
HAL Id: hal-00858338
https://hal.science/hal-00858338

Submitted on 8 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Abrikosov vortex pinning on a cylindrical cavity inside
the vortex core: formation of a bound state and

depinning
A. A. Bespalov, A. S. Mel’Nikov

To cite this version:
A. A. Bespalov, A. S. Mel’Nikov. Abrikosov vortex pinning on a cylindrical cavity inside the vortex
core: formation of a bound state and depinning. Superconductor Science and Technology, 2013, 26
(8), pp.085014. �10.1088/0953-2048/26/8/085014�. �hal-00858338�

https://hal.science/hal-00858338
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr


Abrikosov vortex pinning on a cylindrical cavity inside the vortex core: formation of a bound

state and depinning

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2013 Supercond. Sci. Technol. 26 085014

(http://iopscience.iop.org/0953-2048/26/8/085014)

Download details:

IP Address: 147.210.24.83

The article was downloaded on 04/09/2013 at 10:26

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience



Abrikosov vortex pinning on a cylindrical
cavity inside the vortex core: formation of
a bound state and depinning

A A Bespalov1,2 and A S Mel’nikov1

1 Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950,
Nizhny Novgorod, Russia
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Abstract
Within the Ginzburg–Landau theory we consider Abrikosov vortex pinning on a columnar
defect with the characteristic size of the cross-section much smaller than the coherence length.
We present a simple analytical approach to the problem of pinning potential calculation
suitable for cases of the defect situated inside as well as outside the vortex core. We determine
the depinning current for a cavity in the form of a circular cylinder and the pinning potential
for a defect with a general elliptical cross-section. For a range of applied currents below the
depinning threshold we predict the possibility to observe a stable bound state where the vortex
center is located outside the cavity.

1. Introduction

The possibilities for practical applications of type-II
superconductors depend crucially on the quality of vortex
pinning structures which can be embedded into these
materials. The implantation of artificial columnar defects
into superconductors may lead to a drastic increase of the
maximal non-dissipative (critical) current, if the vortex lines
are aligned along the defects (see [1–3] and references
therein). Nowadays, various techniques exist allowing one to
create disordered arrays of such defects [1, 2], as well as
regular defect lattices [4]. Due to the technological importance
of enhancing the critical current, this problem continues to
attract the interest of experimental groups [3].

The theoretical investigation of collective pinning and
creep of the vortex lattice is known to be a quite complicated
task. An extensive review of existing theories, which account
for vortex–defect as well as vortex–vortex interactions, can
be found in [5]. In order to deduce results which can
be quantitatively compared with experimental data, these
theories require the individual vortex pinning potential as
input. It is known [6] that the efficiency of a pinning array
depends not only on the depth of the potential well for a
vortex, but also on the shape of the well. Thus, a detailed

investigation of single vortex–single defect interactions
provides the basis for considerations of many-vortex systems.

The problem of single-vortex pinning is generally formu-
lated as follows. The system (see figures 1(a) and (b)) contains
a vortex and a defect, which is typically assumed to be of
cylindrical shape. The task is to determine the vortex energy
as a function of its position, and the transport current density,
jtr, which is sufficient to detach the vortex from the defect.
This current density is called the depinning current density.

The first theoretical study of individual vortex pinning
on a cylindrical defect was carried out by Mkrtchyan and
Schmidt [7]. In their paper the London equation was solved
exactly for a vortex interacting with a cavity in the form of
a circular cylinder. The pinning force was analyzed in detail
for the cavity radius a satisfying the condition ξ � a � λ,
where ξ is the coherence length and λ is the London length.
Later [8, 9], this analysis was extended to the case of larger
cavities. Buzdin and Feinberg [10] pointed out that London
screening can be neglected in a large range of fields in extreme
type-II superconductors. This observation allowed them to
establish an electrostatic analogy and to simplify considerably
the solution for a vortex interacting with a circular cavity: it
was demonstrated that the full magnetic field can be presented
as the sum of the vortex self-field and the field of image
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Figure 1. The cross-section of the system. (a) The case when the
London theory can be applied: the defect size D and vortex–defect
distance L are large as compared to the coherence length. (b) The
case studied in this paper: the defect is small (D� ξ ) and may be
situated inside the vortex core. jtr is the transport current density.

vortices, situated inside the cavity. Also, using the conformal
transformation technique, pinning potentials for more tricky
columnar cavities have been derived [11, 12]. However, in the
calculation of the pinning potential for non-circular defects,
only the field of the image vortices has been transformed,
while the modification of the self-field of the real vortex has
not been taken into account.

We have to note that the London theory is valid in a
limited range of parameters: the characteristic defect size
D and vortex–defect distance L must satisfy the conditions
D � ξ and L � ξ (see figure 1(a)). In order to analyze
smaller defects, a more complex approach is required.
For temperatures close to the superconducting critical
temperature, the Ginzburg–Landau (GL) approximation is
a natural choice. It has been applied for the analysis
of vortex pinning on columnar defects of different shape
and nature [5, 13–16] (also, recently the GL equation has
been used to study the interaction of vortices with 1D

pinning inclusions [17]). Due to the nonlinearity of the
GL equation, its analytical solution presents a theoretical
challenge, especially in the noncentrosymmetric case. For that
reason this equation has been mainly analyzed numerically.
Maurer et al [13] calculated the pinning energy for a
vortex centered on a circular insulating or metallic inclusion.
Later [14], the depinning current for defects with radii
of 0.25ξ and larger was determined by solving the GL
equation in two dimensions. Priour and Fertig [15] analyzed
vortex interactions with a cylindrical hole with a square
cross-section. In [16] the critical current for a vortex lattice
pinned on a set of defects with reduced critical temperature
was determined using numerical simulations and a variational
procedure. A simple analytical estimate for the single-vortex
pinning energy is given in the review by Blatter et al [5]. The
authors applied the variational principle, taking into account
the suppression of the order parameter inside the defect
and ignoring the local vortex distortion (the GL boundary
condition is not satisfied on the defect border). Thus, exact
analytical solutions of the GL equation have been lacking so
far.

In this paper, within the GL theory we consider the
interaction of a vortex with a small cylindrical cavity
or insulating inclusion with the characteristic size of the
cross-section ξ0 � D � ξ , where ξ0 is the zero-temperature
coherence length (in the case D � ξ0 the correct description
can be obtained only on the basis of a microscopic
theory [18–20]). We present the exact pinning potentials
in terms of the unperturbed vortex order parameter for a
circular and elliptical defect. For the circular cavity the
depinning current is also determined. For the treatment of
a small defect with arbitrary cross-section we propose an
electrostatic analogy, which serves as a counterpart to the
above-mentioned analogy between the London theory (valid
for large defects, D � ξ ) and electrostatics. Unlike the
London theory electrostatics, our approach allows one to treat
rigorously the cases of the defect situated outside as well
as inside the vortex core (see figure 1(b)). Finally, using
the conformal transformation method developed in [12], we
derive the pinning potential for an elliptical cavity within the
London approximation, taking into account the modification
of both the vortex self-field and the image field.

2. Vortex pinning within the Ginzburg–Landau
theory

2.1. Basic equations

We consider an Abrikosov vortex interacting with a small
cylindrical cavity, or insulating inclusion: the characteristic
size D of the defect is much smaller than the coherence length
ξ (see figure 1(b)). Since vortex pinning is most efficient for
the vortex axis parallel to the defect generatrix, we will focus
on this particular case. Our goal is to determine the pinning
potential and the depinning current. In order to calculate the
latter, we introduce a transport current with the density jtr
flowing in the direction perpendicular to the vortex axis.
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The equilibrium state of the system may be analyzed
using the GL equation for the order parameter ψ = |ψ |eiθ :

− ξ2
∇

2ψ − ψ + n−1
0 |ψ |

2ψ = 0, (1)

where n0 is the concentration of Cooper pairs in the bulk.
The GL parameter κ = λ/ξ is assumed to be large, so the
vector potential can be neglected [21]. We put the origin of
coordinates inside the insulating defect, or cavity, and the
z-axis along the vortex axis, so that the order parameter does
not depend on z.

Equation (1) is supplemented by two boundary condi-
tions, specifying the normal derivative of ψ at the insulating
defect border and the transport current density far from the
vortex core:

n∇ψ |∂S = 0, (2)

2eh̄|ψ |2∇θ

m

∣∣∣∣∣
ρ→∞

= jtr. (3)

Here S is the defect cross-section, ∂S denotes the border of
S,n is the outward unit normal to ∂S, e is the electron charge,
and m is the Cooper pair mass.

Since our system must contain one vortex, an additional
condition for the order parameter phase arises:∮

∇θ dl = 2π, (4)

where integration is performed over a sufficiently large
contour surrounding the defect.

We expect that for some current jd equations (1)–(4) can
be solved when jtr < jd, and no solution exists when jtr > jd.
Then it is natural to consider jd as a depinning current.

We will solve equations (1)–(4) in the case jtr < jd. If the
transport current is much smaller than the depairing current,
the order parameter has the following asymptotics at infinity:

ψ ≈
√

n0eiϕ+iqρ, (5)

where ϕ is the polar angle measured from an axis passing
through the center of the vortex (ϕ will be explicitly defined
below), and q = mjtr/2eh̄n0. This asymptotics can be derived
from (1), (3) and (4) if one expands ψ in powers of ρ−1

and neglects terms proportional to j2tr. Now we make some
assumptions concerning the behavior of the order parameter
in the vicinity of the defect.

(A) The order parameter phase reaches its asymptotic
behavior at sufficiently small distances from the origin:
θ ≈ ϕ + qρ when ρ ≥ R, where R is some radius in the
range ξ � R� q−1, λ.

(B) The vortex is weakly distorted by a small defect and a
small current. This means that the solution of equations
(1)–(4) can be presented in the form ψ = ψ0+ψ1, where
ψ0 corresponds to an unperturbed vortex shifted from the
origin by a vector L (see figure 1(b)), and ψ1 is a small
perturbation: |ψ1(ρ)| �

√
n0 when ρ < R.

The assumption (B) is justified by the fact that the unperturbed
vortex corresponds to a local minimum of the free energy,

so large distortions are not energetically favorable. Both
statements (A) and (B) can be verified by numerical
calculations. In terms of the vector L, the polar angle is
defined as

tanϕ =
y− Ly

x− Lx
.

Let us write down the equations for the function ψ1. If we
linearize equation (1) we obtain

− ξ2
∇

2ψ1 − ψ1 + 2n−1
0 |ψ0|

2ψ1 + n−1
0 ψ2

0ψ
∗

1 = 0. (6)

Far from the vortex core, when the characteristic scale of the
order parameter is much larger than ξ , we may obtain from
the GL equation

ψ ≈
√

n0

(
1−

ξ2

2
(∇θ)2

)
eiθ .

Hence, according to the statement (A), the perturbation ψ1 =

ψ − ψ0 of the order parameter is given by

ψ1(ρ) =
√

n0ieiϕ(qρ)+ O

(√
n0ξ

2q

ρ

)
, ρ ∼ R. (7)

The boundary condition at the defect border for ψ1 follows
from (2):

(∇ψ1 +∇ψ0)n|∂S = 0. (8)

Thus, equations (6)–(8) are to be solved. Here, for clarity, we
would like to stress that the boundary condition (8) accounts
for both the variations of the order parameter modulus and
phase. It is reduced to the London theory boundary condition,
∇θn = 0, only if the vortex is far from the defect, i.e. L� ξ .

2.2. Variational derivation of the pinning potential

In this section, for the reader’s convenience, we present a
relatively simple, but not rigorous derivation of the pinning
potential. A more detailed and careful analysis is given in
section 2.3.

We will determine the free energy F per unit length of a
vortex shifted from the origin by a vector L:

F =
H2

c

4πn0

∫
ρ6∈S

(
ξ2
|∇ψ |2 − |ψ |2 + n−1

0
|ψ |4

2

)
d2ρ,

where Hc is the thermodynamic critical field satisfying the
relation

H2
c

8π
=

h̄2n0

4mξ2 .

In the zero-order approximation F equals the free energy of
an unperturbed vortex:

F0 =
H2

c

4πn0

∫ (
ξ2
|∇ψ0|

2
− |ψ0|

2
+ n−1

0
|ψ0|

4

2

)
d2ρ.

The pinning potential equals the difference between the exact
free energy F and F0: Up(L) = F(L) − F0. This difference
consists of two terms—1F1 and 1F2. The first term is
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connected with the suppression of the order parameter inside
the defect:

1F1 ≈ −S
H2

c

4πn0

(
ξ2
|∇ψ0|

2
− |ψ0|

2
+ n−1

0
|ψ0|

4

2

)∣∣∣∣∣
ρ=0

. (9)

Note that this expression is valid only for very small defects
with the characteristic size of the cross-section D � ξ . The
second term is connected with the distortion of the order
parameter outside the defect:

1F2 =
H2

c

4πn0

∫
ρ6∈S

(
ξ2
|∇ψ |2 − |ψ |2 + n−1

0
|ψ |4

2

)
d2ρ

−
H2

c

4πn0

∫
ρ6∈S

(
ξ2
|∇ψ0|

2
− |ψ0|

2
+ n−1

0
|ψ0|

4

2

)
d2ρ.

We substitute here ψ = ψ0 + ψ1, where ψ1 is a small
perturbation satisfying equations (6) and (8) in the vicinity
of the defect and decaying to zero on a scale ρ ∼ ξ (if we
use the function ψ1 satisfying (6) in the whole xy plane, the
component 1F2 will diverge to positive infinity). Close to the
cavity the characteristic length scale for ψ1 is D� ξ , hence,
we can neglect terms of the order of |ψ1|

2 as compared to the
term ξ2

|∇ψ1|
2:

1F2 =
ξ2H2

c

4πn0

{∫
ρ6∈S
|∇ψ1|

2 d2ρ

−

∫
∂S
[ψ∗1 (∇ψ0n)+ ψ1(∇ψ

∗

0 n)] d`
}
.

Using equation (8) and applying the Gauss theorem, we
transform the right-hand side of the last relation as follows:

1F2 = −
ξ2H2

c

4πn0

∫
ρ6∈S
(|∇ψ1|

2
+ ψ∗1∇

2ψ1

+ ψ1∇
2ψ∗1 ) d2ρ. (10)

From (6) we find that

|ψ1∇
2ψ1| ∼ |ψ1|

2/ξ2
� |∇ψ1|

2,

hence

1F2 ≈ −
ξ2H2

c

4πn0

∫
ρ6∈S
|∇ψ1|

2 d2ρ. (11)

An explicit expression for 1F2 in terms of ψ0 will be given
below (see (25)).

2.3. Force balance equation

In this section we derive the solvability condition for
the system (6)–(8). Our derivation closely follows the
computations from [21] which were used to determine the
viscous drag force acting on a moving vortex.

First, we introduce the auxiliary function ψd = d∇ψ0,
where d is an arbitrary constant unit vector. ψd satisfies the
equation

−ξ2
∇

2ψd − ψd + 2n−1
0 |ψ0|

2ψd + n−1
0 ψ2

0ψ
∗

d = 0. (12)

Let us multiply (6) by ψ∗d and subtract (12) multiplied by ψ∗1
from it. When we add the complex conjugate to the resulting
equation we obtain

div(−ψ∗d∇ψ1 + ψ1∇ψ
∗

d − ψd∇ψ
∗

1 + ψ
∗

1∇ψd) = 0.

We integrate the last relation over the region ρ 6∈ S, |ρ−L|< R
and apply the Gauss theorem:∫
|ρ−L|=R

(−ψ∗d∇ψ1 + ψ1∇ψ
∗

d − ψd∇ψ
∗

1 + ψ
∗

1∇ψd)n1 d`

−

∫
∂S
(−ψ∗d∇ψ1 + ψ1∇ψ

∗

d

− ψd∇ψ
∗

1 + ψ
∗

1∇ψd)n d` = 0, (13)

where n1 is the outward unit normal to the circle |ρ−L| = R.
The first integral can be calculated with the help of (7):∫
|ρ−L|=R

(−ψ∗d∇ψ1 + ψ1∇ψ
∗

d − ψd∇ψ
∗

1 + ψ
∗

1∇ψd)n d`

≈ −
2πm

eh̄
[d · (z0 × jtr)], (14)

where z0 is the unit vector along the z axis. Here we neglected
terms of the order of ξ2/R2, which appear due to variations of
the order parameter modulus.

The second integral in equation (13) can be transformed
using (8) and the Gauss theorem:∫
∂S
(−ψ∗d∇ψ1 − ψd∇ψ

∗

1 + ψ1∇ψ
∗

d + ψ
∗

1∇ψd)n d`

≈ S · div(ψ∗d∇ψ0 + ψd∇ψ
∗

0 )|ρ=0

+

∫
∂S
(ψ1∇ψ

∗

d (0)+ ψ
∗

1∇ψd(0))n d`. (15)

Here and further on we neglect terms which are much smaller
than n0D2/ξ3.

In order to proceed we have to determine the value of ψ1
at the defect boundary. It has been noted in section 2.2 that
ψ1 ∼

√
n0Dξ−1. Hence,

∂2ψ1/∂x2
∼ ∂2ψ1/∂y2

∼
√

n0D−1ξ−1
� |ψ1|ξ

−2.

This implies that near the defect we can use the Laplace
equation

∇
2ψ1 = 0 (16)

instead of (6). The boundary condition can also be simplified:

∇ψ1n|∂S = −∇ψ0(0)n. (17)

Such a simplification is acceptable since we are not interested
in small corrections of the order of

√
n0D2/ξ2 to ψ1.

Equations (16) and (17) are equivalent to an electrostatic
problem where ψ1 plays the role of the electric potential
of a charged cylinder. Note that these equations cannot be
derived within the electrostatic approximation for the London
theory [10], where variations of the superconducting phase
are taken into account, but the order parameter modulus is
assumed to be constant.

The relation ∮
∂S
∇ψ1n d` = 0,
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can be interpreted as a vanishing total ‘charge’ of the cylinder.
It provides that a solution of equations (16) and (17) exists that
decays like ρ−1 at infinity. This solution, which we denote as
ψ
(d)
1 , represents the irregular part of ψ1: it has singularities

inside the defect. We define the regular component of ψ1 as

ψ
(i)
1 = ψ1 − ψ

(d)
1 . (18)

It is proved in the appendix that the contribution of ψ (i)1 to the
integral in the right-hand side of equation (15) is negligible.

Combining (13)–(15) and using the fact that ψ0 satisfies
(1) we obtain

2πξ2m

eh̄
[d · (z0 × jtr)]

+ S(d∇)
(
ξ2
|∇ψ0|

2
− |ψ0|

2
+
|ψ0|

4

2n0

)∣∣∣∣∣
ρ=0

+ ξ2
∫
∂S
(ψ

(d)
1 ∇ψ

∗

d (0)+ ψ
(d)∗
1 ∇ψd(0))n d` ≈ 0. (19)

Owing to the linearity of equations (16) and (17) the solution
can be presented in the form

ψ
(d)
1 = (g(ρ); ∇ψ0(0)), (20)

where g is a real vector field defined by the relations

∇
2g = 0, (n∇)g|∂S = −n, g|ρ→∞ = 0. (21)

Then ∫
∂S
(ψ

(d)
1 ∇ψ

∗

d (0)+ ψ
(d)∗
1 ∇ψd(0))n d`

= (d∇)(∇ψ0Ĝ∇ψ∗0 )|ρ=0,

where Ĝ is a real symmetric matrix with components

Gij =

∫
∂S

ginj d` =
∫
ρ6∈S
∇gi∇gj d2ρ. (22)

Equation (19) transforms into

−
φ0

c
[d · (z0 × jtr)] − (d∇L)Up = 0.

Here φ0 = π h̄c/e is the flux quantum, ∇L = ∂/∂L, and

Up = −S
H2

c

4πn0

(
ξ2
|∇ψ0|

2
− |ψ0|

2
+
|ψ0|

4

2n0

)∣∣∣∣∣
ρ=0

−ξ2 H2
c

4πn0
∇ψ0(0)Ĝ∇ψ∗0 (0). (23)

Since d is an arbitrary vector, it can be dropped, and we
finally obtain the force balance equation, connecting the
vortex displacement L with the transport current jtr:

−
φ0

c
(z0 × jtr)−∇LUp = 0. (24)

Here, the first term is the Lorentz force and the second term
is the pinning force: Fp = −∇LUp. Thus, we may conclude
that Up is the pinning potential. It can be proved that this

definition of the pinning potential is identical to the one given
in section 2.2, ifψ1 in equation (11) is replaced byψ (d)1 . Thus,

1F2 = −ξ
2 H2

c

4πn0
∇ψ0(0)Ĝ∇ψ∗0 (0). (25)

Before we determine some pinning potentials explicitly, we
would like to note that our consideration can be easily
generalized for the anisotropic case. Indeed, generally, the GL
free energy can be presented in the form

F =
H2

c

4πn0

∫ (
ξ2

x

∣∣∣∣∂ψ∂x

∣∣∣∣2 + ξ2
y

∣∣∣∣∂ψ∂y

∣∣∣∣2 + ξ2
z

∣∣∣∣∂ψ∂z

∣∣∣∣2

−|ψ |2 +
|ψ |4

2n0

)
d3r, (26)

where ξx, ξy and ξz are the coherence lengths for different
directions. The scaling transformation x̃ = x, ỹ = yξx/ξy, and
z̃ = zξx/ξz reduces the free energy to the isotropic form. Thus,
we again arrive at equations (1)–(3).

Now we consider two types of defects.

2.4. A circular defect

Let the defect be a circular cylinder with the radius a. When
the origin is placed on the axis of the cylinder, the decaying
solution of equations (16) and (17) is

ψ
(d)
1 =

a2(∇ψ0 ·ρ)

ρ2 , (27)

and the pinning potential is

Up(L) = −
H2

c a2

4n0

(
2ξ2
|∇ψ0|

2
− |ψ0|

2
+
|ψ0|

4

2n0

)∣∣∣∣∣
ρ=0

. (28)

The function ψ0 can be determined numerically from the
GL equation (6). We are not going into details of these
calculations here. A detailed numerical analysis of this
function can be found in [22]. Of course, the pinning potential
is proportional to the defect volume, as has been noted in [6].

Equation (28) allows us to determine the pinning energy,
Ep, and to compare it with a numerical result from a preceding
paper. According to our calculations,

Ep = Up(∞)− Up(0) = 0.47H2
c a2,

which coincides with the numerical value given in [13] up to
a factor of the order of unity.

The profiles of the pinning potential and the pinning force
are plotted in figure 2. The pinning force reaches its maximum
at L = Lcr = 0.84ξ , where Fp = Fcr = 0.252H2

c a2/ξ . When
jtr > cFcr/|φ0|, the force balance equation (24) has no
solutions, hence

jd = cFcr/|φ0| = 0.252
H2

c a2
|e|

π h̄ξ
(29)

is the depinning current. When j < jd equation (24) has two
solutions due to the nonmonotonic behavior of the function
Fp(L), but the solution with the larger vortex displacement is
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Figure 2. Profiles of the pinning potential (a) and the pinning force
(b) for a circular defect.

thermodynamically unstable. Indeed, it can be easily proved
that it corresponds to a saddle point of the correction 1F to
the free energy of a vortex connected with the presence of the
defect and the transport current:

1F = Up +
φ0

c
[(z0 × jtr)L].

Certainly, the depinning current, given by (29), is much
smaller than the depairing current

Jc =
2|e|ξH2

c

3
√

3π h̄
,

hence, it cannot destroy the superconducting order parameter
in the sample.

Equation (29) predicts that the depinning current grows
like a2 when the defect size is increased. Obviously, this
quadratic growth rate must slow down when the defect
size is of the order of the coherence length (otherwise, the
depinning current would eventually exceed Jc). Thus, for
a ∼ ξ equation (29) should give an upper estimate for jd.
This argument is well confirmed by the fact that the numerical
value of the depinning current for the defect radius 0.25ξ ,

jd = 0.01
H2

c ξ |e|

π h̄
, (30)

given in [14], is 1.5 times smaller than our estimate.

To sum up, depinning from a circular defect occurs as
follows: as the transport current increases from zero to jd the
vortex displacement with respect to the origin increases from
zero to Lcr; as the current is increased further the vortex is
carried away from the pinning cite. Thus, in some range of
currents below jd a stable bound state exists, where the vortex
center is situated outside the defect. However, in [14] this state
has not been detected numerically. This disagreement with
our result may be due to the relatively large size of defects
considered in the paper (a ≥ 0.25ξ ), and also due to the strong
influence of the outer periphery of the cell where the GL
equation has been integrated.

Finally, we would like to stress that the expression (28)
for the single-vortex pinning potential does not depend on
whether the vortex interacts with other vortices or not (the
only restriction is that the vortex cores must not overlap).
Of course, the given above expression (29) for the critical
current can be applied directly only provided that all vortices
are pinned, and the vortex–vortex interaction force can be
neglected as compared to the pinning force. This may be
achieved if the applied magnetic field is close to the first
critical field. Still, even if the above conditions are violated,
the expression (28) for the pinning potential will be useful for
the estimation of the critical current, if the interaction between
vortices is properly taken into account (see [5]).

2.5. An elliptical defect

Consider an elliptical defect with the cross-section

x2

a2 +
y2

b2 < 1,

where a > b. We shall determine the vector field g and
the pinning potential. It is convenient to use the elliptical
coordinates (ζ, η):

x =
√

a2 − b2 cosh ζ cos η, y =
√

a2 − b2 sinh ζ sin η.

The border of the defect corresponds to the value ζ = ζ0,
where

sinh ζ0 =
b

√
a2 − b2

, cosh ζ0 =
a

√
a2 − b2

.

Equations (21) in the new coordinates read

∂2g
∂ζ 2 +

∂2g
∂η2 = 0, g|ζ→∞ = 0, (31)

∂gx

∂ζ

∣∣∣∣∣
ζ=ζ0

= −b cos η,
∂gy

∂ζ

∣∣∣∣∣
ζ=ζ0

= −a sin η. (32)

The solution is

gx = beζ0−ζ cos η, gy = aeζ0−ζ sin η. (33)

Using (22), we obtain the components of the matrix Ĝ:

Gxx = πb2, Gyy = πa2,

Gxy = Gyx = 0.
(34)
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Hence, according to equation (23), the pinning potential is

Up = −
H2

c

4n0

[
ab

(
ξ2
|∇ψ0|

2
− |ψ0|

2
+
|ψ0|

4

2n0

)

+ ξ2b2
∣∣∣∣∂ψ0

∂x

∣∣∣∣2 + ξ2a2
∣∣∣∣∂ψ0

∂y

∣∣∣∣2
]∣∣∣∣∣
ρ=0

. (35)

The potential well for the vortex now does not have cylindrical
symmetry. As a result, the vortex displacement L and the
depinning threshold jd depend on the direction of the transport
current.

3. Comparison with the London theory

In a preceding paper [11] the pinning potential in the
presence of a circular and elliptical cavity has been derived
within the London theory. The applicability condition for
this approach is that the defect size be much larger than the
temperature-dependent coherence length, i.e., D� ξ(T), so it
may seem that the results from [11] cannot be compared with
ours. However, the condition D � ξ is not essential for our
calculations. Indeed, instead we may demand (i) |ψ1| �

√
n0

and (ii): the quantity ∇ψ0 should be approximately constant
in the area occupied by the cavity. These two conditions are
satisfied when

D� ξ and L� D, (36)

so for a large defect and large vortex–defect distance our
pinning potential should coincide with the one obtained within
the London theory.

For a circular defect our pinning potential (28) at large
vortex–defect distances, L� a, equals

Up = −

(
φ0

4πλ

)2 a2

L2 + const. (37)

This expression is in good agreement with equation (5)
from [11]. For an elliptical hole equation (35) yields in the
L� a limit

Up = −

(
φ0

4πλ

)2 1
2

(
ab

L2 +
b2L2

y

L4 +
a2L2

x

L4

)
+ const, (38)

whereas the potential from [11] is

Up = −

(
φ0

4πλ

)2 (a+ b

2

)2 1

L2 , (39)

which, obviously, does not coincide with (38). Below we will
explain the reason for this discrepancy.

The derivation of the interaction energy between a vortex
and a cavity in the London approximation is based on the
equation

Up =
φ0him(L)

8π
, (40)

where him is the z projection of the field created by image
vortices. This field can be expressed as

him = hz −
φ0

2πλ2 ln

∣∣∣∣ λ2

ζ − ζ0

∣∣∣∣ , (41)

where ζ = x + iy, ζ0 = Lx + iLy, and hz is the full magnetic
field, satisfying the Poisson equation

∇
2hz = −

φ0

λ2 δ(ρ− L). (42)

The second term on the right-hand side of equation (41)
represents the self-field of the vortex with the opposite sign.
For a circular defect with a radius a0, the image field at the
position of the vortex is

hc
im(ζ0) =

φ0

2πλ2 ln

(
1−

a2
0

|ζ0|
2

)
. (43)

In order to obtain the magnetic field in the presence of a
non-circular defect, we may apply a conformal transformation
w = w(ζ ) to the ζ plane. Since the form of Poisson’s equation
is not modified by such a transformation, the field distribution
in the w plane is given by

hz(w) = hc
z(ζ(w)),

where hc
z(ζ ) is the solution of equation (42) in the presence of

a circular defect. Using the definition (41) of the image field,
we obtain

him(w0) = hc
im(ζ(w0))+

[
φ0

2πλ2 ln

∣∣∣∣ λ

ζ(w)− ζ0

∣∣∣∣
−

φ0

2πλ2 ln

∣∣∣∣ λ

w− w0

∣∣∣∣
]∣∣∣∣∣

w=w0

, (44)

where w0 = w(ζ0) specifies the position of the vortex in the
w-plane. Hence, the pinning potential equals

Up =

(
φ0

4πλ

)2 [
ln
(

1−
R2

|ζ(w0)|2

)
− ln

∣∣∣∣ dζ
dw
(w0)

∣∣∣∣] . (45)

Here, the first logarithmic term originates from the
transformation of the image field (43), while the second term
is connected with the modification of the self-field of the
vortex. In [11] this term has not been taken into account. As a
result, the isotropic potential (39) has been obtained. In order
to determine the correct pinning potential for an elliptical
cavity, we apply the modified Joukowski transformation [11]:

w(ζ ) =
a+ b

2
ζ

a0
+

a− b

2
a0

ζ
; (46)

Up =

(
φ0

4πλ

)2
[

ln

(
1−

∣∣∣∣ a+ b

w+
√

w2 − a2 + b2

∣∣∣∣2
)

− ln

∣∣∣∣1+ w
√

w2 − a2 + b2

∣∣∣∣
]
+ const. (47)

For |w| � a this expression coincides with our result obtained
within the GL theory (see (38)).

4. Conclusion

By solving the Ginzburg–Landau equation, we developed a
method to determine analytically the pinning potential for a
vortex interacting with a small cylindrical cavity. This method
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has been applied to a circular and elliptical defect. In the
latter case, the pinning potential appeared to be anisotropic, as
one would expect. Also, we recalculated the pinning potential
for an elliptical cavity within the London theory, using the
conformal transformation technique [11], considering the
modification of the image field as well as the transformation
of the self-field of the vortex, which had not been previously
taken into account. Our results obtained within the GL and
London theories agree well with each other in the range of
parameters, where both approaches are valid.

All our previous consideration has been related to the
case of a vortex strictly parallel to the defect. This assumption
is obviously satisfied in thin superconducting films, where
the transport current is distributed almost uniformly over the
film thickness. However, it has been claimed [23] that in
a bulk superconductor depinning is likely to occur due to
vortex kink formation in a surface layer with the thickness
equal to the London length. Still, if the vortex radius of
curvature is large as compared to ξ , and the vortex axis makes
a small angle with the defect axis, our approach should give
reasonable estimates of the pinning energy and of the local
vortex displacement with respect to the defect. Moreover, in
the presence of a sufficiently small transport current a bound
state should occur, when the vortex core is outside the defect
(at least in a surface layer—in bulk superconductors). This
bound state should be observable, for example, using scanning
tunneling microscopy.

Our results are closely related to recent experimental
studies of the vortex ratchet effect [24, 25], where an
anisotropic pinning structure is a key element. Note that the
pinning centers and experimental conditions in [25] almost
perfectly match our model: the antidots embedded into the
thin Al films represent insulating inclusions, and the typical
temperatures are very close to the critical temperature, so that
the coherence length is larger than the defect size. Thus, our
expressions for the pinning potential may be useful for vortex
ratchet design and for the interpretation of future experiments
in this field.
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Appendix

In this appendix we will demonstrate that the contribution
from the function ψ

(i)
1 (see (18)) to the pinning force is

negligible. It is sufficient to prove that the absolute value of
the integral

I =
∫
∂S
(ψ

(i)
1 ∇ψ

∗

d (0)+ ψ
(i)∗
1 ∇ψd(0))n d`

is much smaller than n0D2/ξ3.

The function ψ (i)1 has the following properties:

∇ψ
(i)
1 n|∂S ≈ 0, ∇

2ψ
(i)
1 = 0, ρ < r, (48)

where r is a quantity of the order of the coherence length. Let
us introduce an auxiliary function v defined by the relations

∇
2v = 0, n∇v|∂S = ξn∇ψ∗d (0), v|ρ→∞ = 0.

The properties of this function are identical to those of ψ (d)1 :
it is of the order of

√
n0Dξ−1 at the defect border and decays

like ρ−1 at infinity. For a smooth defect v ∼
√

n0D2/ξρ. Now
we make some simple calculations:

0 =
∫
ρ 6∈S, ρ<r

(ψ
(i)
1 ∇

2v− v∇2ψ
(i)
1 ) d2ρ

= −

∫
∂S
ψ
(i)
1 ∇v n d`+

∫
ρ=r

(
ψ
(i)
1
∂v

∂ρ
− v

∂ψ
(i)
1

∂ρ

)
d`.

Since ψ (i)1 ≈ ψ1 when ρ ∼ r,

I = ξ−1
∫
ρ=r

(
ψ1
∂v

∂ρ
− v

∂ψ1

∂ρ

)
d`+ c.c., (49)

where c.c. denotes the complex conjugate. According to
statement (B) from section 2.1, when ρ = r, |ψ1| �

√
n0 and

|∂ψ1/∂ρ| �
√

n0/ξ , since the characteristic length scale is ξ ,
then it follows immediately from (49) that |I| � n0D2/ξ3.
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