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We study the feasibility of nearly-degenerate two-photon rovibrational spectroscopy in ensembles
of trapped, sympathetically cooled hydrogen molecular ions using a resonance-enhanced multiphoton
dissociation (REMPD) scheme. Taking advantage of quasi-coincidences in the rovibrational spec-
trum, the excitation lasers are tuned close to an intermediate level to resonantly enhance two-photon
absorption. Realistic simulations of the REMPD signal are obtained using a four-level model that
takes into account saturation effects, ion trajectories, laser frequency noise and redistribution of po-
pulation by blackbody radiation. We show that the use of counterpropagating laser beams enables
optical excitation in an effective Lamb-Dicke regime. Sub-Doppler lines having widths in the 100 Hz
range can be observed with good signal-to-noise ratio for an optimal choice of laser detunings. Our
results indicate the feasibility of molecular spectroscopy at the 10−14 accuracy level for improved
tests of molecular QED, a new determination of the proton-to-electron mass ratio, and studies of
the time (in)dependence of the latter.

PACS numbers: 33.80.Rv 33.80.Wz 37.10.Pq 37.10.Ty

I. INTRODUCTION

Most high-precision measurements in atomic or mole-
cular physics rely on laser spectroscopy in dilute gases.
Several methods have been developed to suppress Dop-
pler line broadening and reach natural linewidth or la-
ser width limited resolutions, such as saturated absorp-
tion [1–3] or Doppler-free two-photon spectroscopy [4–7].
Resonantly enhanced two-photon absorption using two
lasers of unequal frequencies tuned close to an interme-
diate level was also studied both theoretically and expe-
rimentally [8–10] ; sequential two-photon absorption at
exact resonance was shown to provide both maximum
transition rates and Doppler-free spectra. Indeed, the
photon absorbed in the first transition selects a velocity
class from which the second absorption occurs without
Doppler broadening.

One of the most successful methods to suppress the
Doppler effect is single-photon absorption on trapped
species in the Lamb-Dicke regime where the confine-
ment length is smaller than the wavelength. This condi-
tion is easily satisfied in ion traps in the microwave do-
main, which has allowed high-precision hyperfine struc-
ture measurements in many ionic species [11–13] and
the development of microwave frequency standards [14–
16]. The Lamb-Dicke regime is much more challenging to
achieve in the optical domain [17, 18]. It requires tight
confinement of laser-cooled ions, and has only been obtai-
ned with small ion numbers, i.e. single ions or ion strings

located on the axis of a linear trap.

We address here the specific case of molecular ions,
where high-resolution infrared spectroscopy opens the
way to many interesting applications such as tests of
QED [19, 20] or parity violation [21], measurement of
nucleus-to-electron mass ratios [22, 23], and studies of
their variation in time [24–26]. Studies on small ion num-
bers in the Lamb-Dicke regime raise additional problems
due to the difficulty of preparing and controlling the in-
ternal state of molecules. So far, the best resolutions have
been obtained with ensembles of sympathetically cooled
molecular ions [27, 28]. Temperatures of a few tens of
mK are typically achieved, which corresponds to a Dop-
pler broadening of several MHz, well above the natural
linewidths of excited rovibrational states.

To circumvent this limitation, degenerate Doppler-free
two-photon spectroscopy is a natural solution [29, 30].
However, relatively high field intensities are generally re-
quired to achieve a substantial transition rate, and this
approach often implies installing a high-finesse enhance-
ment cavity in the vacuum chamber [31]. For the sake of
experimental convenience and universality, a sub-Doppler
spectroscopic scheme that would be free of this require-
ment is highly desirable.

In this paper, we analyze theoretically the resonantly
enhanced two-photon excitation of trapped molecular
ions with nearly-degenerate counterpropagating laser
fields, that is made possible by quasi-coincidences in
the rovibrational spectrum. Near-resonant excitation of
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an intermediate level warrants sufficient transition rates
with moderate laser power ; in addition, two-photon ab-
sorption takes place in the Lamb-Dicke regime, due to
the effective wavelength associated with simultaneous ab-
sorption of one photon from each field. The proposed
scheme thus combines advantages of the resonant enhan-
cement already evidenced in neutral gases, and of the
Lamb-Dicke effect that has been exploited in microwave
spectroscopy of trapped ions.

As a first application, we will focus on hydrogen mo-
lecular ions. These simple systems enable highly pre-
cise comparisons between measured transition frequen-
cies and theoretical predictions. Current efforts to eva-
luate hyperfine structure [19] and QED corrections [20]
in H+

2 or HD+ are expected to improve the theoretical
accuracy beyond 0.1 ppb, allowing for stringent tests of
QED, and for an improved determination of the proton-
to-electron mass ratio (presently known to 0.41 ppb accu-
racy [32]). The high Q-factor of rovibrational lines also
opens the way to searches for possible time variations
of fundamental constants [24, 25] and ’fifth forces’ [33]
with improved sensitivity. Experimental studies on sym-
pathetically cooled HD+ ions [28, 34], using single-photon
rovibrational transitions detected by (1+1’) resonance-
enhanced multiphoton dissociation (REMPD), are so far
limited to the ppb level, mainly by the Doppler broade-
ning. As we will show, this limitation can be overcome by
several orders of magnitude in the proposed experiment.

The paper is organized as follows. In Sec. II, we des-
cribe the proposed (1+1’+1”) REMPD experimental
scheme, and discuss all the frequency scales in the pro-
blem. The theoretical model of REMPD is introduced
in Sec. III. We model the molecule-light interaction as
a three-level system which interacts coherently with the
two laser fields, and take dissociation into account by in-
troducing a non-coherent coupling to a fourth level. Our
treatment furthermore includes the motional degrees of
freedom of the molecules. The dynamics of the entire sys-
tem are captured within a set of optical Bloch equations
(OBE), which are solved to predict the dissociated ion
fraction monitored in the experiment. In Sec. IV, we first
numerically solve the model in the ideal case of a single
ion undergoing a pure harmonic motion in order to high-
light the main features of the signal and evidence the
Lamb-Dicke effect. Realistic ion motion obtained from
molecular ion dynamics simulations is then incorporated
in the model, and optimal conditions for the experiment
in terms of laser detunings, which are found markedly
different from the gas case [9], are determined. We show
that under these conditions, an approximate model of the
two-photon transition rate can be used, and its validity
range is assessed by comparing to the exact OBE model.
The power shift and broadening is analyzed, as well as
the effect of laser frequency noise. Finally, in Sec. V, in or-
der to obtain realistic estimates of the expected REMPD
signal strength, we simulate the dynamics of the total
number of HD+ ions taking into account the REMPD
rates as well as the redistribution of rotational popula-

tion induced by black-body radiation (BBR).

II. TWO-PHOTON TRANSITIONS IN HD+

AND FREQUENCY SCALES OF THE PROBLEM

The permanent electric dipole moment of HD+ allows
rovibrational transitions within the electronic ground
state. Weak vibrational overtone transitions exist only
by virtue of the anharmonicity of the HD+ bond. Two-
photon vibrational transitions are possible, but require
a quasi-resonance with an intermediate level to achieve
sufficiently high transition rates. Using the extensive
set of accurate rovibrational level energies obtained by
Moss [35], an analysis of intermediate level energy mis-
match reveals two interesting transitions, (v=0, L=1)→
(v=1, L=0)→(v=2, L=1) at 5.37 µm [30] (energy mis-
match : ∆E = 6.18 cm−1) and (v=0, L=3)→(v=4, L=
2)→ (v=9, L=3) at 1.44 µm (∆E = 6.84 cm−1). In the
following, we will consider the latter, whose wavelength
is more convenient for laser stabilization and absolute
frequency measurements.

Throughout the paper, the values of various parame-
ters are taken from the HD+ spectroscopy experiment
developed by the Amsterdam team and described in [34].
A set of about 100 HD+ ions is sympathetically cooled
by 1-2 103 laser-cooled Be+ ions to about 10 mK. The
(1+1’+1”) REMPD experiment proposed here consists
in driving a quasi-degenerate two-photon overtone tran-
sition using counterpropagating beams. The v = 9 level
is efficiently photodissociated using a 532 nm laser beam.
Two-photon excitation and subsequent dissociation lead
to loss of HD+ ions from the trapped ensemble. This loss
is observed by comparing the number of HD+ ions before
and after REMPD, which is deduced from the fluores-
cence photons emitted by the laser-cooled Be+ ions while
heating the ion ensemble through resonant excitation of
the HD+ motion [36]. The detection noise typically ob-
served in the experiment limits the minimum detectable
dissociated HD+ fraction to a few percent.

Figure 1 shows the structure of HD+ energy levels in-
volved in the REMPD scheme. The kets |1⟩, |2⟩ and |3⟩
denote the levels (v = 0, L = 3, F, S, J1), (v = 4, L =
2, F, S, J2) and (v = 9, L = 3, F, S, J3), where (F, S, J)
are hyperfine quantum numbers according to the cou-
pling scheme detailed below. The vibrational structure
(with intervals of about 60 THz) sets the larger fre-
quency scale in the experiment, followed by the rota-
tional constant (B ≈ 700 GHz). The resonant angular
frequencies are ω12/2π = 207.838 THz and ω23/2π =
207.427 THz leading to a small two-photon transition
mismatch ω12−ω23= 410 GHz (13.7 cm−1), i.e. 0.2% in
relative value. The rovibrational states have small na-
tural widths Γ1/2π = 0.037 Hz, Γ2/2π = 9.2 Hz and
Γ3/2π = 13.1 Hz [37].

We use the standard spin coupling scheme F = Ip+Se,
S = F+Id, J = S+L [38]. For a given rovibrational level,
the hyperfine structure spreads over ∆rmhyp ≈ 1 GHz,
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Figure 1. Sketch of the HD+ energy levels involved in the
proposed REMPD experiment. Left : vibrational structure ;
couplings by laser fields and spontaneous relaxation are res-
pectively indicated by straight and zigzag arrows. Center : ro-
tational structure. Right : hyperfine structures (not to scale).

the smallest interval between two hyperfine sub-levels
being δrmhyp ≈ 8 MHz for the v=0, L=3 level [38]. The
Zeeman structure is discussed in Appendix A. In the Am-
sterdam experimental setup, the magnetic field can be re-
duced to values as low as 20 mG, resulting in a Zeeman
splitting δZ smaller than 10 Hz for the best suited lines,
due to an almost perfect compensation of Zeeman shifts.
Assuming the laser linewidth is larger than the Zeeman
splitting, all the Zeeman components can be addressed
simultaneously. That is why the Zeeman structure is not
considered in our model.

The two-photon transition is driven by two lasers of
angular frequencies ω and ω′ close to the single-photon
transition frequencies ω12 and ω23 respectively. The tran-
sitions lye in the 1.4 µm range and can be driven by
frequency-stabilized diode lasers. Using transition mo-
ments calculated with the approach of [39], the achie-
vable laser intensities i.e. about 20 mW/(0.1 mm)2 can
be translated into maximum values for the Rabi frequen-
cies Ω12/2π or Ω23/2π that exceed 100 kHz.

In the linear RF Paul trap, the HD+ molecular ions
are embedded in a Be+ Coulomb crystal [40, 41]. As part
of a complex mechanical system, each HD+ ion oscillates
around its equilibrium position with oscillation frequen-
cies in the kHz to MHz ranges and amplitudes in the
µm range. Velocities can typically reach 5 m/s (see Ap-
pendix B) resulting in a single-photon Doppler effect ΓD

in the 5 MHz range that clearly dominates the single-
photon transition width. The values of the laser detu-
nings δ12 = ω − ω12 and δ23 = ω′ − ω23 with respect to
ΓD determine the dynamics of the system : instantaneous
two-photon transitions will dominate if δ12 > ΓD, while
in the opposite case sequential transitions will also take
place.

With a counterpropagating two-photon excitation
scheme, the effective wavelength λeff = 2πc/(|ω12 −ω23|)
is about 500 times larger than the single-photon wa-
velength, i.e. 0.7 mm. Since the ion motional ampli-

tude a is about 1 µm, the Lamb-Dicke parameter η =
a/λeff ≈ 0.014 is much smaller than unity, leading to a
Doppler-free signal, as will be evidenced in Sec. IV.

The REMPD process involves a photodissociation step
from level |3⟩ using a 532 nm cw laser with a maximum
intensity of 140 W/cm2, corresponding to a photodisso-
ciation rate Γdiss = 5000 s−1. In the following, we use
Γdiss = 200 s−1, which is still much larger than the na-
tural decay rate, and sufficient to detect the REMPD
signal [34].

The laser linewidths ΓL may range from hundreds of
kHz down to the Hz level depending on the laser fre-
quency stabilization scheme. In case of imperfect stabi-
lization, ΓL may be comparable to the Rabi frequencies
and strongly affect the two-photon transition rate and li-
newidth, which requires taking laser frequency noise into
account.

At thermal equilibrium at room temperature, most
of the HD+ population is concentrated in the v = 0,
0 ≤ L ≤ 5 levels [42]. Blackbody radiation permanently
redistributes the populations among those levels with
transition rates ΓBBR in the 0.1 s−1 range[39], the smal-
lest frequency scale of the problem.

To summarize, the different rates follow the hierarchy

ΓBBR ≪ δZ ,Γ1,2,3 ≤ Γdiss,ΓL ≤ Ω12 ≈ Ω23

≪ ΓD ∼ δ12 ∼ δ23 ≤ δhyp (1)

≪ ∆hyp ≪ |ω12 − ω23| < B ≪ ω12, ω23.

This analysis shows that the different hyperfine com-
ponents of the two-photon transition can be considered
to be well isolated, and that it is appropriate to study
the two-photon transition rate using a three-level ladder
system. It also shows that one can distinguish two dif-
ferent time scales for the population evolution : a fast
one due to laser couplings and spontaneous relaxation,
and a much slower one due to BBR population redistri-
bution. As a consequence, in a very good approximation,
the REMPD process can be studied in two steps. The
first step evaluates the short-term (≈ 1s) time evolution
of a three-level system under laser excitation and sponta-
neous decay to obtain the effective two-photon excitation
and REMPD rates (Secs. III and IV). In the second step,
the long-term evolution of the total number of HD+ ions
is studied, taking into account the REMPD rate obtained
in the first step, and the redistribution of rotational-state
population by BBR (Sec. V).

III. REMPD MODEL

We consider the three-level ladder structure shown in
Fig. 1. For states |2⟩ and |3⟩, the relaxation by sponta-
neous emission mainly populates rovibrational levels with
v′ = v−1. The spontaneous emission cascade, coupled to
BBR reditribution, can of course ultimately populate the
v=0, L=3 state, but this happens on much longer time
scales with respect to laser excitation, dissociation and
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spontaneous decay. We thus treat the three-level system
as an open system, and postpone the analysis of BBR
redistribution to Sec. V. While levels |1⟩ and |2⟩ have
natural widths Γ1 and Γ2, level |3⟩ relaxes through spon-
taneous emission with a natural width Γ3 and through
dissociation with a rate Γdiss resulting in an effective
width Γeff

3 = Γ3 + Γdiss. We introduce a fourth virtual
level |4⟩ whose population represents the photodissocia-
ted fraction. The coupling to level |4⟩ is an irreversible
process.
The ions are excited by two counterpropagating beams

of angular frequencies ω and ω′ close to the resonant
frequencies ω12 and ω23. The corresponding electric field
is given by :

E(r, t) = Eϵe−i(ωt−k.r+φ(t))+Eϵ′e−i(ω′t−k′.r+φ′(t))+c.c.
(2)

where φ(t) and φ′(t) describe laser phase noise, and E,E′

and ϵ, ϵ′ stand for the field amplitudes and polarization
states, respectively.
Following the lines of [43], the density matrix ϱ(r, t)

obeys the optical Bloch equations (OBE) d
dtϱ(r, t) =

1
i~ [H, ϱ(r, t)] + ϱ̇relax where the total time derivative is

written as d
dt = ∂

∂t + v.∇. Applying the rotating wave
approximation, we set

ϱii = ρii, i = 1..4
ϱ12 = ρ12(t)e

−i(ωt−k.r(t))

ϱ23 = ρ23(t)e
−i(ω′t−k′.r(t))

ϱ13 = ρ13(t)e
−i((ω+ω′)t−(k+k′).r(t))

(3)

and we obtain

˙ρ11 = −Γ1ρ11 + i (Ω12ρ21 − Ω∗
12ρ12)

˙ρ22 = −Γ2ρ22 + i (Ω∗
12ρ12 − Ω12ρ21 +Ω23ρ32 − Ω∗

23ρ23)

˙ρ33 = − (Γ3 + Γdiss) ρ33 + i (Ω∗
23ρ23 − Ω23ρ32)

˙ρ44 = Γdissρ33

˙ρ12 = (i(δ12 − k.ṙ(t))− γ12) ρ12

+i (Ω12(ρ22 − ρ11)− Ω∗
23ρ13) (4)

˙ρ13 = (i(δ12 + δ23 − (k+ k′).ṙ(t))− γ13) ρ13

+i (Ω12ρ23 − Ω23ρ12)

˙ρ23 = (i(δ23 − k′.ṙ(t))− γ23) ρ23

+i (Ω23(ρ33 − ρ22) + Ω∗
12ρ13)

where the Rabi frequencies are Ω12 = d12.ϵEeiφ(t)/~ and

Ω23 = d23.ϵ
′E′eiφ

′(t)/~ with the dipole moment matrix
elements dij = ⟨i|d|j⟩. The coherences relaxation rates
are γ12=(Γ1 + Γ2)/2 and γi3=(Γi + Γ3 + Γdiss)/2. The
photodissociated fraction ρ44 is proportional to the time-
integral of the upper level population ρ33(t).
The Doppler effect appears in the terms k.ṙ(t) and

k′.ṙ(t) in the evolution equations of ρ12 and ρ23. Sup-
pression of the Doppler effect occurs in the ρ13 evolu-
tion equation in the case of counterpropagating beams of
nearly equal frequencies for which k+k′ ≈ 0. In the follo-
wing, the laser direction is assumed parallel to the linear
trap axis z, so that the Doppler effect in Eq. (4) reduces

to k.ṙ(t) = k ż(t) and k′.ṙ(t) = −k′ ż(t). This assump-
tion furthermore justifies ignoring effects of ion micromo-
tion at the RF trap frequency. A detailed discussion of
micromotion effects is postponed to Sec. IVD4.

At first glance, the largest REMPD signal could be
expected for the doubly resonant configuration, δ12 =
−δ23 = 0, as in a thermal gas [9]. However, if the de-
tunings are smaller than (or comparable to) the single-
photon Doppler width, sequential absorption of photons
ω and ω′ through level |2⟩ can compete with the Doppler-
free signal. The main objective of this paper is to de-
termine the experimental conditions under which one
can obtain sub-Doppler REMPD signals with the lar-
gest signal-to-noise ratio ; in particular, to determine the
optimal single-photon detunings δ12 and δ23, taking into
account realistic ion trajectories and laser phase noise.

Since under those conditions the OBE cannot be solved
in a closed form, we integrate them numerically between
t = 0 and t = tmax. We use a 4th order Runge-Kutta me-
thod with a short enough time step (10−9 to 5. 10−8 s)
to well represent the relevant characteristic frequencies of
the problem. The initial conditions are ρ11=1, and zero
for all the other density matrix elements. Since we consi-
der an open three-level system, the stationary solution is
not relevant. The populations and coherences only have a
transient behavior and vanish for long times. The signal,
i.e. the dissociated fraction is given by ρ∞44 = ρ44(t → ∞) ;
the integration time tmax has to be chosen long enough
to get a precise estimate of ρ∞44.

IV. RESULTS

The REMPD signal given by the dissociated fraction
ρ44 is first studied in Sec. IVA in the simple case of
noiseless lasers and of a single molecular ion with a har-
monic motion to characterize sideband effects and iden-
tify the Lamb-Dicke regime. In Sec. IVB, we come to a
more realistic model by including actual ion trajectories
to simulate the experimental signal and determine opti-
mal conditions for REMPD signal observation. The OBE
results are compared to a simple rate equation model in-
troduced in Sec. IVC. Finally, we evaluate light shifts
and power broadening, and analyze the effects of laser
phase noise in Sec. IVD.

A. Single-frequency oscillating ion

Here, we consider a single ion oscillating with an an-
gular frequency Ωvibr and velocity amplitude ṽ. Figure 2
(resp. 3) shows the typical time evolution of the popula-
tions ρ11, ρ22, ρ33 as well as the dissociated fraction ρ44
in the case of an ion with a pure oscillatory motion for op-
posite small (large) detunings of 10 kHz (5 MHz) as com-
pared to the single-photon Doppler width ṽ/λ= 714 kHz.
The other parameters of the calculation (see figure cap-
tions) correspond to the typical values used throughout
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Figure 2. Time evolution of the populations in the case of a
single ion undergoing pure harmonic motion along the z axis.
Ωvibr = 2π × 600 kHz, velocity amplitude : ṽ = 1 m/s, Ω12 =
Ω23 = 2π× 5 kHz, small detuning δ12 = −δ23 = 2π× 10 kHz,
integration time step : 10−9 s.

the paper. Although the final dissociated fractions ρ44
are comparable, the two figures corresponds to comple-
tely different conditions.
For small detunings, two-photon excitation is a sequen-

tial process involving a large intermediate state popula-
tion ρ22. ρ11 and ρ33 (resp. ρ22) exhibit strong oscilla-
tions at 2 kHz (resp. 12 and 14 kHz), see Fig. 2. We have
checked that those evolution frequencies are consistent
with the generalized Rabi frequencies that can be deter-
mined by solving the OBE analytically for an ion at rest
(ṙ(t) = 0)).
In the large detuning regime (Fig. 3), ρ22 always re-

mains negligible, and level |3⟩ is directly excited from
level |1⟩ by a two-photon process. Comparing the time
scales in Figs. 2 and 3, one can see that the two-photon
process is much slower than the low-detuning sequential
process ; nonetheless it also leads to a large dissociated
fraction after a long enough time. The behavior of ρ11 and
ρ44 in Fig. 3 is very close to exponential decay, which will
allow to describe the evolution by an effective REMPD
rate. The apparent thickness of the ρ22 curve is due to
fast modulation at the ion oscillation frequency.
We now analyze the REMPD signal ρ∞44 as a function

of δ23 for a (fixed) large detuning δ12. Figure 4 shows the
spectrum for an oscillating ion with Ωvibr = 2π×600 kHz
and ṽ = 1 m/s (the red dashed line is obtained for an ion
at rest for comparison). It exhibits two groups of peaks
having a sideband structure, in which the sidebands are
generated by the Doppler effect due to the ion oscilla-
tion, leading to a comb of lines separated by Ωvibr. They
correspond to two different processes.
The right part of Fig. 4, centered at δ23 = 0, corres-

ponds to sequential excitation. Since the detuning δ12 is
large as compared to the single-photon Doppler width, se-
quential excitation is inefficient leading to very small dis-
sociated fractions of the order of 10−6. In its rest frame,
the oscillating ion sees phase modulated laser spectra

Figure 3. Same as Fig. 2 but with a large detuning δ12 =
−δ23 = 2π × 5 MHz. Dotted lines are obtained from Eq. (6)
without adjustable parameter.

with a modulation index of 2πṽ/(λΩvibr) = 1.16 leading
to three significant sidebands on each side of the carrier
explaining the broad signal sideband structure.

The left part of Fig. 4, centered at the two-photon
resonance δ23 = −δ12, is the signal due to instantaneous
two-photon excitation. It exhibits an intense narrow peak
as well as sidebands. However, the sidebands are much
smaller than the carrier and drop off very rapidly with
sideband order, evidencing the Lamb-Dicke regime. In or-
der to get a more quantitative understanding, we varied
the ion oscillation frequency Ωvibr for a given velocity
amplitude (ṽ = 1 m/s) and determined the two-photon
transition rate Γ2ph by fitting the decay of ρ11(t) with
Eq. (6) (see Sec. IVC), for the carrier and first sidebands
of the two-photon signal (peaks A, B and C in Fig. 4). Fi-
gure 5 shows Γ2ph versus Ωvibr. Red solid lines are obtai-
ned from the model given in Appendix C (Eqs. (C2-C3)).
In Eq. (C3), the effective quantum number n depends on
Ωvibr through the relationship (n+1/2)~Ωvibr ≈ mṽ2/2,
and we used s = 0,±1 for the carrier A and sidebands
B, C respectively. Both approaches are in good agree-
ment, and demonstrate that the system is deep in the
Lamb-Dicke regime.

To conclude on the spectrum of Fig. 4, let us stress
again the important differences with respect to the gas
case. In a dilute gas, the velocity can be considered as
constant during the interaction with light ; as a result,
sequential transitions are Doppler-free because the first
transition selects a velocity class [9]. This effect does not
take place in ion traps, where the ion velocities oscil-
late with time, and sequential transitions are Doppler-
broadened. On the contrary, instantaneous transitions
which are Doppler-free in ion traps due to the Lamb-
Dicke effect, exhibit residual Doppler broadening in a gas.

Figure 6 shows the signal at two-photon resonance as
a function of the Rabi frequencies Ω12 and Ω23, assu-
ming that they are equal. The saturation intensity (for
which the signal is equal to half its maximum value) is
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resonance versus the oscillation frequency, obtained by solving
the OBE for an harmonic oscillation. Red solid curves : same,
but obtained using Eqs. (C2) and (C3) of Appendix C. Para-
meters : δ12/2π = 5 MHz, Ω12 = Ω23 = 2π×5 kHz, ṽ = 1 m/s.
Time step : 10−9s, tmax = 1 s.

found to correspond to Rabi frequencies of about 2 kHz,
in excellent agreement with the rate equation model of
Sec. IVC (Eq. (9)). For most of the calculations hereaf-
ter, the Rabi frequencies are set to 5 kHz to achieve large
signals.
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Figure 6. Photodissociated fraction versus Rabi frequencies
for a detuning δ12 = −δ23 = 2π × 5 MHz. Ω12 and Ω23 are
taken equal. The red solid line corresponds to the prediction
of Eq. (8), and the dotted curve is obtained by solving the
OBE with a time step of 10−8 s, and tmax = 10 s.

B. Real ion motion

In this Section, we come to a more realistic description
of the REMPD dynamics by inserting into the OBE ion
trajectories obtained by numerically simulating the mo-
tion of 20 HD+ ions sympathetically cooled by 400 Be+

ions (Appendix B). The dissociated fraction is computed
for each trajectory and the results are averaged. Figure 7
shows the dissociated fraction ρ44 as a function of detu-
ning δ23 for δ12 = 0, 1, 2 and 5 MHz. For small detunings,
ρ44 is dominated by the sequential contribution,leading
to a wide Doppler-broadened spectrum which obscures
the Doppler-free instantaneous two-photon signal. For
detunings larger than the single-photon Doppler width,
the sequential contribution strongly decreases and the
narrow Doppler-free peak dominates.

The sequential contribution thus appears as a noise
floor that limits the visibility of the Doppler-free signal.
In order to determine how close to the resonance the
detuning can be set, we compare the Doppler-free signal
to the sequential contribution by plotting in Fig. 8 the
top of the Doppler-free peak and the estimated ’noise
floor’ due to the sequential signal. The results show that
an optimal visibility of the Doppler-free signal is achieved
for detunings around 5 MHz, which corresponds to the
maximum single-photon Doppler shift experienced by the
ions.

C. Rate equation model

The analysis of the signal predicted by solving nume-
rically the OBE showed that the optimum value of the
detuning is slightly larger than the Doppler width. In that
case, the population of level |2⟩ always remains negligible,
and the OBE describing the evolution of the three-level
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Figure 7. (a) to (d) Dissociated fraction as a function of δ23
for four values of δ12/2π : 0, 1, 2 and 5 MHz. (e) Zoom on
the Doppler-free peak for δ12/2π = 5 MHz ; the solid line
is obtained from Eq. (8). The simulations are performed for
20 HD+ ions in a 400 Be+ ion cloud. Parameters : Ω12 =
Ω23 = 2π × 5 kHz, time step 10−8 s, tmax = 0.5 s for (a-d)
and 10 s for (e).

system in interaction with the laser fields can be simpli-
fied by introducing the two-photon transition probability
Γ2ph between levels |1⟩ and |3⟩ (see Appendix C). The
time evolution of the populations ρ11, ρ33 and ρ44 can
then be described by a simple rate equation model. In-
troducing Γeff

3 = Γ3+Γdiss, the rate equations are written
dρ11

dt = −(Γ2ph + Γ1)ρ11
dρ33

dt = Γ2phρ11 − Γeff
3 ρ33

dρ44

dt = Γdissρ33,

(5)

where, in order to simplify the expressions, we have re-
placed ρ11 − ρ33 by ρ11 in the first two equations. This
approximation is justified for large detunings, since ρ33
then remains much smaller than ρ11. The solution cor-
responding to ρ11(0) = 1 and ρ33(0) = ρ44(0) = 0 reads

ρ11(t) = e−(Γ1+Γ2ph)t

ρ33(t) =
Γ2ph

Γeff
3 −Γ1−Γ2ph

(e−(Γ1+Γ2ph)t − e−Γeff
3 t)

ρ44(t) =
ΓdissΓ2ph

Γeff
3 (Γ1+Γ2ph)

− ΓdissΓ2ph

Γeff
3 −Γ1−Γ2ph

×
(

e−(Γ1+Γ2ph)t

Γ1+Γ2ph
− e−Γeff

3 t

Γeff
3

)
.

(6)

Dotted lines in Fig. 3 are plotted from Eq. (6). They com-
pare very well with the numerical result obtained with an
oscillating ion in the large detuning limit, indicating that
the instantaneous two-photon contribution is insensitive
to the ion motion as expected in the Lamb-Dicke regime.
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Figure 8. Red : Photodissociated fraction ρ44 as a function
of the detuning δ12 at two-photon resonance (δ23 = −δ12)
obtained by solving the OBE. Black : Photodissociated frac-
tion due to sequential two-photon excitation (’noise floor’),
which we evaluate at the pedestal of the Doppler-free peak.
The green curve is obtained from Eq. (8). Parameters :
Ω12 = Ω23 = 2π × 5 kHz, time step 10−8 s, tmax = 2 s.

The long-term behavior of ρ44 is given by

ρ∞44 =
ΓdissΓ2ph

(Γ3 + Γdiss)(Γ1 + Γ2ph)
. (7)

If Γ2ph ≫ Γ1 we have simply ρ∞44 ≈ Γdiss/(Γ3 + Γdiss).
Indeed, in that case, direct losses from level |1⟩ are ne-
gligible as compared to excitation to level |3⟩, and ρ∞44
is given by the branching ratio between dissociation and
natural relaxation.

In the general case, replacing Γ2ph with the expres-
sion given by Eq. (C5), we obtain an expression for the
photodissociated fraction that is valid in the Lamb-Dicke
regime :

ρ∞44 =
Γdiss

Γ1

Ω2
12Ω

2
23

δ212

1

δ213 +
(Γeff

3 )2

4 +
Γeff
3

Γ1

Ω2
12Ω

2
23

δ212

. (8)

Figure 6 showing ρ∞44 versus the Rabi frequencies is ob-
tained for an oscillating ion in the large detuning limit.
Again, the results of Eq. (8) closely match the OBE nu-
merical model.

The saturation Rabi frequency, defined as the Rabi
frequency product Ω12Ω23 for which ρ∞44 = Γdiss/2Γ

eff
3 , is

given by

Ω12Ω23 = δ12

√
Γ1

Γeff
3

(δ213 + (Γeff
3 )2/4), (9)

which reduces to Ω12Ω23 = δ12
√

Γ1Γeff
3 /2 on two-photon

resonance.
Comparing the green solid line in Fig. 8 with the red

line representing the solution of the OBE shows that the
rate equation model accurately predicts ρ∞44 for detunings
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larger than the Doppler width, but as expected, fails for
small detunings. Finally, the Doppler-free line obtained
by solving the OBE and shown in Fig. 7(e) has a Lo-
rentzian shape of amplitude 0.7 and FWHM 352 Hz in
excellent agreement with the predictions of Eq. (8) giving
0.71 for the amplitude and 354 Hz for the width.

D. Systematic shifts and line broadening

In this Section, we study the main effects that may per-
turb the Doppler-free REMPD signal, i.e. lightshifts, po-
wer broadening and laser frequency noise. Only the large-
detuning limit will be studied, and numerical results ob-
tained from the OBE will be compared with predictions
of the simple analytical model developed in Sec. IVC.

1. Light Shifts

The light shift experienced by the lower and upper
levels |1⟩ and |3⟩ are given by +Ω2

12/δ12 and −Ω2
23/δ23,

respectively [44, 45]. Close to the two-photon resonance
defined by δ12 = −δ23, both shifts have the same sign
leading to a compensated light shift for the transition
frequency :

∆LS = (Ω2
23 − Ω2

12)/δ12. (10)

As was shown in Sec. IVB, the optimal value of the detu-
ning δ12 is of the order of the Doppler width (a few MHz),
whereas the Rabi frequencies are of a few kHz. Therefore
the light shift typically amounts to a few Hz, i.e. an re-
lative shift of about 10−14 on the transition frequency.
Moreover, laser intensities can be chosen in order to get
equal Rabi frequencies thus canceling the light shifts.
In Fig. 9, the position δ23 of the two-photon peak

is plotted versus Ω2
23 − Ω2

12 for a fixed detuning δ12 =
10 MHz. It has a linear dependence with a slope of
1.011(2) 10−7 Hz/(Hz)2, in good agreement with Eq. (10)
which predicts 10−7 Hz/(Hz)2.

2. Power Broadening

A simple expression of the power broadening is easily
deduced from Eq. (8). Figure 10 compares the broadening
predicted by Eq. (8) to a more precise calculation from
the numerical solution of the OBE. The inset shows that
there is excellent agreement at low intensity. For very
large Rabi frequencies, the numerically obtained power
broadening is smaller than expected from Eq. (8). This
discrepancy stems from the fact that Eq. (8) is obtained
using Eq. (C5) for Γ2ph, which is valid if Γ2ph ≪ Γeff

3 but
not for large laser fields.
As already mentioned in Sec. IVB, the FWHM of the

two-photon peak for the laser intensities used throughout
the paper (Ω12 = Ω23 = 2π × 5 kHz, signalled by a ver-
tical dashed line in the inset of Fig. 10), is 354 Hz (see
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Figure 9. Crosses : Light shift of the two-photon reso-
nance versus Rabi frequencies. The two-photon resonance is
located by finding the maximum of the Doppler-free peak
(see Fig. 7 (e)). Solid line : linear fit giving a slope of
1.011(2) 10−7 Hz/(Hz)2. Parameters : δ12 = 10 MHz, time
step 10−8 s, tmax = 0.5 s.
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Figure 10. Squared width (FWHM) of the Doppler-free
peak versus Rabi frequencies. The solid line is obtained from
Eq. (8). The vertical dashed line in the inset corresponds to
the typical Rabi frequencies used throughout the paper, i.e.
Ω12 = Ω23 = 2π × 5 kHz. Parameters : δ12 = 5 MHz, time
step 10−8 s, tmax = 20 s.

Fig. 7(e)) while the prediction of Eq. (8) is 351 Hz. Thus
power broadening significantly degrades the resolution
with respect to the effective linewidth Γeff

3 = 45 Hz. Lo-
wer intensities can be used to improve the resolution, at
the cost of a slightly reduced signal-to-noise ratio.

3. Laser frequency noise

The analysis of light shifts and power broadening shows
that REMPD spectroscopy at the sub-kHz level is fea-
sible. In this Section, we discuss the effect of the laser
width on the signal, using both numerical solutions of
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Figure 11. Two-photon transition rate versus the laser width
(assuming a lorentzian spectrum). The black dotted curve is
obtained by integrating the OBE with a time step of 10−8

and tmax = 0.5 s. The red solid line is obtained from Eq. (11).
The dashed vertical line corresponds to ∆FWHM = Γeff

3 /2.
Parameters : Ω12 = Ω23 = 2π × 5 kHz, δ12 = −δ23 = 2π ×
5 MHz.

OBE and an analytical model.

So far, we have assumed noiseless laser fields by setting
φ(t) = φ′(t) = 0 in Eq. (2). This means that the two la-
ser fields are supposed to be perfectly phase-locked. The
discussion in Sec. II shows that laser linewidths cannot
always be neglected as compared to Rabi frequencies and
level widths. The REMPD experiment involves frequency
controlled diode laser sources, which have a Lorentzian li-
neshape. In order to include the laser frequency noise into
the model, two independent noisy phases φ(t) and φ′(t)
are numerically generated as centered gaussian statio-
nary processes with the desired shape and width [46, 47]
as explained in Appendix D, and used as inputs in the
OBE (4). For both lasers the phase noise bandwidth B
is chosen to be 100 kHz and the width ∆FWHM is varied
from a few Hz to 30 kHz.

The effect of laser phase noise on two-photon transition
rates is theoretically addressed in [48]. For two uncorre-
lated phases φ(t) and φ′(t), formula (C4) is modified into

Γ2ph =
Ω2

12Ω
2
23

δ212

Γeff
3 + 2∆FWHM

δ213 + (Γeff
3 + 2∆FWHM)2/4

(11)

Just like Eq. (C4), the above expression is valid in
the large-detuning limit δ12 > ΓD. In Fig. 11, we plot
Γ2ph versus ∆FWHM assuming both lasers have the same
width. Numerical results from the OBE are in very good
agreement with Eq. (11), and show that it is desirable
to have laser widths smaller than the effective width
Γ3 + Γdiss of the upper level in order not to limit the
two-photon transition rate, as well as the resolution.

4. Effects of micromotion

In a Paul trap, the ions undergo micromotion driven
by the RF field at the ion location (x, y, z). In this sec-
tion, we evaluate the magnitude of the micromotion in
the linear trap described in [34] to show that it has a
negligible impact on the two-photon lineshape and that
the associated second order Doppler effect does not limit
the expected resolution.

The linear trap geometry is defined by an effec-
tive inner radius r0=3.5 mm and is operated using
a RF voltage V0=270 V at ΩRF=2π×13.3 MHz re-
sulting in a ωr=2π×0.9 MHz HD+ radial trap fre-
quency. The micromotion amplitude δr is linked to
the RF field ERF by δr = −qERF /(mΩ2

RF ). The
leading components of the RF field are ERF =
(−V0 x/r20, V0 y/r20, ERF,z) cos(ΩRF t). The radial com-
ponents correspond to the trap’s quadrupolar field. The
axial component is a worst case value, obtained using
a finite difference analysis (SIMION software) to model
the actual trap potential taking into account the maxi-
mum possible deviation of end cap electrodes from the
ideal geometry ; ERF,z is less than 100 V/m over the ion
cloud extension. However, trap imperfections, RF phase
differences on the trap electrodes and stray electric fields
may lead to excess micromotion, which in turn can give
rise to second-order Doppler shifts of the observed transi-
tion frequency, as well as additional sideband features in
the spectrum [49, 50]. Stray electric fields may be com-
pensated by applying voltages on the trap electrodes to
position the Be+ and HD+ ion clouds symmetrically with
respect to the trap axis. From the applied voltages and
the trap geometry, the residual stray field amplitude is
estimated to be smaller then 7.3 V/m. The maximum
radial displacement rradmax is obtained by balancing the
stray electric force qEstray with the ponderomotive force
mω2

rr
rad
max, leading to r

rad
max = qEstray/(mω2

r)=7.3 µm and
maximum radial RF field components of 114 V/m. The
maximum axial and radial micromotion amplitudes δx,
δy and δz are all less than 0.5 µm, much smaller than the
effective transition wavelength. Furthermore, the ion trap
was designed such that RF phase differences do not ex-
ceed 3 mrad. For the above trap parameters, this implies
a maximum micromotion amplitude due to RF phase dif-
ferences of 0.4 µm [49].

Micromotion might lead to sidebands in the two-
photon excitation spectrum, located ±13.3 MHz from the
main spectral feature. Nevertheless, under the present
conditions, the modulation index |(k− k′) · δr| <0.007 is
very small leading to strongly suppressed sidebands, jus-
tifying ignoring micromotion in the interaction model.

Although the micromotion amplitude is small, the as-
sociated velocity amplitude is large and second order
Doppler shift and broadening have to be evaluated. It is
given by δf/f = −

⟨
v(t)2

⟩
/(2c2). For micromotion with

amplitude δr=0.9 µm, it is given by −(δr)2Ω2
RF /(4c

2) =-
1.5×10−14. Including RF phase differences, the shift may
reach -1.8×10−14 corresponding to less than 4 Hz on in-
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dividual laser frequencies. This is much smaller than the
expected two-photon linewidth and cannot hinder the
two-photon line observation. Nevertheless, careful micro-
motion compensation is necessary to reach the 10−14 ac-
curacy level.

V. INFLUENCE OF BBR ON REMPD AND
SIGNAL STRENGTH

In the preceding sections, the photodissociated frac-
tion was interpreted as the spectroscopic signal of in-
terest. However, in previous experiments spectroscopic
signals were obtained by comparing the initial number
of trapped HD+ ions, Ni, to the remaining number of
HD+ ions after REMPD, Nf , by constructing a signal
s = (Ni−Nf )/Ni [27, 34]. Obviously, the finite size of the
trapped HD+ samples may lead to additional saturation
effects. It should also be noted that before REMPD, most
of the HD+ ions are in states other than v = 0, L = 3
as the ambient BBR (temperature T = 300 K) distri-
butes population over rotational states with L = 0 to
L = 6 [42]. Each rotational level is furthermore split
into four (L = 0), ten (L = 1), or twelve (L ≥ 2) hy-
perfine states. As a consequence, only a few per cent of
the HD+ ions may be found to be in a particular hy-
perfine state. For example, 2.6 % of the HD+ ions are
in the favored initial hyperfine state with (v, L) = (0, 3)
and (F, S, J) = (1, 2, 5) (see Appendix A). At first glance,
one would therefore not expect to achieve a signal s larger
than 0.026, which is barely above the noise background
observed by Koelemeij et al. [27]. However, for REMPD
durations on the order of 1 s or longer, redistribution
of population by BBR becomes an important factor, as
this takes place on a similar timescale. In fact, BBR will
continue to refill the initial state population while it is
being depleted via REMPD, thereby enhancing the signal
s. To estimate the expected signal strength, we treat the
interaction of the ensemble of HD+ ions with BBR and
the REMPD lasers in the form of Einstein rate equa-
tions, which we integrate over the REMPD duration, t,
to obtain s(t). Here we introduce two simplifying assump-
tions : first, the REMPD process is considered sufficiently
efficient so that no spontaneous emission from high vibra-
tional states occurs. Second, all HD+ ions are considered
to be in states with v = 0 and L = 0...5 (we ignore
the population in L = 6, which is less than 2 %. Taking
hyperfine structure into account, the rate equations read

d

dt
ραL =

∑
α′

(
Aα′L+1

αL +Bα′L+1
αL W (ωα′L+1

αL , T )
)
ρα′L+1

+
∑
α′

Bα′L−1
αL W (ωαL

α′L−1, T )ρα′L−1 (12)

−
∑
α′

(
AαL

α′L−1 +BαL
α′L−1W (ωαL

α′L−1, T )
)
ραL

−
∑
α′

BαL
α′L+1W (ωα′L+1

αL , T )ραL − δαα0δLL0Γ2phραL.

Here, the hyperfine populations ρ are labeled by the hy-
perfine index α ≡ (F, S, J). Transition frequencies are

written as ωα′L′

αL , where the upper and lower indices re-
fer to the upper and lower levels, respectively. The BBR
spectral energy density at temperature T is denoted as
W (ω, T ). The hyperfine state subject to REMPD at rate
Γ2ph is labeled by α0 and L0. Introducing the equivalent
notation Aij = Ai

j = AαL
α′L′ (and likewise for Bij and

ωij), the rate coefficients for spontaneous emission from
an upper state i to a lower state j are written as

Aij =
ω3
ij

3πϵ0~c3
Sij

2Ji + 1
µ2
ij . (13)

The radial dipole matrix elements µij are those presented
previously in Ref. [39], and the hyperfine line strengths
Sij are derived in a similar fashion as in Refs. [51, 52]. The
calculation of Sij involves hyperfine eigenvectors, which
are obtained by diagonalization of an effective spin Ha-
miltonian [38]. Spin coefficients for v = 0, L = 0...4 are
taken from [38], and extrapolation of these coefficients
results in a set of spin coefficients for v = 0, L = 5. Li-
kewise, the rate coefficients for stimulated emission and
stimulated absorption are

Bij =
π2c3

~ω3
ij

Aij (14)

and

Bji =
2Ji + 1

2Jj + 1
Bij , (15)

respectively. After integrating Eq. (12) to obtain ραL(t)
as a function of the REMPD duration t, the signal s(t)
becomes

s(t) =

∑
α,L ραL(0)− ραL(t)∑

α,L ραL(0)
. (16)

Here, the initial distribution of populations ραL(0) is as-
sumed to be a thermal distribution corresponding to the
temperature of the BBR (which is assumed to be 300 K
here).

We compute signal strengths for the conditions of
Fig. 11, and for a laser linewidth of 10 Hz, for which the
REMPD rate is about 10 s−1. The result for the tran-
sition starting from the hyperfine level with (F, S, J) =
(1, 2, 5) is shown in Fig. 12. Different time scales can be
identified in the growth of s(t). After 0.2 s, nearly all the
population in the initial state (F, S, J) = (1, 2, 5) is disso-
ciated, and the signal corresponds to the initial hyperfine
state population of 0.026. After t = 0.2 s, BBR continues
to replenish population from states with L ̸= 3 (and with
primarily (F, S) = (1, 2)) through allowed electric-dipole
transitions. Transitions between states with equal F but
different S are only allowed by virtue of hyperfine mixing
and therefore are considerably weaker ; transitions bet-
ween states with different F are even less allowed. The
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Figure 12. Log-linear plot of the signal strength s(t) as a
function of REMPD duration t, for two-photon transitions
starting from the hyperfine state with (L,F, S, J) = (3, 1, 2, 5)
(solid curve) in v = 0. Shown as well are populations of certain
’spin classes’ (rightmost vertical axis). Long-dashed curve, po-
pulation in (L,F, S, J) = (3, 1, 2, 5) ; dash-dotted curve, sum
over L, J of all population in states with F = 1, S = 2 ; short-
dashed curve, sum over L, S, J of all population in states with
F = 1, S ̸= 2 ; dotted curve, sum over L, S, J of all population
in states with F = 0.

former become important after t = 100 s, when most
HD+ ions with (F, S) = (1, 2) have been dissociated,
whereas the latter start to dominate the dissociation dy-
namics only after t = 700 s when most HD+ ions with
F = 1 have been depleted. The population dynamics are
illustrated by the curves in Fig. 12.
For efficient data acquisition, it is important to find

the optimum REMPD duration. Fig. 12 shows that lon-
ger durations lead to larger signals. On the other hand,
shorter durations allow more data points to be acqui-
red within a given amount of time, Texp, which can be
averaged to improve the signal-to-noise ratio. The opti-
mum duration depends also on the overhead per data
point (e.g. time needed to expunge the remaining HD+

ions from the trap, and reload a fresh sample of HD+

ions for the next REMPD cycle). We define a figure of
merit for the signal quality, L, obtainable given a total
time Texp, REMPD duration t and the overhead, toh, as
follows. The number of experiments that can be done is
Nexp = ⌊Texp/(t+ toh)⌋, where ⌊ ⌋ denotes the floor. As-

suming the signal-to-noise ratio improves as
√
Nexp, our

figure of merit becomes

L(t) = s(t)
√

Nexp = s(t)
√
⌊Texp/(t+ toh)⌋. (17)

L(t) is plotted for Texp = 3600 s and for various values of
toh in Fig. 13. Typically, toh is 30–60 s, for which we find
an optimum REMPD duration of ∼ 100 s. In this case,
we find from Fig. 12 that about 35 % of the HD+ ions are
dissociated. We point out that this is much larger than
the 1–2 % measurement noise observed by Koelemeij et

al. [27]. A spectral lineshape consisting of at least twenty
data points may therefore be obtained with a good signal-
to-noise ratio within the course of one hour.

Figure 13. (Color online) Figure-of-merit function L as a
function of REMPD duration t, and for various values of the
overhead toh. Texp = 3600 s. Black curve, toh = 10 s ; red
curve, toh = 30 s ; blue curve, toh = 60 s. In all cases, the
optimum REMPD duration is near 100 s.

VI. CONCLUSION

We have shown that Doppler-free signals can be
observed on trapped HD+ ions by nearly-degenerate
two-photon spectroscopy, taking advantage of a quasi-
harmonic three-level ladder in the rovibrational spec-
trum. The suppression of the Doppler effect, due to an
effective Lamb-Dicke regime with respect to the simulta-
neous absorption of counterpropagating photons, opens
the way to high-resolution spectroscopy at the natural
width limit. Numerical simulations of the REMPD signal,
taking into account saturation effects, realistic ion trajec-
tories and laser phase noise, allowed us to determine the
optimal laser detunings, which are slightly larger than
the single-photon Doppler width. In this large-detuning
limit, the population of the intermediate state may be ne-
glected, and a simplified model of the two-photon transi-
tion rate was shown to be in excellent agreement with our
numerical results. Finally, blackbody radiation (BBR) re-
distribution among rovibrational and hyperfine levels was
taken into account to get realistic estimates of experimen-
tal signal strengths.

With the parameters used in the paper, the predicted
linewidth of 350 Hz is dominated by power broadening.
It may be reduced to about 100 Hz by using lower inten-
sities, at the cost of a slight diminution of the signal-to-
noise ratio. The line center may eventually be determined
with about 5 Hz accuracy, corresponding to a relative
accuracy of 1 × 10−14. Other systematic effects such as
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quadrupolar shifts, light shifts by cooling and dissocia-
tion lasers, BBR shifts, Stark shifts due to stray electric
fields and AC Zeeman shifts are estimated to be below
10−15, as discussed in a recent study [53].
Potential applications of the proposed spectroscopic

method include improved tests of QED [19, 20], an im-
proved determination of the proton-to-electron mass ra-
tio [22, 23], as well as studies of its time variation [24]
and searches for possible fifth forces [33].
For the rovibrational levels of HD+ selected in this

study, the mismatch of the intermediate state is only
0.2% of the one-photon frequency, leading to a long ef-
fective wavelength λeff = 0.7 mm. It is worth noting
that the effective Lamb-Dicke regime could still be rea-
ched with significantly higher frequency mismatch, pos-
sibly up to 10% for excitation wavelengths in the mi-
cron range (λeff ∼ 10 µm). This means that the propo-
sed method has potential for application to many other
molecular (or even atomic) ions, since the existence of
such quasi-coincidences is quite probable in a rich ro-
vibrational spectrum characterized by a quasi-harmonic
vibrational ladder. In the case of HD+, two other pro-
mising transitions are worth pointing out : (v=0, L=3
to v = 12, L = 3 via v = 5, L = 2 with wavelengths near
1.18 µm, and v=0, L=4 to v=16, L=4 via v=6, L=3
near 1.01 µm [35]. Finally, the proposed method could
also be extended to multiphoton transitions in a confi-
guration where the laser wavevectors nearly add up to
zero [54].

Annexe A: HD+ Zeeman effect

As discussed in Sec. II, it is preferable to address si-
multaneously all Zeeman components of the two-photon
transition in order to get sufficiently large signals. In the
Amsterdam experiment, a static B-field is used to de-
fine a quantization axis and cool Be+ ions with a single
circularly polarized laser beam [34]. Experimental inves-
tigation showed that the minimal B-field value that still
enables efficient cooling is about 0.02 G. The Zeeman
splitting of the two-photon transition in such a field thus
sets a lower limit for the width of the lineshape, which
may be broadened as required by control of Γdiss and the
linewidth of the excitation lasers. It is therefore desirable
to select a hyperfine component having a low Zeeman ef-

fect in order to minimize line broadening and maximize
the two-photon transition rate for a given laser intensity.
In view of this, It is important to evaluate the Zeeman
splitting of the (v = 0, L = 3) → (v = 9, L = 3) two-
photon transition with account of the hyperfine struc-
ture, so as to (i) select the most promising hyperfine com-
ponent, and (ii) determine the optimal dissociation rate
and laser linewidth accordingly.

Following the approach of Ref. [52], we write the effec-
tive spin Hamiltonian for an HD+ ion in a rovibrational
state (v, L), with an external magnetic field B oriented
along the z axis :

Htot
eff = Hhfs

eff + E10(L·B) (A1)

+E11(Sp ·B) + E12(Sd ·B) + E13(Se ·B),

where Hhfs
eff is the effective spin Hamiltonian in the ab-

sence of magnetic field derived in [38], and

E10 = −µB

∑
i

Zime

mi

⟨vL||L||vL⟩√
L(L+ 1)(2L+ 1)

(A2a)

E11 = − eµp

mpc
= −4.257 7 kHz G−1 (A2b)

E12 = − eµd

2mdc
= −0.653 9 kHz G−1 (A2c)

E13 =
eµe

mec
= 2.802 495 3MHz G−1 (A2d)

where 2010 CODATA values of fundamental constants
were used. The value of E10 is calculated using nonrela-
tivistic variational wavefunctions [55]. We obtain E10 =
−0.557 92 kHz G−1 for the (v = 0, L = 3) level, in agree-
ment with Table 1 of [52], and E10 = −0.502 81 kHz G−1

for the (v = 9, L = 3) level.
In the presence of a magnetic field, the hyperfine states

of HD+ labeled with F , S and J (see Sec. II), are split
into sub-levels distinguished by the quantum number
MJ . We diagonalize the Hamiltonian (A2) for MJ = ±J
and B = 0.02 G, in order to obtain the Zeeman shifts
∆EvLFSJMJ = EvLFSJMJ (B) − EvLFSJMJ (0). Results
are given in Table I.

It appears that some of the hyperfine components
connecting homologous spin states (i.e. states with the
same (F, S, J)) benefit from a strong cancellation of Zee-
man shifts. This occurs for (F, S, J) = (1, 1, 4), (1, 2, 5)
and (1, 2, 1) where the Zeeman splitting is respectively of
31.3, 6.6, and 4.5 Hz at 0.02 G. In the last two cases, the
Zeeman structure is hidden within the natural linewidth
of the transition and will not limit the resolution in any
way. The most favorable component is (F, S, J) = (1, 2, 5)
since this hyperfine level has the highest population, al-
lowing to get a stronger REMPD signal. There is only
one dipole-allowed intermediate level for the two-photon

transition, namely the (v = 4, L = 2), (F, S, J) = (1, 2, 4)
level, so that the three-level approximation introduced in
Sec. II is well-justified in this case.

Annexe B: Trapped ion dynamics

In order to get a realistic description of the sympathe-
tically cooled HD+ ion velocities, we use a home-made
simulation code taking into account the time-dependent
trapping force, the Coulomb interaction and the laser co-
oling process (recoil due to absorption and emission of
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(F, S) = (0, 1) (1, 0) (1, 1) (1, 2)

v L J = 4 J = 3 J = 2 J = 3 J = 4 J = 3 J = 2 J = 5 J = 4 J = 3 J = 2 J = 1

0 3 6.8549 3.8100 -0.1054 17.8049 -18.0662 -18.6888 16.9358 -27.9358 -22.2457 -16.7916 -7.4441 14.0003

-6.8564 -3.8111 0.1047 -17.8098 18.0652 18.6893 -16.9470 27.9358 22.2423 16.7889 7.4388 -14.0137

9 3 6.1161 2.9767 -0.9929 14.5500 -18.0820 -16.3205 15.6554 -27.9391 -21.5026 -15.0863 -5.2879 13.9928

-6.1179 -2.9776 0.9928 -14.5592 18.0807 16.3231 -15.6716 27.9391 21.4959 15.0801 5.2771 -14.0167

Table I. Zeeman shift of the magnetic sublevels MJ = −J (upper line) and MJ = J (lower line) in a 0.02 G field (in kHz),
for all hyperfine sublevels (F, S, J) of the rovibrational states involved in the two-photon transition under study. The most
Zeeman-insensitive transitions are highlighted by bold characters.

individual photons) [56, 57]. The laser-cooled ions are
described as two-level atomic systems with a transition
width ΓBe+ = 19.4 MHz.
We assume a perfect linear quadrupolar Paul trap geo-

metry with r0 = 3.5 mm. The RF frequency ΩRF is
2π × 13.3 MHz and the RF voltage amplitude is V0 =
270 V. The stability parameter for the radial confinement
is q = 0.2 for HD+ and 0.067 for 9Be+. A harmonic axial
static potential provides axial confinement, with a trap
frequency ωz/2π = 100 kHz for Be+ ions and 173 kHz
for HD+ ions. The Coulomb interaction between the ions,
which is responsible for the sympathetic cooling, is taken
into account without any approximations.
The Newton equations of motion are numerically in-

tegrated using a fixed step leap-frog algorithm [58]. The
time step δt = 2× 10−10 s is chosen short enough to well
represent the RF field, Coulomb collisions and laser ab-
sorption/emission cycles and to get converged results for
simulation times up to 20 ms.
The laser interaction is described in terms of absorp-

tion, spontaneous or stimulated emission processes, thus
including saturation effects. The laser beam has a wave-
length λ = 313.13 nm and a TEM00 Gaussian profile with
a waist w0 = 1 mm much larger than the ion cloud size. It
is assumed to be perfectly aligned with the trap axis. The
laser intensity I and laser detuning δL are chosen close to
optimal cooling conditions (δL = −ΓBe+ , and I = Isat/2
where Isat is the saturation intensity). At each time step,
and for each laser-cooled ion in the ground state, the
absorption probability is evaluated at the ion location
and compared to a uniform random number generator
between 0 and 1. In case an absorption occurs, the ion
velocity is altered by a kick ~k/m where k is the photon
wave vector. For laser-cooled ions in the excited state,
the spontaneous (stimulated) emission is treated in a si-
milar way but with a ~k/m velocity kick with a uniformly
randomized direction (a −~k/m velocity kick) [57, 59].
A simulation is run in the following way. Ion position

and velocities are randomized in a cylindrical volume
around the trap center with a temperature T ≈ 10 K. Du-
ring the first 0.2 ms of the simulation, a huge drag force is
applied to reach the Coulomb crystal regime where each
ion oscillates around an equilibrium position. Then, the
laser interaction is turned on and the ion cloud relaxes to
its equilibrium temperature which is usually reached after
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Figure 14. Typical axial trajectories around their equilibrium
position for 20 sympathetically cooled HD+ ions in a 400 Be+

ions Coulomb crystal. Laser cooling conditions : detuning
δL = −ΓBe+ , saturation parameter I/Isat = 1.5.

0.8 ms. Ion positions and velocities, mean secular kinetic
energies, potential and Coulomb energies are periodically
stored with a period of 4 × 10−8 s. With a pure sample
of laser-cooled ions, we have checked that the ion cloud
equilibrium temperature corresponds to the Doppler li-
mit kBT = ~ΓBe+/2 in the optimal cooling conditions.

Figure 14 shows typical axial (z-axis) trajectories for
20 HD+ ions that are sympathetically cooled by 400 Be+

ions. The ions are nearly equally spaced and shifted in
the direction of the incoming Be+ cooling laser. The axial
motion amplitude is in the µm range and the maximum
axial velocities are of the order of 5 m/s. This gives a
maximum Doppler effect v/λ ≈ 3.5 MHz at the wave-
length of the two-photon excitation lasers λ = 1.44 µm.
The Doppler shift is larger than the oscillation frequen-
cies, indicating that in the ion rest frame, the ions see
motional sidebands with high modulation indexes. Fi-
gure 15 shows the axial velocity spectrum for each ion.
Depending on the ion position within the cloud, the ion
motion can be close to a pure harmonic motion or have a
complex spectrum. This explains why the REMPD signal
has to be averaged over the different ion trajectories.
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Figure 15. Spectrum of the velocity amplitudes obtained by
FFT from the trajectories shown in Fig. 14. Horizontal scale
is in MHz, vertical scale is in m/s/

√
Hz.

Annexe C: Two-photon transition probability

We here consider a trapped particle with a three-level
internal structure, undergoing one-dimensional harmo-
nic motion at frequency Ωvibr. The external degree of
freedom is described quantum-mechanically and labelled
by the vibrational quantum number n. Following time-
dependent second order perturbation theory, the two-
photon transition rate between states |1, n1⟩ and |3, n3⟩
is given by

Γ2ph =

∣∣∣∣∣
∞∑

n2=0

Ω12Ω23 < n3|e−ik′z|n2 >< n2|eikz|n1 >

(δ12 − iΓ2

2 + (n1 − n2)Ωvibr)

∣∣∣∣∣
2

× Γeff
3

(δ13 + (n1 − n3)Ωvibr)2 +
(Γeff

3 )2

4

. (C1)

Assuming the detuning δ12 is much larger than both the
intermediate level width and the vibration frequency, and
summing over n2, the first term in Eq. (C1) can be sim-
plified leading to

Γ2ph =

∣∣Ω12Ω23 < n3|eiδk z|n1 >
∣∣2

δ212

× Γeff
3

(δ13 + (n1 − n3)Ωvibr)2 +
(Γeff

3 )2

4

. (C2)

The denominator of the second factor shows that the two-
photon transition probability exhibits sidebands separa-
ted by Ωvibr. The amplitudes of the sidebands are given
by the matrix element < n3|eiδk z|n1 > [60–62] with

∣∣∣< n+ s|eiη(a+a†)|n >
∣∣∣ = e−η2/2η|s|

√
n<!

n >!
L|s|
n<

(η2),

(C3)

where n< and n> are the lesser and greater of n and
n + s, and η = δk

√
~/(2 mΩvibr). Ls

n are the genera-

lized Laguerre polynomials, and a, a† are the creation
and annihilation operators associated with the harmo-
nic confinement. In the Lamb-Dicke regime where the
oscillation amplitude is much smaller than the effective
wavelength 2π/δk, this matrix element is ≈ δn1,n3 and
the two-photon rate further simplifies to

Γ2ph =
Ω2

12Ω
2
23

δ212

Γeff
3

δ213 +
(Γeff

3 )2

4

. (C4)

On two-photon resonance where δ13 = 0, it is given by

Γ2ph =
Ω2

12Ω
2
23

δ212

4

Γeff
3

. (C5)

Annexe D: Laser phase noise simulation

In this Appendix, we describe the phase noise genera-
tor we have implemented to simulate the laser Lorent-
zian lineshape. Let f(t) denote the instantaneous laser
frequency, and δf the laser frequency noise. It is linked

to the laser phase noise by δf = 1
2π

dφ(t)
dt . Laser phase

noise φ(t) is usually depicted as a centered stationary
Gaussian process with a white frequency noise (single si-
ded) spectral density Sδf (ω) in a bandwith 2πB [46]. The
variance of the laser frequency noise is given by ⟨(δf)2⟩ =
BSδf (ω). The laser linewidth ∆FWHM is defined by the
full width at half maximum of the hypothetical beat note
spectrum of the laser with a perfect noiseless laser. It
can be expressed in an integral form as a function of
Sδf (ω) [46]. If ⟨(δf)2⟩ ≪ B2, the lineshape is Lorentzian
with ∆FWHM = πSδf (ω). If ⟨(δf)2⟩ ≫ B2, the lineshape

is Gaussian with ∆FWHM = 2
√
2 ln 2

√
SδfB. For inter-

mediate cases, the linewidth was evaluated by numerical
computation of an integral leading to an empirical inter-
polating formula [47]

∆FWHM = Sδf

√
8 ln 2 B/Sδf(

1 + 8 ln 2
π2

B
Sδf

)1/4
. (D1)

The frequency noise and phase noise spectral densi-

ties are linked by Sδf (ω) =
(

ω
2π

)2
Sφ(ω) so a white fre-

quency noise in a bandwidth B corresponds to a 1/ω2

phase noise spectral density with 0 < ω ≤ 2πB. The
Wiener-Khintchin theorem states that Sφ(ω) = |φ̃(ω)|2
where φ̃ is the Fourier transform of φ(t). Therefore, the
desired laser phase noise can be obtained by randomly
generating the Fourier components φ̃(ω) and performing
an inverse fast Fourier transform.

The discretization is done in the following way. The si-
mulation duration T and the integration time step δt sets
the number N = T/δt of φ values φj = φ(jδt). It also
sets the maximum Fourier frequency fmax = 1/2δt and
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Figure 16. (a) Histogram of the instantaneous frequency f(t)
at time t = 0 for 2000 realizations of the phase noise. (b) a
single realization of φ(t). (c) Black : Averaged laser lineshape
for the 2000 phase noise realizations. Red : Lorentzian fit.

the frequency resolution 1/T . The corresponding Fou-
rier frequencies and discretized Fourier components are
ωj = 2πj/T and φ̃j with −N/2 ≤ j ≤ N/2. The maxi-
mum Fourier frequency has to be larger than the noise
bandwidth, i.e. B < δt/2. The phase noise discretized
Fourier components are randomly generated following
φ̃(ωj) =

K
ωj
eiϕj for 0 < j ≤ BT and set to 0 for j = 0 and

BT < j ≤ N/2. Since the phase noise is a real process,
the negative frequency Fourier components are equal to
the positive ones hence φ̃−j = φ̃∗

j . To generate a ran-
dom phase noise, the complex argument of the Fourier
components ϕj is uniformly randomized between 0 and
2π. The noise level K is linked to the variance of the la-
ser frequency noise by K =

√
Sδffmax. Finally, the FFT

of the phase noise components is computed using the
fftw3 FORTRAN subroutine library to obtain the time-
dependent phase noise that is used by the OBE numerical
solver.
Figure 16(a) shows the histogram of the instanta-

neous frequency f(t) obtained for 2000 realizations of
the noise process with T = 0.5 s, δt = 4 × 10−7 s,
Sδf = 5000 Hz2/Hz and B = 100 kHz. A Gaussian fit

gives a 22.8 kHz standard deviation in agreement with√
SδfB = 22.4 kHz. Figure 16(b) shows a realization

of φ(t) and Fig. 16(c) shows the average lineshape of
the beatnote. The Lorentzian width is 15.7 kHz in per-
fect agreement with πSδf . We have varied the frequency
noise spectral density Sδf from 10 to 106 Hz2/Hz and de-
termined the FWHM of the line. Figure 17 shows that
it follows the empirical formula and thus the expected
linewidth behavior.

Finally, to generate laser phase noise with a Lorentzian
lineshape, one has to fulfill the conditions B ≫ 6Sδf and
choose Sδf = ∆FWHM/π, so the noise bandwidth must
obey B ≫ 6/π∆FWHM.
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Figure 17. Comparison of the laser FWHM (crosses) with
the empirical formula (dashed line) given in Eq. (D1).
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