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Abstract. This paper proposes a novel method to detect objects by
a mobile robot which adapts to an environment. Such a robot would
help human designers of a smart environment to recognize objects in the
environment with their attributes, which significantly facilitates his/her
design. We first introduce Lifting Complex Wavelet Transform (LCWT)
which plays an important role in this work. Since the LCWT has a set
of controllable free parameters, we can design the LCWTs with various
properties by tuning their parameters. In this paper we construct a set
of LCWTs so that they can extract local features from an image by
multi-scale. The extracted local features must be robust against several
kinds of changes of the image such as shift, scale and rotation. Our
method can design these LCWTs by selecting their parameters so that
the mobile robot adapts to the environment. Applying the new set of
LCWTs to the images captured by the mobile robot in the environment,
a local feature database can be constructed. By using this database, we
implement an object detection system based on LCWTs on the mobile
robot. Effectiveness of our method is demonstrated by several test results
using the mobile robot.

Keywords: adaptive object detection, keypoint detection, on-board robot
vision, visual words, lifting complex wavelet transforms

1 Introduction

Recognizing objects in an environment with their attributes is an important
first task for a designer of a smart environment. The task has been traditionally
resolved by the designer manually, posing a considerable burden to him/her.
Especially, it is necessary to estimate state attributes concerned with people
and objects within the environment. These state attributes can be discriminative
properties of the objects and the people, e.g., the object is still or moving, the
person is walking or sitting. Typical conventional systems for ambient intelligence
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have been developed with the sophisticated sensing technologies [5] with various
sensors embedded in objects and clothing of people in the environment. We have
witnessed a significant progress of autonomous mobile robots in these years [4],
[7]. It is natural to use such a robot to fulfill the recognition task.

In this paper, we argue that the adaptation to the environment of the mobile
robot is the key to success. Our mobile robot acquires a set of local features
from images captured in the environments. A local feature is defined as an image
pattern which differs from its immediate neighborhood, e.g. corners, blobs, edges
[12]. Generally a lot of various local features can be extracted from an image
including several objects. Our adaptation significantly reduces the computation
time of the robot so that it operates in real time.

Our approach is to detect objects using Content Based Image Retrieval
(CBIR) [10], which is to judge whether an object is known or unknown by
whether a similar image exists in a database. So far visual features such as color,
shape and textures of images, have been used in the CBIR systems. The most
studied topic the CBIR at present is to extract local features such as SIFT [6] and
SURF [1]. Although it has become possible to run SIFT and SURF algorithm
on an ordinary PC, it is still required to develop faster method for extracting
local features for onboard root vision. The paper [7] also proposed a method for
object recognition by a mobile robot. However, since this method assumes smart
objects equipped with wireless sensors, it is time consuming and cannot be used
when a wireless sensor network is unavailable.

Our object detection is based on Lifting Complex Wavelet Transform (LCWT)
[11], which is complex wavelet transform (CWT) [3] with controllable free param-
eters. We call them lifting parameters. The LCWTs within the lifting parameters
can be adjusted so as to adapt to the environment. This means that our robots
can acquire the local features efficiently since the LCWT can be trained so as
to increase the useful local features for the object detection in number and to
reduce the other features.

In the paper [11] we have introduced a set of LCWTs which can extract
multi-scale features of the image. They are comparable to Difference of Gaussian
(DoG) images which are used to extract SIFT features. By virtue of a fast
wavelet transform algorithm, our LCWT can be computed faster than the DoG
images computed by applying 2D Gaussian filters. Moreover, we can reduce
the computation of local features in each scale. The reason is that because we
only compute multi-scale components of the LCWT in the case in which the
first components are greater than a specified threshold, which are obtained by
applying the initial CWT to the image. The LCWT components in each scale can
be easily computed by adding lifting terms, which include the lifting parameters,
to the initial CWT components.

Using the multi-scale LCWT components we can detect keypoints which are
robust for several kinds of changes of the image. Our method obtains a feature
vector of 128 dimension in each keypoint of the image, which are computed by
using the oriented gradients around it. In order to build our CBIR system, we
extract all feature vectors from training images captured by the mobile robot,
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and then cluster these vectors to form a vocabulary of visual words [9]. More
recent works [8] successfully used k-means clustering but has difficulty in con-
trolling the number of clusters. In this paper we use ε-mean clustering [2] to the
set of feature vectors. Selecting ε parameter, we can tune the number of clusters
which represent visual words. We expect that our CBIR system can retrieve sim-
ilar images accurately as the entropy of the distribution of the feature vectors
increases. Therefore we determine the lifting parameters so as to increase this
entropy. Concretely we propose an algorithm for increasing the entropy based
on genetic algorithm. The main contribution of our method is that the LCWTs
can be designed so as to adapt to the environment for the mobile robot.

The outline of this paper is as follows. In Section 2, we give an overview of
our adaptive object detection through CBIR using LCWT, and our robot archi-
tecture. Section 3 summarizes the LCWT and the multi-scale feature extraction.
Section 4 presents algorithms for detecting and clustering of the keypoints in im-
ages, which are used in our CBIR system based on the LCWT, and shows how we
design the adaptive LCWT to an environment. Section 5 contains experimental
results. Concluding remarks and future work are given in Section 6.

2 Adaptive object detection for on-board robot vision

2.1 Adaptive object detection

As noted above, our goal is to detect objects by a mobile robot adapting to the
environment. We design the LCWTs so as to adapt to images captured in the
indoor environment. We first apply the LCWTs to the training images, and then
obtain the feature vectors. We next build the visual vocabulary by applying the
ε-means clustering to the set of feature vectors.

The visual vocabulary can be evaluated by the entropy of distribution of these
vectors. We train the LCWTs by the evolutionary algorithm so as to increase
this evaluation. By using the trained LCWT our robot can extract the existing
or new object in the indoor environment. Figure 1 illustrates an overview of our
adaptive object detection.

2.2 Robot architecture

Our robot moves in an indoor environment by two wheels and a supporting ball,
and is equipped with a USB camera and an IR sensor. Since this camera and
sensor can rotate from the left-hand side to the right-hand side and up and down
by using three servos, our robot can capture images and measure the distance
to obstacles in the area in front of the robot.

Our on-board robot vision is implemented on the Pandaboard, which is driven
by the dual-core ARM Cortex-A9 OMAP4430, with each core running at 1 GHz,
and equipped with 1 GB DDR2 RAM. A captured frame is in resolution of
320 × 240, and color depth of monochrome 8bit. The functions of robot vision
can be operated on a Linux OS installed on the Pandaboard. Our mobile robot
is shown in Fig.2.
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Fig. 1. Overview of adaptive object detection

3 Multi-scale feature extraction

In order to detect an object by robot vision, it is necessary to extract features
fast from video frames captured by the mobile robot. This section introduces
the LCWT [11] to extract multi-scale features of an image. The LCWT has
controllable free parameters. We prepare a set of these lifting parameters for a
multi-scale analysis of the image. Applying our LCWT to the video frames, we
can obtain their multi-scale features fast.

3.1 Lifting Complex Wavelet Transform (LCWT)

Let us denote a set of complex wavelet filters by {ho,r
k , go,r

k , ho,i
k , go,i

k } where h
and g are lowpass and highpass filters, respectively. The superscript o means the
initial filter, and r and i indicate that the corresponding filter are to obtain real
and imaginary parts, respectively. Here we define a set of lifting complex wavelet
filters {hr

k, gr
k, hi

k, gi
k} as follows:

hr
k = ho,r

k ,

gr
k = go,r

k −
∑
m

smho,r
k−m,

hi
k = ho,i

k ,

gi
k = go,i

k −
∑
m

smho,i
k−m,

(1)

where s represents the lifting parameters.
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Fig. 2. Our robot.

Applying the lifting complex wavelet filters to image C1
i,j in row and column

directions, we can obtain four components RR, RI, IR and II. In case of the
RR, their LWTs are computed as follows:

C0
i,j =

∑
k,l

hr
khr

l C
1
2i+k,2j+l,

D0
i,j =

∑
k,l

hr
kgr

l C1
2i+k,2j+l,

E0
i,j =

∑
k,l

gr
khr

l C
1
2i+k,2j+l,

F 0
i,j =

∑
k,l

gr
kgr

l C1
2i+k,2j+l.

Since the filter gr includes the lifting parameters, we can rewrite the above LWTs
as

C0
i,j = Ĉ0

i,j ,

D0
i,j = D̂0

i,j −
∑
m

smĈ0
i,j+m,

E0
i,j = Ê0

i,j −
∑
m

smĈ0
i+m,j ,

F 0
i,j = F̂ 0

i,j −
∑
m

smD̂0
i+m,j

−
∑
m

smÊ0
i,j+m +

∑
m,m′

smsm′Ĉ0
i+m,j+m′ ,

where Ĉ0, D̂0, Ê0 and F̂ 0 are lowpass and three types of highpass components
obtained by applying the initial filters to the input image C1.
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Similarly we can compute the LWTs in case of the RI, IR and II. The
highpass components of six orientations can be computed by the combination of
the RR, IR, IR and II [3].

Rei,j =
√

RR2
i,j + II2

i,j , (2)

Imi,j =
√

RI2
i,j + IR2

i,j , (3)

where Rei,j and Imi,j have each of 3 highpass components which differ in the
feature of orientation. The paper [3] has shown that the robust features to the
change of shift and rotation can be extracted by combining these components
of the CWT. Finally we can obtain the robust features H0

i,j to the shift and
rotation by summing these six highpass components of Rei,j and Imi,j . In Fig.
3, we show an example of features obtained with LCWT.

(a) (b)

(c) (d)

Fig. 3. An example of features obtained with LCWT: (a) input image, (b) LCWT of
real parts, (c) LCWT of imaginary parts and (d) highpass components of LCWT

By iteratively applying the LCWT to the obtained each lowpass components
C0 in RR, RI, IR and II, a multi-resolution analysis can be conducted in the
same way as the conventional wavelet transform. Therefore, we can obtain the
lifting highpass components in each of resolutions Ht

i,j , t = 0,−1, · · · by using
the LCWT, where t is an index that implies the resolution level.
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3.2 Multi-scale analysis using LCWT

We must determine the parameters sm in the LCWTs described in the previous
subsection. In this paper we compute the set of the parameters so that the
LCWT can extract the multi-scale local features of an image. We first determine
the length of a lifting parameter. Concretely, we use the property that the length
of the lifting highpass filters (1) depending on the length of the parameters sm.
As the initial filters we use the complex wavelet filters proposed in [3]. In order
to extract multi-scale local features from images, we introduce the following four
kinds of parameters as

s(1)
m , −1 ≤ m ≤ 1,

s(2)
m , −2 ≤ m ≤ 2,

s(3)
m , −4 ≤ m ≤ 4,

s(4)
m , −8 ≤ m ≤ 8.

Using the parameters s
(σ)
m (σ = 1, · · · , 4), we can construct four sets of the

lifting complex wavelet filters {hr
k, gσ,r

k , hi
k, gσ,i

k }. The new highpass filters gσ,r

and gσ,i can be written as

gσ,r
k = go,r

k −
∑
m

s(σ)ho,r
k−2m, σ = 1, · · · , 4,

gσ,i
k = go,i

k −
∑
m

s(σ)ho,i
k−2m, σ = 1, · · · , 4.

In the next section, we will propose a method to determine the lifting param-
eters for adaptive object detection. In this section, each of the lifting parameters
has the random value from −1 to 1 except for m = 0. Using s

(σ)
0 (σ = 1, · · · , 4),

we tune the new highpass filters so as to satisfy the following conditions.∑
k

gσ,r
k = 0,

∑
k

gσ,i
k = 0, σ = 1, · · · , 4.

We assume that these highpass filters can extract the multi-scale features from
an image.

4 Adaptive object detection using LCWT

By tuning the lifting parameters, we can construct the LCWTs with various
properties. In this paper, we concentrate to design the LCWT which can detect
the local features from an image. We first introduce a keypoint detection algo-
rithm using the LCWT. Each of the detected keypoints has a 128 dimensional
vector each of which represents a feature based on the oriented gradients around
it.
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4.1 Keypoint detection and description by LCWT

As mentioned above, we can obtain the lifting highpass images Ht,σ
i,j , t = 0, · · · ,−2,

σ = 1, · · · , 4, where t and σ represent the multi-level parameter and the mutli-
scale parameter, respectively. We first extract the target point (i, j) as the can-
didate keypoints, if Ht,σ

i,j is a local maximum or a minimum around the target
point (i, j). The extracted candidate keypoints include a lot of unstable points.
We therefore eliminate such unstable points which have low contrast or are
poorly localized along an edge.

First, for each of the candidates, an interpolation of the nearby data [6] is
used to accurately determine its position. The interpolation of nearby data is
done by using the following Taylor expansion of the lifting highpass images

H(x) = H +
∂H

∂x
x +

1
2
xT ∂H

∂x
x, (4)

where H and its derivatives are evaluated at the candidate keypoint (i, j), and
x = (y, x, σ) is the offset from this point. We can obtain the subpixel keypoint
position by computing the extremum of (4). If the location of the extremum x̂ is
larger than 0.5 in any dimension, the extremum lies closer to the other candidate
keypoints. In this case, we reject this target keypoint. Otherwise the offset x̂ is
added to its candidate keypoint to detect the subpixel keypoint position. Here
if H(x) at the subpixel position is lower than a specified threshold, then we also
reject this point due to its low contrast.

Next step, we estimate whether the remaining points are corners. The lifting
highpass images will have large values along edges even if the candidate key-
point is not robust for noise. Therefore, we eliminate the candidates keypoints
on edges of which positions are imprecise. For imprecise peaks in the lifting high-
pass image, the principal curvature across the edge would be much larger than
the principal curvature along it. These principal curvatures can be obtained as
eigenvalues of the Hessian matrix of the lifting highpass image, by the same
approach as SIFT [6]. The final keypoints are selected by performing the above
localization process to the candidate keypoints. Figure 4 illustrates examples of
the detected keypoints by the LCWT.

We extract local features at each of positions of the selected keypoints. In
this subsection, we compute a descriptor vector for each keypoint. First, each
keypoint is assigned orientations based on local image gradient directions. The
magnitude and direction calculations for the gradient are done for every pixel in
a neighboring region around the keypoint in the lowpass components.

m(u, v) =
√

fu(u, v)2 + fv(u, v)2, (5)

θ(u, v) = tan−1

(
fu(u, v)
fv(u, v)

)
, (6)

where

fu(u, v) = Ct
u+1,v − Ct

u−1,v,

fv(u, v) = Ct
u,v+1 − Ct

u,v−1,
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Fig. 4. Example of detected keypoints by LCWT

where Ct
u,v is a mean of the lowpass component in (2) and (3) of resolution level

t.
We make an orientation histogram with 36 bins, each bin covering 10 degrees.

Each sample in the neighboring window added to a histogram bin is weighted
by its gradient magnitude.

The window size depends on the length of the lifting highpass filters corre-
sponding to the scale of the target keypoint. The peaks in this histogram can
be regarded as principal orientations. We therefore assign the peaks of this his-
togram to the keypoint.

Here a descriptor vector is computed based on the magnitudes and orienta-
tions which are sampled around the keypoint location by (5) and (6). In order to
achieve orientation invariance, the coordinates of the descriptor and the gradient
orientations are rotated relative to the orientation assigned at the keypoint. In
each of 4 × 4 subregions of the region around the keypoint, the histogram with
8 orientation bins is created. Since there are 4 × 4 = 16 histograms each with 8
bins the vector has 128 elements. Finally the obtained vector is normalized to
unit length in order to enhance invariance to affine changes in illumination.

4.2 Lifting parameters for object detection

In our previous work [11], the lifting parameters are computed by using training
images to be the desired response in each of levels and scales. This paper deter-
mines the effective lifting parameters for the object detection. We first prepare
a set of training images which are captured by our mobile robot in an office.
Applying the LCWT to these training images, we can obtain a set of feature
vectors in the keypoints of all images. Using ε-means clustering [2], these feature
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vectors are classified into each cluster in which the Euclidean distance between
any pair of feature vectors does not exceed a threshold ε. A pseudo code of the
ε-means clustering is shown in Algorithm 1.

Algorithm 1 ε-means clustering
1 Input: ε, a threshold
2 Output: C, the result of clustering
3 C = ∅
4 for t = 1 to NT

5 i(t) = argmincj∈C{d(xt, cj)}
6 if (d(xt, ci) > ε) then C ← C ∪ (xt, 1)
7 else Ni + +
8 end if
9 end for

The result of the ε-means clustering is evaluated by the entropy of the dis-
tribution.

−
∑

k

p(k) log p(k).

Here p(k) is a normalized distribution in the cluster k, which can be computed
as p(k) = Nk/NT , where Nk is the number of keypoints in the cluster k, and NT

is the number of all keypoints of the training images.
We wish to determine the lifting parameters so as to increase the entropy of

the distribution. We propose an algorithm for determining the lifting parameters
based on the Genetic Algorithm (GA). In this paper, a set of the lifting param-
eters s(σ) (σ = 1, · · · , 4) corresponds to an individual in GA, and is denoted
with a binary array. We first choose the initial population of individuals. The
initial lifting parameters are generated randomly by a method described in the
previous subsection. We extract each distribution of feature vectors obtained by
applying the LCWT with the set of parameters to the training images. Next, we
evaluate the entropy of each distribution in that population. Here we repeat the
following steps until a specified generation number Ng is reached.
1. Select the best-fit lifting parameters for reproduction.
2. Breed new lifting parameters through crossover and mutation operations (mu-
tation probability Pm = 0.01).
3. Extract each set of feature vectors by applying new LCWTs to the training
images.
4. Evaluate each entropy of the distribution obtained by using each of new
LCWTs.
5. Replace least-fit population with new lifting parameters.
We show a pseudo code of the proposed algorithm in Algorithm 2.
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Algorithm 2 Determining the lifting parameters based on the GA
1 Input: P, an initial set of lifting parameters, Pm, mutation probability
2 Output: the best lifting parameters in P
3 for i = 1 to Ng

4 e← Evaluate(P)

5 P̃ ← ∅
6 for j = 1 to Size(P)
7 x← Selection(P, e)
8 y ← Selection(P, e)
9 z ← Crossover(x, y)

10 if ( Random(0, 1) < Pm ) then
11 z ← Mutate(z)
12 end if

13 P̃ ← z
14 end for

15 P = P̃
16 end for

In step 4 of Algorithm 2, we evaluate the result of clustering by using the
following estimation:

e =
−1

log K

K∑
k=1

p(k) log p(k),

where K is the number of clusters. We can avoid increasing the number of clusters
by virtue of this estimation.

4.3 Adaptive object detection algorithm

Recent works in object based image retrieval have been proposed using the
similarity of visual words [10]. We also make visual vocabulary for detecting the
existing objects in an indoor environment. Each cluster ci ∈ C represents a visual
word, which is generated by ε-means clustering in the previous section.

An image is represented as a bag of visual words by clustering each keypoint
feature into each visual word. In order to evaluate the similarity between an
input image Q and each of database images T , we use the following histogram
intersection [10].

S(Q,T ) =
K∑

k=1

min(hq(k), ht(k)),

where hq and ht are the distribution of the visual words corresponding to the
input image and each of the database images, respectively. Our adaptive object
detection judges whether existing or new objects by whether similar images exist
in the database. Our robot carries out the adaptively object detection online by
providing in advance that each set of LCWTs is trained in each of environment.
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5 Simulations

5.1 Clustering of keypoint features

We first prepared the training images in order to learn the set of LCWTs adapt-
ing to the indoor environment. The training images were captured by the robot
while our robot was moving around in the experimental room. A training image
is of size 320 × 240 pixels, and in color depth of monochrome 8bit. Since the
IR sensor of our robot can be rotated from the left-hand side to the right-hand
side, the robot can measure the distances between the robot and the obstacles
in the front, left and right directions. The robot moves so that their distances
do not exceed a set of corresponding thresholds, Tf = 300mm, Tl = 200mm and
Tr = 200mm. The robot therefore is expected to be able to avoid the obstacles
in the room. Our robot controller is shown in Algorithm 3.

Algorithm 3 Robot controller
1 Input: Tf , Tl and Tr, thresholds for obstacle avoidance
2 do
3 measure the distances dfront, dright and dleft

4 if (dfront > Tf ) then
5 if (dleft > Tl & dright > Tr) then
6 capture a frame and then go forward
7 else if (dleft < Tl & dright > Tr) then turn right
8 else if (dleft > Tl & dright < Tr) then turn left
9 else reverse

10 end if
11 else
12 if (dleft > Tl & dright > Tr) then
13 capture a frame and then reverse
14 else if (dleft < Tl & dright > Tr) then turn right
15 else if (dleft > Tl & dright < Tr) then turn left
16 else reverse
17 end if
18 end if
19 loop until (robot receives a stop command)

Here we built the visual words by using 132 training images which include
typical objects in the room. Figure 5 shows examples of the training images. We
performed the ε-means clustering with ε = 2.0 and trained the set of LCWT by
using the proposed algorithm explained in the previous section. The entropies
of the distribution of the feature vectors in the first generation and the 100th
generation were 5.75 and 6.15, and their numbers of clusters were 1128 and 1434,
respectively. In Fig. 6 (a) and (b), we illustrate the distributions in the first and
100th generations, and Fig. 6 (c) shows their cumulative density functions (cdf).
Figure 6 (c) indicates that the distribution obtained by using the trained LCWTs
is statistically close to the uniform distribution.
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Fig. 5. Examples of the training images

We computed the visual words on the laptop PC with Intel Core i7 M640
2.80Ghz, 8.0GB of RAM. The computational time in each generation was about
five minutes. This computational effort depends on the number of training images
because all keypoints are updated in each generation.

5.2 Adaptive object detection by a mobile robot

Adaptive object detection by a mobile robot can be performed on images cap-
tured by our robot controller (Algorithm 3). By using the visual words generated
in the previous subsection, we constructed the feature database from 3272 images
captured in the experimental room.

Our detection algorithm for onboard robot vision can be done within one
second by using the LCWTs trained in offline. Figure 7 shows examples of our
object detection using the initial and the trained LCWTs. Our method works
well for the CBIR effectively, since the target images are ranked higher by using
the trained LCWTs than by the initial LCWTs, as shown in Fig. 7. These
results indicate that our method can detect accurately the existing objects in
the room. However the highly detailed image (e.g. rank 3 of Fig. 7 (a)) with
many keypoints tends to be ranked higher than the expected target images. To
avoid such a problem, we must consider the precision and recall for evaluation
of CBIR, when the lifting parameters are computed.

6 Conclusion

We proposed a novel method for fast adaptive object detection for onboard robot
vision by using the LCWT. Our method can design the LCWTs so as to adapt
to the environment for a mobile robot. We clustered the feature vectors obtained
by applying the LCWTs into the visual words, and built the visual vocabulary.
In order to train the LCWTs we proposed the evolutionary algorithm so as to
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increase the entropy of distribution of these vectors. The experimental results
indicate that the LCWT can be trained not only to extract local features from the
image but also to retrieve the similar images from the database image accurately.
In the future we will propose an online algorithm for learning the LCWT.
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Fig. 6. Distribution of feature vectors
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Fig. 7. Experimental results


