SL

L�
2
L�

2
0}
−1. (14)

The dependence on L of the Green function is complex. From
the relations (6) and (5) it is possible to determine the explicit
form of the Green functions. In section 4, we analyze the
Josephson physics in the case of an arbitrary number of layers
L in the case of weak interlayer coupling t � Tc0.

3. The proximity effect in S/N/ . . . /N multilayers

From the Green functions in the S layer (n = 0) and in the last
metal layer (n = L) of an S/N/ . . . /N multilayer, we determine
the density of states in the S layer and in the last metal
layer in several cases. First, we find the density of states and
superconducting properties of the S/N/N trilayer. Then, we
study the influence of a mismatch of S and N layer Fermi
surfaces on the properties of the S/N bilayer. To finish, we
generalize these results to the properties of the S/N/ . . . /N
multilayer in the case of weak interlayer coupling t � Tc0.
The local density of states in the layer n is determined from
the relation

ρn(E) = −2Im
∫
+∞

−∞

lim
δ→0

Gn,n
↑,↑ (E + iδ, ξ) dξ. (15)

3.1. The S/N/N trilayer

We will study the thermodynamic properties and the density
of states in the S/N/N trilayer. From the Hamiltonian (1) and
the definition of the Green functions we deduce the Gorkov
system of the S/N/N trilayer as

(iω − ξn)G2,2
↑,↑ − tG1,2

↑,↑ = 1

(iω − ξn)G1,2
↑,↑ − tG2,2

↑,↑ − tG0,2
↑,↑ = 0

(iω − ξs)G0,2
↑,↑ − tG1,2

↑,↑ +10F†0,2
↓,↑ = 0

(iω + ξs)F†0,2
↓,↑ + tF†1,2

↓,↑ +10G0,2
↑,↑ = 0

(iω + ξn)F†1,2
↓,↑ + tF†0,2

↓,↑ + tF†2,2
↓,↑ = 0

(iω + ξn)F†2,2
↓,↑ + tF†1,2

↓,↑ = 0

(16)

where we can determine the normal and anomalous Green
functions of the metal layer with the index n = 2. The normal
Green function in the N layer (n = 2) is written as:

G2,2
↑,↑ = {((iω + ξ)

2
− t2)(iω − ξ)12

− ((iω − ξ)2 − t2)

× ((iω + ξ)2 − 2t2)(iω + ξ)}{((iω + ξ)2 − t2)

× ((iω − ξ)2 − t2)12
+ (ω2

+ ξ2)

× ((iω + ξ)2 − 2t2)((iω − ξ)2 − 2t2)}−1. (17)

The normal Green function indexed n = 1 is written as

G1,1
↑,↑ = {((ω

2
+ ξ2)((iω + ξ)2 − 2t2)+12((iω + ξ)2

− t2))(iω − ξ)}{((iω + ξ)2 − t2)((iω − ξ)2

− t2)12
+ (ω2

+ ξ2)((iω + ξ)2 − 2t2)

× ((iω − ξ)2 − 2t2)}−1 (18)

and the Green function in the superconducting layer indexed
n = 0 is

G0,0
↑,↑ = {−((iω − ξ)

2
− t2)((iω + ξ)2 − 2t2)(iω + ξ)}

× {((iω + ξ)2 − t2)((iω − ξ)2 − t2)12
+ (ω2

+ ξ2)

× ((iω + ξ)2 − 2t2)((iω − ξ)2 − 2t2)}−1 (19)

F†0,0
↓,↑ = {−((iω + ξs)

2
− t2)((iω − ξs)

2
− t2)1∗}

× {((iω + ξ)2 − t2)((iω − ξ)2 − t2)12
+ (ω2

+ ξ2)

× ((iω + ξ)2 − 2t2)((iω − ξ)2 − 2t2)}−1. (20)

Using these functions, we can calculate the critical
temperature, the superconducting gap and the density of states
in all the layers of the S/N/N trilayer. We note that we can
obtain the Green functions (17) and (19) by putting L = 2 in
the general expressions (7) and (10) respectively.

3.1.1. Critical temperature of the S layer as a function
of t. From the self-consistency equation (3), using the
anomalous Green function (20), we obtain that the critical
superconducting temperature is the solution of the equation:

ln
(

Tc

Tc0

)
= −

1
4

[
5
2
γ + 5 ln(2)+

1
4
9

(
1
2
− i

√
2t

πTc

)

+
1
4
9

(
1
2
+ i

√
2t

πTc

)
+9

(
1
2
− i

√
2t

4πTc

)

+ 9

(
1
2
+ i

√
2t

4πTc

)]
. (21)

The dependence of the critical temperature on the interlayer
coupling is represented in figure 2 by the solid line.
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Figure 2. Graph of Tc/Tc0 and 1/Tc0 as a function of t/Tc0 (solid
line). For t � Tc0, the critical temperature and the superconducting
gap at zero temperature of the S layer decrease with the interlayer
coupling.

In the weak interlayer coupling regime, t � Tc0, the
superconducting critical temperature varies as Tc

Tc0
= 1 −

7
8
ζ(3)
π2 (

t
Tc0
)2, which is the same decay as observed in the S/N

bilayer [32]. In the strong interlayer coupling regime, t �
Tc0, the superconducting critical temperature varies as Tc

Tc0
=

(
e−γ πTc0

4
√

2t
)

5
3 . The power law decay is larger than in the S/N

bilayer [32]. In the trilayer, the S layer transmits its correlation
in two normal metal layers. The superconducting state is more
destabilized in the trilayer than in the bilayer [32].

3.1.2. Superconducting gap at zero temperature. The
superconducting gap at zero temperature can be calculated
with the help of the anomalous Green function of the S layer
(20). The self-consistency equation (3) is written as:

ln
(
1(0)
10

)
=

1
2π

∫
∞

0
dρ
∫ 2π

0
dφ
(
(t4 + 2ρ(sin2(φ)

− cos2(φ))t2 + ρ2)((4ρ +12)t4

+ 2ρ(sin2(φ)− cos2(φ))(2ρ +12)t2

+ ρ2(ρ +12))−1
−

1

ρ + |1|2

)
(22)

where 1(0) is the superconducting gap of the S layer at zero
temperature and with the variable change ξs =

√
ρ sin(φ)

and ω =
√
ρ cos (φ). The results are presented in figure 2.

The variation of the superconducting gap at zero temperature
is globally the same as for the critical temperature. But
the proportionality coefficient between 1(0) and Tc evolves
with the interlayer coupling from (1(0)/Tc) = 1.764 at zero
interlayer coupling to (1(0)/Tc) = 4.51 at high interlayer
coupling (see figure 3). This result is coherent with [45],
where it has been demonstrated that the ratio (1(0)/Tc) in the
S/N bilayer evolves from 1.764 at small interlayer coupling to
3.52 at high interlayer coupling.

Then the ratio (1(0)/Tc) depends on the number of
layers composing the multilayer at high interlayer coupling.

Figure 3. Graph of 1(0)/Tc as a function of t/Tc0. The value of
1(0)/Tc evolves from 1.764 for weak interlayer coupling (t � Tc0)
to 4.51 for strong interlayer coupling (t � Tc0).

Figure 4. Density of states ρ(E)/ρ(0) in the superconducting layer
(solid line), in the first normal metal layer (dashed line) and in the
second normal metal layer (dotted line) in the case t = 0.1Tc0.

It seems to increase with the total number of layers in the S/N
structure. The superconductivity is strongly weakened in the
presence of a large number of N layers.

3.1.3. Density of states in the S/N/N trilayer. The DOS inside
each layer of the S/N/N trilayer is deduced from the normal
Green function inside the layers, (17)–(19). We determine
the DOS from the relation (15) in the superconducting layer
and in the two normal metal layers for different interlayer
couplings. The different DOS are determined numerically and
presented in figures 4–8. In the different graphs, we note the
presence of different peaks in the DOS. As in [45], these peaks
arise at energies which depend on the superconducting gap 1
and the interlayer coupling t. In the trilayers, we emphasize
the presence of three peaks because of the presence of three
layers in the system. In the weak coupling approximation,
t � 1, two peaks arise at energy Ea ≈ t. These peaks are
related to the hybridization levels that occur with interlayer
coupling. The third peak appears at an energy around Eb ≈ 1

which is related to the superconducting state in the S layer.
In the strong coupling approximation, t � 1, the two peaks
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Figure 5. Density of states ρ(E)/ρ(0) in the superconducting layer
(solid line), in the first normal metal layer (dashed line) and in the
second normal metal layer (dotted line) in the case t = 0.35Tc0.

Figure 6. Density of states ρ(E)/ρ(0) in the superconducting layer
(solid line), in the first normal metal layer (dashed line) and in the
second normal metal layer (dotted line) in the case t = 0.95Tc0.

due to the hybridization levels arise at energy Ea ≈
√

2t. The
third peak related to the superconducting state in the S layer
appears at energy Eb ≈

1
2 . At high energies, the DOS in the

S/N/N layers equals the DOS in the metal layer.

3.2. Dependence of a mismatch between the N and S layer
Fermi surface on the properties of a S/N bilayer

The dependence of a mismatch between the N and S layer
Fermi surface on the properties of a S/F/S junction and a
F/S/F trilayer has been studied in [50]. In this paper, we
demonstrate that an energy shift between the superconductor
and the normal metal qualitatively affect the properties of
the heterostructure. In this case, we study the influence of an
energy shift on the properties of a S/N bilayer. The electronic
spectrum near the Fermi surface in the superconducting layer
is ξs, whereas the metallic spectrum is ξn = ξs + 1E, where
1E is the energy shift due to the mismatch of the Fermi
surface of N and S layers. The normal and anomalous Green
functions in the S layer are deduced from the formulas (9) and

Figure 7. Density of states ρ(E)/ρ(0) in the superconducting layer
(solid line), in the first normal metal layer (dashed line) and in the
second normal metal layer (dotted line) in the case t = 1.5Tc0.

Figure 8. Density of states ρ(E)/ρ(0) in the superconducting layer
(solid line), in the first normal metal layer (dashed line) and in the
second normal metal layer (dotted line) in the case t = 7Tc0.

(10) by setting L = 1:

G0,0
↑,↑ = {(iω − ξs −1E)((iω + ξs +1E)(iω − ξs)− t2)}

× {t4 + (2ω2
− 2ξs(ξs +1E))t2 + (ω2

+ (ξs +1E)2)

× (ω2
+ ξ2

s +1
2)}−1 (23)

F+0,0
↓,↑ = −{1

∗(ω2
+ (ξs +1E)2)}{t4 + (2ω2

− 2ξs(ξs

+ 1E))t2 + (ω2
+ (ξs +1E)2)(ω2

+ ξ2
s +1

2)}−1.

(24)

The normal Green function in the metallic layer is deduced
from the function (7) by replacing L = 1:

G1,1
↑,↑ = {−(iω − ξs −1E)(iω − ξs)t

2
+ (ω2

+ (ξs +1E)2)

× (ω2
+ ξ2

s +1
2)}{(iω − ξs −1E)

× (t4 + (2ω2
− 2ξs(ξs +1E)t2

+ (ω2
+ (ξs +1E)2)(ω2

+ ξ2
s +1

2)))}−1. (25)

We study the critical temperature and the density of states of
the S and the N layers for an arbitrary energy shift 1E.
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Figure 9. Graph of Tc/Tc0 and 1/Tc0 as a function of t/Tc0. For
t � 1E � Tc0, the critical temperature decreases slightly with the
interlayer coupling. For Tc0 � t . 1E, the critical temperature
decreases with the interlayer coupling differently from in the case
Tc0 � 1E � t.

3.2.1. Superconducting critical temperature as a function of
t and 1E. We use the Green function (24) and the self-
consistency equation (3) to determine the superconducting
critical temperature:

ln
(

Tc

Tc0

)
= −

t2

1E2 + 4t2

[
2γ + 4 ln(2)

+ 9

(
1
2
−

i
√
1E2 + 4t2

4πTc

)

+ 9

(
1
2
+

i
√
1E2 + 4t2

4πTc

)]
. (26)

The variation of the critical temperature is presented
in figure 9 for different values of 1E. The variation
of the critical temperature is described by three energy
scales: t,1E and Tc0. For small interlayer coupling t �
1E � Tc0, the critical temperature varies as Tc−Tc0

Tc0
=

−
1

8π2

(
t

Tc0

)2
(

7ζ(3)− 31
π2 ζ(5)

(
1E
Tc0

)2
)

. If the interlayer

coupling is bigger than the energy shift, 1E � t �

Tc0, then Tc−Tc0
Tc0

= −
7ζ(3)
8π2

(
t

Tc0

)2
, which corresponds to

the classical case. We note that the critical temperature
decreases slower in the presence of an energy shift 1E
in the regime of small interlayer coupling. For the strong
energy shift in the small interlayer coupling regime, t �
Tc0 � 1E, the critical temperature varies as Tc−Tc0

Tc0
=

−

(
t/Tc0
1E/Tc0

)2 [
2γ + ln

(
1E
4π2

)]
. In this case, the variation is

slow because of the decrease of the effective interlayer
coupling. The mismatch of the Fermi surface induces more
difficult tunneling of the Cooper pairs between the S and
the N layers. For high interlayer coupling, the critical
temperature Tc decreases. For Tc0 � t ' 1E, the variation
of temperature is written as Tc

Tc0
'

πe−γ√
1E2+4t2

. The effective

interlayer coupling is bigger than the real interlayer coupling.

Figure 10. Graph of density of states ρ(E)/ρ0 in the S layer (solid
line) and in the N layer (dashed line) for t = 0.1Tc0 and an energy
shift 1E/Tc0 = 0.1Tc0.

Figure 11. Graph of density of states ρ(E)/ρ0 in the S layer (solid
line) and in the N layer (dashed line) for t = 0.1Tc0 and an energy
shift 1E/Tc0 = Tc0.

For Tc0 � 1E � t and 1E � Tc0 � t, the results are the
same as described in [32]. As in the small interlayer coupling
regime, the mismatch between the Fermi surface weakens the
proximity effect.

3.2.2. Density of states in the S and the N layers as a function
of t and1 E. An energy shift between the S and N electronic
spectrum influences the density of states of the S and N layers.
From the relation (15), we can determine the density of states
for different configurations. The energy shift must influence
the density of states by affecting the number of available states
in the S/N structure. In the small interlayer coupling limit,
t� Tc0 approximation, for energy shifts1E <1(0) the DOS
in S and N layers are nearly the same as in a single N layer,
see figures 10 and 11. In the case where the energy shift is
higher than the superconducting gap, 1E > 1, there appear
DOS peaks for energy E around 1E

2 . (See figure 12). These
peaks may correspond to the tunneling of particles between
the S and the N layer that occurs at these energies.
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Figure 12. Graph of density of states ρ(E)/ρ0 in the S layer (solid
line) and in the N layer (dashed line) for t = 0.1Tc0 and an energy
shift 1E/Tc0 = 10Tc0.

In the case of high energy shift and high interlayer
coupling, t = 100Tc0 and 1E = 100Tc0, the density of states
may be influenced by the formation of a hybrid level between
the two layers. In figure 13, the DOS varies in a complex
manner with the energy. We note that the DOS in the two
layers are almost the same. At high interlayer coupling, the
S/N bilayer can be considered as a single S layer with a
superconducting constant divided by two [32].

As we have demonstrated, the properties of the bilayers
strongly depend on the interlayer coupling and the mismatch
between the S and N layers Fermi surfaces that produce
energy shift between the electronic energy spectra. This
energy shift makes the electronic transfer between the S and
N layer more difficult. The presence of the energy shift may
be observed in the peaks in the DOS of the S and N layers.

3.3. Density of states in the S/N/ . . . /N multilayer for weak
interlayer coupling

In this subsection we study the DOS in the S/N/ . . . /N
multilayer in the weak coupled approximation t � Tc. The
dependence of the Gorkov Green function in the S/N/ . . . /N
multilayer on the total number of layers L is simpler in the
case of weak interlayer coupling. This study may be relevant
for clean quasi-bidimensional devices.

3.3.1. Critical temperature of the S/N/ . . . /N multilayer. To
find the properties of the S layer, we use the anomalous Green
function (9). The arbitrary number of total number of layers
in the S/N/ . . . /N multilayer makes it difficult to find the
solution to the self-consistency equation in the general case.
However, we can easily determine the behavior of the critical
temperature in the case of a weak interlayer coupling t� Tc0.
In this regime the transfer of the superconducting correlations
in the adjacent N layers is highly limited and decreases fast.
Consequently, the critical temperature of the S layer varies
very little with the interlayer coupling. In the weak interlayer

Figure 13. Graph of the density of states ρ(E)/ρ0 in the S layer
(solid line) and in the N layer (dashed line) for t = 100Tc0 and an
energy shift 1E/Tc0 = 100Tc0.

regime, t � Tc0, we may replace the hyperbolic sines in the
Green function (9), by the expressions

a1 = sinh(q) '
(iω − ξn)

2t
ã1 = sinh (̃q) ' −

(iω + ξn)

2t
.

(27)

The anomalous Green function F†0,0
↓,↑ can be written as

F†0,0
↓,↑ =

1∗0(
ω2 + ξ2

s + |10|
2
)

×

[
1−

2t2(
ω2 + ξ2

s + |10|
2
) (ω2

− ξ2
s
)

ω2 + ξ2
s

−
t4(

ω2 + ξ2
s + |10|

2) (ω2 + ξ2
s
)

×

(
1−

4(
ω2 + ξ2

s + |10|
2)
(
ω2
− ξ2

s
)2(

ω2 + ξ2
s
) )] .

(28)

From the self-consistency equations (3), the critical tempera-

ture can be written as Tc
Tc0
= 1 − 7

8
ζ(3)
π2

(
t

Tc0

)2
. This variation

is the same as in the S/N bilayer and the S/N/N trilayer in
the small interlayer coupling regime. In this regime, only the
nearest N layer is important and affects the superconducting
properties. The superconducting gap at zero temperature

reads 1(0)−1
1
=

4t4

|1(0)|4
ln
(

t
|1(0)|

)
. This variation is typical

for the weak interlayer coupling regime where the logarithm
dependence appears [33]. The superconducting gap is affected
only by the nearest N layer.

3.3.2. Density of states in the last metal layer of the
S/N/ . . . /N multilayer. We have determined the Green
functions in the S and in the last metal layer. We are first
interested in the case where the S and the N layers Fermi
surfaces are perfectly matching. For small interlayer coupling,
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t � Tc0, the properties of the S layer are the same as those of
the S/N bilayer [32]. The normal Green function of the last
N layer GL,L

↑,↑ is the same as in a single metal layer. Then,
to take into account the transmission of the superconducting
correlations in this approximation, we consider that the
transmission of the superconducting correlations is highly
reduced, which implies that the superconducting gap in the
last N layer is small. We make an expansion on 12 of the
normal Green function. From this expansion, we will study
the DOS in the last metal layer in the case of a perfect match
and a mismatch between the S and N layers Fermi surfaces.

Perfect match between the N and S layer Fermi surfaces
With a perfect match between the S and N layer Fermi

surfaces, the electronic spectra in the S and the N layers are
the same, ξs = ξn. The Green function in (7), expanded in12,
can be written in the approximation t � Tc0 as

GL,L
↑↑
=

1
iω − ξs

+12
0

1

(iω − ξs)
2 (iω + ξs)

(
t

iω − ξs

)2L

(29)

where the hyperbolic sines are replaced by the expression
(27). We note that the superconducting correlations depend
directly on the interlayer coupling to the power 2L. In this
case, the superconducting correlations for a large number of
layers are negligible. From the relation (15), we determine the
correction to the DOS of the last metal layer related to the
superconducting correlations:

1ρ =
ρL(E)− ρ0

ρ0
=
12

0

2E2

( t

2E

)2L
(30)

which is valid in the approximation E > t. The supercon-
ducting correlations affect the density of states at the power
2L. This dependence is logical because the superconducting
correlations concern two electrons transmitted through L
layers. As expected, the influence of the S layer on the last
metal layers is very small for a large number of layers L in
weakly coupled multilayers.

Mismatch between the N and S layer Fermi surfaces
The Green function in (7), expanded in12, can be written

in the approximation t � Tc0 as

GL,L
↑↑
=

1

(iω − ξn)
+

12
0

(iω + ξs) (iω − ξs)
2

(
t

iω − ξn

)2L

(31)

where the hyperbolic sines are replaced by the expression
(27). The superconducting properties merge near the S layer
Fermi momentum. Due to the difference between the N and
S layers electronic band structure, a mismatch between the S
and N layers Fermi surfaces can occur. In the approximation
of parabolic dispersion, this mismatch of Fermi surfaces can
manifest as an energy shift 1E and a different effective mass
between the S and N layer electronic spectra. There are two
major contributions to the S/N/ . . . /N multilayer properties.
The first is the contribution of the electronic state near the
superconductor layer’s Fermi surface (see figure 14(b)). In
this case, the integration in the relation (15) is made near the
S layer Fermi surface with the N layer electronic spectrum
strongly shifted. The second contribution originates from
the electronic states near the normal metal Fermi surface

(see figure 14(a)). In this situation, the integration in the
relation (15) is made near the N layer Fermi surface with
the S layer electronic spectrum strongly shifted. We evaluate
the contribution of the states near the N and S layer Fermi
surfaces, in the case of an arbitrary number of layers L, to
determine the greater contribution and then determine which
layers influence the properties of the multilayer.

Contribution of the states near the S layer Fermi surfaces
In this situation, the integration can be made by

considering the S and N layer electronic spectra in the
following form:

ξs =
p2

2mS
− EF ' vFS

(
p− pFs

)
ξn =

p2

2mn
− EF '

p2
FS

2mn
− EF =

p2
FS
− p2

Fn

2mn

= 1E � Tc0 (32)

where vFS(n) is the Fermi velocity in the superconductor (nor-
mal metal), pFS(n) the Fermi impulsion in the superconductor
(normal metal) and 1E is the energy difference between the
N and S layer electronic spectra for an impulsion equal to pFS .
The integral

∫
dp becomes

∫ dξs
vFs

. The correction to the density
of states can be written as:

1ρ =
ρL(E)− ρ0

ρ0
=
12

2E2

(
t2

4E2 + (1E)2

)L

(33)

which is valid in the limit E > t. The superconducting
correlations decrease as a function of t2L. Moreover, the
energy shift appears directly in the density of states. In the
regime 1E � Tc0, the correction to the density of states can
be written as 1ρ = 12

2E2 (
t
1E )

2L, which is very small.

Contribution of the state near the N layer Fermi surface
In this situation, we consider the state near the N layer

Fermi surface, the energy spectra can be written in the
following way

ξs '
p2

Fn

2mS
− EF = −

mn

mS
1E = ξn + 1̃E � Tc

ξn = vFn

(
p− pFs

)
.

(34)

The correction to the density of states can be written as

1ρ =
12

0

2E2

(
t2

4E2 +
(
1̃E

)2
)L

(35)

valid in the limit E > t. The superconducting correlations
decrease as a function of t2L. In the approximation of strong
energy shift 1̃E � Tc0, the correction to the density of states
can be written as 1ρ = 12

2E2 (
t

1̃E
)2L, which is very small.

However, the contribution depends on the values of both 1E
and 1̃E. The energy shift 1̃E depends on the effective mass
in the metal and in the superconductor.

3.3.3. Conclusion. The superconducting correlations
strongly decrease in the last N layer as a function of t2L. As
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expected, the proximity effect weakens with the number of
layers. In the case of a mismatch between the S and N layer
Fermi surfaces, the density of states in the last N layer depends
on the contribution of the state near the S or N layer Fermi
surface. These corrections depend on the effective mass ratio
mn/ms. If mn < ms then the contribution is greater for the state
near the N layer Fermi surface. This means that the properties
of the multilayer are driven by the states near the N layer
Fermi surface. If mn > ms then the contribution is greater for
the states near the S layer Fermi surface. This means that the
properties of the multilayer are driven by the states near the
S layer Fermi surface. If mn = ms, the properties are driven
by both the states near the S and N layer Fermi surfaces.
This study demonstrates the crucial role of the intrinsic
properties of the layers composing a S/N/ . . . /N multilayer.
The difference of effective mass can determine which layers
influence the properties of the S/N/ . . . /N multilayer. A study
of this effect for strong interlayer coupling could determine
the role of each Fermi surface.

4. Josephson current and 0–π transition phase in
the S/N/ . . . /N/S junction

The S/N/S hybrid trilayer has been extensively studied since
the discovery of the Josephson effect [15, 30, 31, 58].
We apply the model which has been described in the first
part and add an arbitrary number of metal layers between
the two superconducting layers. First we determine the
superconducting gap in the 0 and the π states of the first
superconducting layer in the case of small interlayer coupling.
The 0(π) state occurs when the two S layers support the same
(opposite) signs of the order parameter [59]. We deduce the
free energy of the junction and the Josephson critical current.
The superconducting layers are labeled n = 0 and n = L. The
normal metal layers between the two S layers are labeled
n = 1 to L − 1 (see figure 1(b)). We study the influence of
the metallic spectrum on the global properties of the junction.

4.1. Superconducting gap in the S/N/ . . . /N/S junction

To find the superconducting gap of the S/N/ . . . /N/S
Josephson junction, we use the Green function presented
in (4). If we consider a weak interlayer coupling t � Tc0, the
anomalous Green function (14) of the first superconducting
layer can be written as

F†0,0
↓,↑ =

1∗0(
ω2 + ξ2

s +1
2
0

)
+

1∗L
(
ω2
+ ξ2

n

) (
ω2
+ ξ2

s −1
2
0

)(
ω2 + ξ2

s +1
2
0

)2 (
ω2 + ξ2

s +1
2
L

)
×

(
t2

ω2 + ξ2
n

)L

(36)

where we keep the terms to the power 2L which change
the sign with the 0 − π phase transition. We see that the
interlayer term directly depends on the metallic spectrum.

Figure 14. Electronic spectra in the S and N layers in the two
integration cases. In the case (a), the integration is near the metallic
Fermi surface. In the case (b), the integration is near the
superconducting Fermi surface. The dashed circle shows the place
where the integration is made.

This means that the proximity effect in the S/N/S multilayer
is highly affected by the form of the electronic spectra
of the metallic layers. When the junction is in the phase

0(π)
(
1
(∗)
0 = ±1

(∗)
L

)
, the function (36) can be written as:

F†0,0
↓,↑ =

10(π)∗(
ω2 + ξ2

s +
∣∣10(π)

∣∣2)

±

10(π)∗
(
ω2
+ ξ2

n

) (
ω2
+ ξ2

s −
∣∣10(π)

∣∣2)(
ω2 + ξ2

s +
∣∣10(π)

∣∣2)3

×

(
t2

ω2 + ξ2
n

)L

, (37)

where 10(π) is the superconducting gap when the junction is
in the 0(π)-phase. The self-consistency equation in the 0 or
the π phase can be written as:

ln
(

1

10(π)

)
= πT

×

∑
ω

∫
dξs

∓
(
ω2
+ ξ2

n

) (
ω2
+ ξ2

s −
∣∣10(π)

∣∣2)(
ω2 + ξ2

s +
∣∣10(π)

∣∣2)3

×

(
t2

ω2 + ξ2
n

)L

−
1(

ω2 + ξ2
s + |1|

2)
 (38)

where we note that the left hand side term is evaluated at zero
temperature. For a weak interlayer coupling, we can consider
that the difference between the superconducting gap in the
0 and π phase is the same at zero temperature as at finite
but very low temperature. The difference 10

− 1π is very
small in the approximation t � Tc0. This difference evolves
as a function of t2L. The relation between 10 and 1π can be

10



written as:

ln
(
10

1π

)

= πT
∑
ω

∫
dξs

[(
ω2
+ ξ2

n

) (
ω2
+ ξ2

s − |1|
2)(

ω2 + ξ2
s + |1|

2)3
×

(
t2

ω2 + ξ2
n

)L]
(39)

where we consider 1 is an average superconducting gap
10+1π

2 . From the self-consistency equation (39), we can find
the difference 10

− 1π , which in the case of the multilayer
is:

10
−1π

1π

= πT
∑
ω

∫
+∞

0

[
t2L
(
ω2
+ ξ2

s −1
2
)(

ω2 + ξ2
n

)L−1 (
ω2 + ξ2

s +1
2
)3
]

dξs.

(40)

At low temperature, this difference is negative, which implies
a superconducting gap in the 0 state smaller than in the π state.
These difference depends on the number of layers and then on
the thickness of the junction. With a perfect mismatch of the S
and N layer Fermi surfaces, then the electronic spectra in the
S and N layers can be considered as equal, ξn = ξs, and the
difference of the superconducting gap is equal to

10
−1π

1π
=

−T4ζ (2L− 3)
142L−1π2L−4 (L− 2)!

22L−3
− 1

22L−3

( t

T

)2L
(41)

where we see that this difference is negative at low
temperature, which implies a superconducting gap higher
in the π phase than in the 0 phase. This difference is
non-intuitive, because the 0 state is more stable than the
π -state. We determine the free energy of the system in
section 4.2. In the case of a mismatch between the S and N
layers, the electronic spectra in the S and N layers are shifted.

4.1.1. Contribution of the states near the S layer Fermi
surface. We have a N layer spectrum shifted from the S layer
spectrum. With the conditions (32), we set ξn = 1E � Tc.
The difference of the superconducting gaps (40) becomes:

10
−1π

1π
=

( t

1E

)2L 1E2
(
56ζ(3)π2T2

c − 3112ζ(5)
)

32π4T4
c

(42)

after expansion in 1. We note that the difference 10
− 1π

is positive whatever the superconducting gap. This means that
the contribution of the state near the S layer Fermi surface
implies a superconducting gap greater in the 0 phase than in
the π -phase. This difference decays rapidly with the energy
shift between the S and N state electronic spectrum. At zero
temperature, this difference vanishes.

4.1.2. Contribution of the state near the N layer Fermi
surface. From the conditions (34), we have ξs = −

mn
mS
1E�

T . The difference between the superconducting gaps (40)
becomes:

10
−1π

1π
=

22L−3
− 1

22L−3

ζ (2L− 3)T4

π2L−42L−3 (L− 2)!

×

((
mn
mS
1E

)2
−12

)
((

mn
mS
1E

)2
+12

)3

( t

T

)2L
(43)

in the case1� T and t� T . We note that at low temperature,
the difference10

−1π is negative in the case where mn
mS
1E is

smaller than1. In the case of a large energy shift mn
mS
1E�1,

the difference10
−1π is always positive. The influence of the

states near the metallic Fermi surface can imply an inversion
in the superconducting gap in the 0 and π phase.

4.1.3. Conclusion. We note that this difference is always
proportional to the interlayer coupling t to the power 2L.
As t � Tc0, this difference is rapidly decreasing with
the thickness of the junction. At low temperature, where
T > t in the approximation t � Tc0, the two contributions
are equivalent. For higher temperature, we see that the
contribution of the states near the S layer Fermi surface
is greater. This behavior seems to be coherent because the
proximity effect and the superconducting correlations are
strongly supported by the S layer. The superconducting state
induced in the adjacent N layers may play a role at low
temperature. These states disappear at higher temperature.

4.2. Critical current in the S/N/ . . . /N/S junction

At all temperatures, the free energy in the S/N/ . . . /N/S
junction between the normal and the superconducting state is
determined by the relation [57]:

Fs − Fn =

∫ 1(0)

0

∂
(

1
λ

)
∂1

12

 d1. (44)

We can calculate the free energy in the case of weak interlayer
coupling:

Fπ − F0 = 4t2LN(0)12T
∑
ω

∫
+∞

0

×

[
1(

ω2 + ξ2
n

)L−1 (
ω2 + ξ2

s +1
2
)2
]

dξs > 0 (45)

where we see that the free energy of the π state is higher than
the free energy in the 0 state. The π state cannot appear in the
S/N/ . . . /N/S junction. In the case where ξn = ξs, with the free
energy difference and the relation [18], the Josephson critical
current can be written as

Ic =
e
h̄

4πρ(0) (2L− 4)!

((L− 2)!)2

×

(
2(2L−3) − 1

)
1222L−3 (2π)2L−3 ζ (2L− 3)T4e−

x
ξ (46)
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where ξc is the interlayer superconducting coherence length,
x = L.a is the length of the N layer and a is the interlayer
distance. Here ξc can be written as

ξc =
a

2 ln
(T

t

) . (47)

We have ξc −→ 0 if T −→ ∞. Moreover, we have ξ −→
∞ if T −→ t. Our approach is valid for T � t because of
the expansion in t. This limitation could be compensated by
considering terms of higher order in t. We note an exponential
decrease of the Josephson current in the metallic layers. This
effect is characteristic of the decrease of the superconducting
correlations in the metals established by superconductivity
theory [41].

4.2.1. Contributions of the states near the S layer Fermi
surface ξs � ξn. Using the relations (32), the critical
Josephson current can be written as:

Ic =
e
h̄

ρ(0) (1E)212

π2T2

7
4
ζ(3)

( t

1E

)2L
. (48)

The critical current is inversely proportional to the energy shift
in the power 2L. The Josephson critical current is negligible
and depends on the N layer characteristics. Near the S layer
Fermi surface, the more general limit is the energy shift
between the S and N layer electronic spectra.

4.2.2. Contributions of the states near the N layer Fermi
surface ξn � ξs. From the conditions (34), the critical
Josephson current can be written as:

Ic =
e
h̄

ρ(0)12ζ (2L− 3)T4

2L−1π2L−4 (L− 2)!
((

mn
mS
1E

)2
+12

)2

×
22L−3

− 1

22L−3

( t

T

)2L
. (49)

In this Fermi surface configuration, the critical current
decreases with temperature as a power law. This contribution
may be relevant at low temperature. The divergence in
temperature is due to the approximation t � T and may be
compensated by considering higher order terms in t.

4.2.3. Conclusion. For a high number of layers, at low
temperature or for 1E > t, the highest contribution is for
the state near the N layer Fermi surface. However, for high
temperature or for a small number of layers, the highest
contribution is for the state near the S layer Fermi surface.
The Josephson current of a S/N/ . . . /N/S junction depends
explicitly on the number of metallic layers and on the energy
shift1E. We note that the critical current decreases faster with
temperature for thick junctions [58].

5. Conclusion

We propose a solution to the Gorkov equations of a
S/N multilayered systems. With the Gorkov equation, we

demonstrate the possibility to determine the properties of
multilayered tunneling systems taking into account the
superconducting correlations existing in these systems and a
possible mismatch of the S and N layer Fermi surfaces.

The DOS in the S/N/ . . . /N system has a complex
behavior that depends on the number of layers in the system.
Then, the DOS of S/N/N trilayers exhibits three peaks which
are the signature the superconducting gap in the S layer
and induced a superconducting gap in the N layers by the
proximity effect. A generalization of this approach may lead
to the presence of L peaks in a S/N/ . . . /N multilayered
structure composed by L layers. These peaks may be easier
to observe if t ≈ 1 at low temperatures because the induced
superconducting gap in the N layers is proportional to t2

1
.

The correction to the superconducting correlation in the last
N layer in the S/N/ . . . /N structure is proportional to t2L in
the tunneling approximation t � Tc. As expected, the last N
layer is weakly affected by the S layer. The density of states in
such a system is gapless, as observed in S/N [45] and S/F [59]
superlattices. In the S/N case, the gapless character of the
spectrum is due to the presence of an electron in the N layers
that does not feel the superconducting pairing potential [45].
Nevertheless, in the case of a S and N layer Fermi surface
mismatch, the density of states of the last N layer is
influenced by the energy shift which exists between the S
and N layer electronic spectra. Then, a difference between
effective masses could change the dominant contribution of
the N or S layer to the S/N/ . . . /N properties, such as DOS.
This information helps to understand the properties of these
multilayered systems. This contribution may be observed in
epitaxial systems by STM methods.

The example of the superconducting gap in the 0 and the
π phase and the critical current in the S/N/ . . . /N/S Josephson
junction is another example of the influence of the energy shift
mismatch and the long range superconducting correlation in
multilayered systems. Unexpectedly, the superconducting gap
in the π phase is found to be higher than in the 0 phase.
The π phase is less stable than the 0 phase. These difference
in the superconducting gaps and the logarithmic dependence
of the coherence length are two signatures of the tunneling
aspect of the Josephson junction. This dependence is directly
related to the layered aspect of the Josephson junction in
the tunneling approximation t � Tc. Here, the Josephson
junction has to be considered as a stack of alternating N
independent layers. This discrete aspect in the construction
of the Josephson junction may directly be the cause of this
highly unusual dependence. Moreover, a possible mismatch
between the S and N Fermi surfaces leads to complex behavior
of the coherence length. The contribution of the S and N
layer Fermi surfaces qualitatively changes the behavior of the
critical current in multilayered Josephson junctions.
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Appendix. Gorkov Green function in S/N/ . . . /N
multilayer and S/N/ . . . /N/S junctions

This appendix aims at evaluating the Gorkov functions in
S/N/ . . . /N multilayers and S/N/ . . . /N/S junctions.

Propagation conditions

These propagation conditions exist in the system of equations
that describes the S/N/ . . . /N multilayers and the S/N/ . . . /N/S
junctions. These conditions permit the resolution of the
system whatever the number of the metallic layers. From the
general equations of the multilayer (4), we write the equations
for the Green functions with an arbitrary number of metallic
layers (which must not be the last layer) as:

(iω − ξn)Gn,m
↑,↑ − tGn−1,L

↑,↑ − tGn+1,m
↑,↑ = 0

(iω + ξn)F†n,m
↓,↑ − tF†n−1,m

↓,↑ − tF†n+1,m
↓,↑ = 0.

(A.1)

To solve the system (A.1), we use the form of the Gorkov
function (4) and the relations (5) and (6). We have:

ẽq
= −

(
iω + ξn

2t

)
+

√
(iω + ξn)

2
− 4t2

2t

e−̃q
= −

(
iω + ξn

2t

)
−

√
(iω + ξn)

2
− 4t2

2t

eq
=

(
iω − ξn

2t

)
+

√
(iω − ξn)

2
− 4t2

2t

e−q
=

(
iω − ξn

2t

)
−

√
(iω − ξn)

2
− 4t2

2t

(A.2)

and we can write the explicit form of the Green functions.

Gorkov functions of the S/N/ . . . /N multilayer

We study the S/N/ . . . /N system where the S layer is indexed
by n = 0 and the N layers from n = 1 to n = L (see
figure 1(a)). To determine the density of states in the last
metal layer (indexed L) we have to determine the GL,L

↑,↑ Green
function. The Gorkov equations for the last metal layer read
as

(iω − ξn)GL,L
↑,↑ − tGL−1,L

↑,↑ = 1

(iω + ξn)F†L,L
↓,↑ + tF†L−1,L

↓,↑ = 0,
(A.3)

in which we replace the Green function by the form (4) in
order to write the constants B and D as functions of the
constants A and C. Hence the Green functions in the last metal
layer (n = L) read as

Gn,L
↑,↑ = A

(
eqn
− e2qLe−q(n−2)

)
+

eq(L−n)

(iω − ξn − teq)
(A.4)

and

F†n,L
↓,↑ = C

(
ẽqn
− e2̃qLe−̃q(n−2)

)
. (A.5)

Then, we have to determine the constants A and C.
Furthermore, from the function (A.4) and (A.5), we can find
all the Green functions calculated for arbitrary indices n.
Then, the Gorkov equations in the S layer (n = 0) can be
written as

(iω − ξn)G0,L
↑,↑ − tG1,L

↑,↑ +10F†0,L
↓,↑ = 0

(iω + ξn)F†0,L
↓,↑ + tF†1,L

↓,↑ +1
∗

0G0,L
↑,↑ = 0,

(A.6)

and in the first metallic layer (n = 1) as

(iω − ξn)G1,L
↑,↑ − tG0,L

↑,↑ − tG2,L
↑,↑ = 0

(iω + ξn)F†1,L
↓,↑ + tF†0,L

↓,↑ + tF†2,L
↓,↑ = 0.

(A.7)

If we replace the Green functions in the two last systems by
considering the propagation condition (A.4) and (A.5), the
system becomes:

(iω − ξs)G0,L
↑,↑ + 2tAeq(L+1) sinh(qL)+10F†0,L

↓,↑ = eqL

(iω + ξs)F†0,L
↓,↑ − 2tCẽq(L+1) sinh (̃qL)+1∗0G0,L

↑,↑ = 0

2tAeq(L+1) sinh (q (L+ 1))− tG0,L
↑,↑ = eq(L+1)

−2tCẽq(L+1) sinh (̃q (L+ 1))+ tF†0,L
↓,↑ = 0.

(A.8)

And the solutions are

A = 1
2 {̃aL+1(eq(L+1)(ω2

+ ξ2
s + |10|

2)− teqL(iω + ξs))

+ t̃aL(teqL
+ (iω − ξs)eq(L+1))}{teq(L+1)(t2aL̃aL

− t[(iω − ξs)̃aLaL+1 − (iω + ξs)aL̃aL+1]

+ (ω2
+ ξ2

s + |10|
2)aL+1̃aL+1)}

−1 (A.9)

C = − 1
2 {1

∗

0a1}{ẽq(L+1)(t2aL̃aL − t[(iω − ξs)̃aLaL+1

− (iω + ξs)aL̃aL+1]

+ (ω2
+ ξ2

s + |10|
2)aL+1̃aL+1)}

−1 (A.10)

G0,L
↑,↑ = {sinh(q)((iω + ξs)̃aL+1 − t̃aL)}{t

2aL̃aL

− t[(iω − ξs)̃aLaL+1 − (iω + ξs)aL̃aL+1]

+ (ω2
+ ξ2

s + |10|
2)aL+1̃aL+1}

−1 (A.11)

F†0,L
↓,↑ = −{1

∗

0a1̃aL+1}{t
2aL̃aL − t[(iω − ξs)

× ãLaL+1 − (iω + ξs)aL̃aL+1]

+ (ω2
+ ξ2

s + |10|
2)aL+1̃aL+1}

−1 (A.12)

where an = sinh(qn) and ãn = sinh (̃qn). The Green functions
can be written as:

Gn,L
↑,↑ =

1
2 {[̃aL+1(eq(L+1)(ω2

+ ξ2
s + |10|

2)

− teqL(iω + ξs))+ t̃aL(teqL

+ (iω − ξs)eq(L+1))](eqn
− e2qLe−q(n−2))}

× {teq(L+1)(t2aL̃aL − t[(iω − ξs)̃aLaL+1

− (iω + ξs)aL̃aL+1] + (ω
2
+ ξ2

s + |10|
2)aL̃aL+1)}

−1

+
eq(L−n)

(iω − ξn − teq)
(A.13)
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F†n,L
↓,↑ = −

1
2 {1

∗

0a1(ẽqn
− e2̃qLe−̃q(n−2))}{ẽq(L+1)(t2aL̃aL

− t[(iω − ξs)aL+1̃aL − (iω + ξs)aL̃aL+1]

+ (ω2
+ ξ2

s + |10|
2)aL+1̃aL+1)}

−1. (A.14)

If n = L then the Green function in the L layer can be written
as:

GL,L
↑,↑ = {t

2aL−1̃aL − t[(iω − ξs)aL̃aL − (iω + ξs)aL−1

× ãL+1] + (ω
2
+ ξ2

s + |10|
2)aL̃aL+1}{t(t

2aL̃aL

− t[(iω − ξs)aL+1̃aL − (iω + ξs)aL̃aL+1]

+ (ω2
+ ξ2

s + |10|
2)aL+1̃aL+1)}

−1 (A.15)

F†L,L
↓,↑ = {1

∗

0a1̃a1}{(t
2aL̃aL − t[(iω − ξs)aL+1̃aL

− (iω + ξs)aL̃aL+1]

+ (ω2
+ ξ2

s + |10|
2)aL+1̃aL+1)}

−1. (A.16)

The Green functions can be simplified as:

Gn,0
↑,↑ = A

(
eqn
− e2qLe−q(n−2)

)
(A.17)

F†n,0
↓,↑ = C

(
ẽqn
− e2̃qLe−̃q(n−2)

)
(A.18)

and with relation (A.4) and (A.5) this system of equation can
be written as:

(iω − ξs)G0,0
↑,↑ + 2tAeq(L+1) sinh(qL)+10F†0,0

↓,↑ = 1

(iω + ξs)F†0,0
↓,↑ − 2tCẽq(L+1) sinh (̃qL)+1∗0G0,0

↑,↑ = 0

2tAeq(L+1) sinh (q (L+ 1))− tG0,0
↑,↑ = 0

2tCẽq(L+1) sinh (̃q (L+ 1))+ tF†0,0
↓,↑ = 0

(A.19)

and the Green function in the superconducting layer can be
written as

F†0,0
↓,↑ = {1

∗

0aL+1̃aL+1}{(ω
2
+ ξ2

s + |10|
2)aL+1̃aL+1

− t[(iω − ξs)aL+1̃aL − (iω + ξs)aL̃aL+1] + t2aL̃aL}
−1

(A.20)

G0,0
↑,↑ = {−aL+1[(iω + ξs)̃aL+1 + t̃aL]}{(ω

2
+ ξ2

s + |10|
2)

× aL+1̃aL+1 − t[(iω − ξs)aL+1̃aL

− (iω + ξs)aL̃aL+1] + t2aL̃aL}
−1. (A.21)

From these Green functions, we can determine the
properties of the S layer as a function of the total number of
layers L.

Gorkov equations in the S/N/ . . . /N/S junction

In the S/N/ . . . /N/S system, the superconducting layers are
labeled n = 0 and n = L whereas the metallic layers are
labeled from n = 1 to n = L − 1. The calculation is the same
as in the last section, hence, we establish the equations in
the layers labeled n = 0, n = 1, n = L − 1 and n = L (see
figure 1(b)). Hence, to determine the normal and anomalous

Green functions in the S layer labeled n = L, the system of
equations, with the relation (5) and (6), becomes

(iω − ξs)G0,L
↑,↑ − t

(
Aeq
+ Be−q)

+1∗0F†0,L
↓,↑ = 0

(iω + ξs)F†0,L
↓,↑ + t

(
Cẽq
+ De−̃q)

+10G0,L
↑,↑ = 0

A+ B− G0,L
↑,↑ = 0

C + D− tF†0,L
↓,↑ = 0

AeqL
+ Be−qL

− GL,L
↑,↑ = 0

CẽqL
+ De−̃qL

− F†L,L
↓,↑ = 0

(iω − ξs)GL,L
↑,↑ − t

(
Ae(L−1)q

+ Be−(L−1)q
)

+ 1∗LF†L,L
↓,↑ − 1 = 0

(iω + ξs)F†L,L
↓,↑ + t

(
Cẽq(L−1)

+ De−̃q(L−1)
)

+ 1LG0,L
↑,↑ = 0. (A.22)

The solution of the system (A.22) can be written as:

GL,L
↑,↑ = {−t3SL−2

L−1 − t2[ω̃∗SL−2
L + 2ω̃SL−1

L−1]

− t[SL−1
L (|ω̃|2 +�2

0)+ ω̃
2SL

L−1] − ω̃�
2
0SL

L}{t
4SL−2

L−2

+ 2t3XL−1
L−2 + t2[(2|ω̃|2 +�2

0 +�
2
L)S

L−1
L−1 + 2101LS1

1

+ ω̃∗
2
SL

L−2 + ω̃
2SL

L−2] + t(�2
0 +�

2
L)X

L
L−1

+ SL
L�

2
L�

2
0}
−1 (A.23)

F†L,L
↓,↑ = {t

21∗0S1
1 +1

∗
L{�

2
0SL

L + t2SL−1
L − tω̃∗SL

L−1

− tω̃SL
L−1}}{t

4SL−2
L−2 + 2t3XL−1

L−2 + t2[(2|ω̃|2

+ �2
0 +�

2
L)S

L−1
L−1 + 2101LS1

1 + ω̃
∗

2
SL

L−2

+ ω̃2SL
L−2] + t(�2

0 +�
2
L)X

L
L−1 + SL

L�
2
L�

2
0}
−1 (A.24)

G0,L
↑,↑ = {−t3SL−2

1 − 2t2ω̃SL−1
1 − t[SL

1 ω̃
2
+1∗01

∗

2S1
L]}

× {t4SL−2
L−2 + 2t3XL−1

L−2 + t2[(2|ω̃|2 +�2
0 +�

2
L)S

L−1
L−1

+ 2101LS1
1 + ω̃

∗
2
SL

L−2 + ω̃
2SL

L−2] + t(�2
0

+ �2
L)X

L
L−1 + SL

L�
2
L�

2
0}
−1 (A.25)

F†0,L
↓,↑ = {t

2
[1∗0SL−1

1 +1∗2S1
L−1] + t1∗0SL

1 ω̃ − t1∗2ω̃
∗S1

L}

× {t4SL−2
L−2 + 2t3XL−1

L−2 + t2[(2|ω̃|2 +�2
0 +�

2
L)S

L−1
L−1

+ 2101LS1
1 + ω̃

∗
2
SL

L−2 + ω̃
2SL

L−2]

+ t(�2
0 +�

2
L)X

L
L−1 + SL

L�
2
L�

2
0}
−1 (A.26)

A = {−t3e−q̃aL−2 + t2[2ω̃eq
− ω̃∗e−̃q

]̃aL−1

+ t[−1∗21
∗

0e−qL̃a1 + e−q̃aLω̃
2
+ (ξ2

s − ω
2)e−̃q(L−1)

+ |ω̃|2ẽq(L−1)ãL−1 −�
2
0̃aL−1] + ãLω̃�

2
0}{2[t

4SL−2
L−2
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+ 2t3XL−1
L−2 + t2[(2|ω̃|2 +�2

0 +�
2
L)S

L−1
L−1 + 2101LS1

1

+ ω̃∗
2
SL

L−2 + ω̃
2SL

L−2] + t(�2
0 +�

2
L)X

L
L−1

+ SL
L�

2
L�

2
0]}
−1 (A.27)

B = {−t3e−q̃aL−2 − t2[2ω̃e−q
− ω̃∗ẽq

]̃aL−1

+ t[−1∗21
∗

0eqL̃a1 + eq̃aLω̃
2
+ (ξ2

s − ω
2)ẽq(L−1)

+ |ω̃|2e−̃q(L−1)ãL−1 −�
2
0̃aL−1] − ãLω̃�

2
0}{2[t

4SL−2
L−2

+ 2t3XL−1
L−2 + t2[(2|ω̃|2 +�2

0 +�
2
L)S

L−1
L−1 + 2101LS1

1

+ ω̃∗
2
SL

L−2 + ω̃
2SL

L−2] + t(�2
0 +�

2
L)X

L
L−1

+ SL
L�

2
L�

2
0]}
−1 (A.28)

C = {−t2(1∗2e−̃qaL−1 +1
∗

0e−̃q(L−1)a1)+ t[−1∗0ω̃e−L̃qa1

+ 1∗2ω̃
∗e−̃qaL + ω̃1

∗

2aL−1] −1
∗

2aL�
2
0}{2[t

4SL−2
L−2

+ 2t3XL−1
L−2 + t2[(2|ω̃|2 +�2

0 +�
2
L)S

L−1
L−1 + 2101LS1

1

+ ω̃∗
2
SL

L−2 + ω̃
2SL

L−2] + t(�2
0 +�

2
L)X

L
L−1

+ SL
L�

2
L�

2
0]}
−1 (A.29)

D = {−t2(1∗2e−̃qaL−1 +1
∗

0e−̃q(L−1)a1)+ t[1∗0ω̃
∗e−L̃qa1

− 1∗2ω̃
∗ẽqaL − ω̃1

∗

2aL−1] +1
∗

2aL�
2
0}{2[t

4SL−2
L−2

+ 2t3XL−1
L−2 + t2[(2|ω̃|2 +�2

0 +�
2
L)S

L−1
L−1

+ 2101LS1
1 + ω̃

∗
2
SL

L−2 + ω̃
2SL

L−2]

+ t(�2
0 +�

2
L)X

L
L−1 + SL

L�
2
L�

2
0]}
−1 (A.30)

where an = sinh(qn) and ãn = sinh (̃qn), SM
N = ãMaN, ω̃ =

iω + ξs, ω̃∗ = −iω + ξs = − (iω − ξs), �2
0 = |ω̃|

2
+ 12

0,
�2

L = |ω̃|
2
+ 12

L et XN
M = ω̃SN

M + ω̃
∗SM

N . The normal and
anomalous Green functions in the first S layer can be written
as

G0,0
↑,↑ = {−t3SL−2

L−1 − t2[ω̃∗SL−2
L + 2ω̃SL−1

L−1] − t[SL−1
L (|ω̃|2

+ �2
L)+ ω̃

2SL
L−1] − ω̃�

2
LSL

L}{t
4SL−2

L−2 + 2t3XL−1
L−2

+ t2[(2|ω̃|2 +�2
0 +�

2
L)S

L−1
L−1 + 2101LS1

1 + ω̃
∗

2
SL

L−2

+ ω̃2SL
L−2] + t(�2

0 +�
2
L)X

L
L−1 + SL

L�
2
L�

2
0}
−1 (A.31)

F†0,0
↓,↑ = {t

21∗LS1
1 +1

∗

0{�
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where an = sinh(qn) and ãn = sinh (̃qn).
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