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Abstract

We introduce a new scheme of finite volume type for barotropic Euler equations.
The numerical unknowns, namely densities and velocities, are defined on staggered
grids. The numerical fluxes are defined by using the framework of kinetic schemes.
We can consider general (convex) pressure laws. We justify that the density remains
non negative and the total physical entropy does not increase, under suitable stability
conditions. Performances of the scheme are illustrated through a set of numerical
experiments.

1 Introduction

This work is concerned with the numerical simulation of the following system of conservation
laws

∂tρ + ∂x(ρV ) = 0, (1.1)

∂t(ρV ) + ∂x(ρV 2 + p(ρ)) = 0. (1.2)

This is the Euler model for compressible fluids (in the absence of external forces) with
a barotropic equation of state: the pressure p(ρ) is a function of the density only. The
unknowns are the density ρ and the velocity V of the fluid. We restrict the discussion to the
one-dimension framework, but the ideas can be extended to higher dimensions. As a relevant
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specific case we can deal with isentropic flows for polytropic ideal gases where p(ρ) = kργ,
for some constants γ > 1 and k > 0.

We set U = (ρ, J = ρV ) and the system can be recast as

∂tU + ∂xF (U) = 0, with F (U) =
(
J ,

J 2

ρ
+ p(ρ)

)
.

Roughly speaking, given fixed time and (homogeneous) space steps δt, δx respectively, a
numerical scheme for this system reads

Uk+1
j − Uk

j +
δt

δx
(F k

j+1/2 − F k
j−1/2) = 0

and the cornerstone of the method relies on a suitable definition of the numerical flux F k
j+1/2

as a function of the numerical unknowns Uk
ℓ for certain values of ℓ, neighbouring the con-

sidered index j (say for a three points approximation flux Uk
j−1, Uk

j , Uk
j+1). We wish to

discuss numerical schemes based on the framework of the so–called Boltzmann schemes
[7, 8, 9, 25, 27, 29]. More precisely the system is seen as the limit ǫ → 0 of the following
BGK-like system

∂tf + ξ∂xf =
1

ǫ
(M [f ] − f)

in the spirit of hydrodynamic limits which allow to derive the Euler equations from the
Boltzmann (or BGK) equation, see e. g. [28]. Here, (t, x, ξ) 7→ f(t, x, ξ) is a vector valued
function, and the “Maxwellian” state ξ ∈ R 7→ M [f ](ξ) ∈ R

2 is a function of the auxiliary
variable ξ, which is parametrized by the zeroth moments of f in such a way that, denoting
(ρ, ρV ) =

∫
f dξ, we have

∫
M [f ] dξ = (ρ, ρV ),

∫
ξM [f ] dξ = (ρV, ρV 2 + p(ρ)).

Basically, the scheme works in two steps for solving the system of conservation laws: knowing
ρk, V k, approximation of density, velocity at the discrete time kδt

• First, solve
1

δt
(f ⋆ − fk) + ξ∂xfk = 0.

This is a mere linear transport equation.

• Second, project the solution to the equilibrium state

fk+1 = M [f ⋆]

the Maxwellian having the same zeroth moments as f ⋆.

In practice, we get rid of the extra velocity variable ξ by integrating the formula with respect
to ξ: it provides a schemes of Finite Volume type for updating ρk+1, V k+1. Precisely, by using
the basic upwind discretization in the convection step, the reasoning leads to the following
definition of numerical fluxes

F k
j+1/2 =

∫

ξ>0
ξMk

j dξ +
∫

ξ60
ξMk

j+1 dξ,
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where ξ 7→ Mk
j (ξ) stands for the Maxwellian state associated to the moments

Uk
j = (ρk

j , ρk
j V k

j ) =
∫

Mk
j dξ.

It is convenient to set F k
j+1/2 = F +(Uk

j ) + F −(Uk
j+1) with

F +(U) =
∫

ξ>0
ξM(ξ) dξ, F −(U) =

∫

ξ60
ξM(ξ) dξ. (1.3)

We refer the reader to [7, 8, 9, 25, 27, 29] for the design of such kinetic schemes in the context
of gas dynamics. The analysis of such schemes is thoroughly detailed in the textbooks
[4, 26]. In particular, the schemes can be reinterpreted by means of approximate Riemann
solvers, see [4, Section 2.5]. The consistency of the scheme is simply embodied into the
property F +(U) + F −(U) = F (U). The numerical analysis aims at exhibiting stability
conditions which, at least, preserves the natural positivity of the density ρ. Another crucial
issue is related to the behaviour of certain nonlinear functionals of the unknowns, the so–
called entropies: admissible solutions should dissipate these quantities. For kinetic schemes,
these properties are intimately connected to the design of the Maxwellian functions M . In
particular, preserving the positivity of the density makes appealing the choice of equilibrium
with compact support (with respect to the ξ variable). Dealing with isentropic flows for a
polytropic ideal gas (p(ρ) = kργ), it is possible to identify a convenient Maxwellian in order
to dissipate the natural “physical” entropy of the problem. It leads to solve a minimization
problem under constraints, but the effective computation relies strongly on the homogeneity
of the pressure law [3]. It is not clear how to apply the method when dealing with intricate
pressure laws, like the laws described e. g. in [18]. Furthermore, the resulting numerical
fluxes do not have in general an explicit expression by means of the numerical unknowns,
which might lead to practical difficulties (the case γ = 2 being a remarkable exception).

Here, we revisit the design of kinetic schemes for (1.1)–(1.2). Our approach differs from
the standard one in the following three directions.

• Firstly, we propose a non-classical definition of the Maxwellian M . The motivation is
to consider quite general pressure laws, for which it is not obvious to find dissipative
equilibrium states just by solving minimization problems. However, our computation
remains reminiscient of ideas in [20] considering compactly supported equilibria, with
a support driven by the propagation speeds of (1.1)–(1.2).

• Secondly, our version of the kinetic scheme works on staggered grids where the discrete
density ρ and the material velocity V are not stored on the same location. While the
approaches are completely different in spirit, the idea dates back to [31] and [33]: it is
used in industrial contexts in the framework of Lagrangian methods, see e.g. [18].

• Thirdly, by contrast to the most common strategy adopted for hyperbolic systems, our
scheme upwinds with the material velocity as a privileged speed, instead of using the
full wave structure of the system. Although the derivation of the scheme is based on
different principles, this idea appears in the so–called AUSM schemes [24, 23], see also
[13, 14, 16, 17] for recent analysis of schemes in the same vein.

Our motivation is two fold. On the one hand staggered discretizations can be expected to
fulfil better stability properties in low-Mach regimes, because they naturally avoid odd-even
decoupling of the pressure, and the possible occurrence of spurious modes. We refer the
reader to [14, 16] and the references therein on this aspect. On the other hand, the method
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is well adapted to treat coupled models describing mixtures, which involve an intricate
constraint on the material velocity. The staggered framework allows to design a scheme for
such complex flows in order to conserve exactly the total mass of the mixture. This issue is
detailed in [2].

This work is organized as follows. We start by recalling briefly a few basic facts about
(1.1)–(1.2) in Section 2 where we set up the notation. In Section 3, we introduce the
Maxwellian states on which the scheme is based. Then, we detail the space discretiza-
tion. We also identify the stability condition which preserves the positivity of the density ρ.
Section 4 is devoted to the analysis of the behaviour of the discrete (physical) entropy. It
turns out that working on staggered grids helps in proving a dissipation property. Finally, in
Section 5 we discuss a few numerical simulations, dealing either with the simple equation of
state p(ρ) = kργ, or with more intricate pressure laws. It shows that the method is efficient
and reliable.

2 Basic facts on the system of conservation laws

In all what follows we assume that the pressure function p : ρ 7→ p(ρ) ∈ [0, ∞) is strictly
increasing. At least formally, the system (1.1)–(1.2) can be rewritten in the non–conservative
form

∂tU + A(U)∂xU = 0, A(U) = ∇UF (U),

where A is the jacobian matrix of the flux function F : (ρ, J = ρV ) = U 7→ (J , J 2/ρ +
p(ρ)), namely

A(U) =

(
0 1

p′(ρ) − J 2/ρ2 2J /ρ

)
.

The eigenvalues of this matrix define the characteristic speeds of the system (1.1)–(1.2):

λ−(U) = V − c(ρ), λ+(U) = V + c(ρ),

where the “sound speed” is the function given by

c : ρ 7−→
√

p′(ρ).

Therefore A(U) admits two distinct real eigenvalues, for any ρ > 0, V ∈ R, and the system
(1.1)–(1.2) is hyperbolic.

In view of its physical meaning the density ρ is expected to remain non negative. Next,

let us set W±(U) = V ± G(ρ) where G′(ρ) =

√
p′(ρ)

ρ
= c(ρ)

ρ
. These quantities, the so–

called Riemann invariants, are simply advected at the speed λ±(U) since we can check that
(∂t + λ±∂x)W± = 0. Let us assume that ρ 7→ ρG(ρ) is convex, which is equivalent to

d
dρ

(ρ2G′(ρ)) = d
dρ

(ρ
√

p′(ρ)) > 0. Then, for any κ ∈ R, the sets {U = (ρ, ρV ), V +G(ρ) 6 κ}
and {U = (ρ, ρV ), V − G(ρ) > κ} are convex and they are left invariant by the dynamics.
This observation provides uniform estimates on the solutions of (1.1)–(1.2). Accordingly, we
can deduce L∞ estimates on the density ρ and the velocity V , by means of the initial data.
We refer for instance to [6] for the analysis of such invariant sets through viscous approxi-
mations. However showing that a numerical scheme preserves these natural estimates is far
from obvious: it can be justified for Godunov’s scheme, which is based on the exact resolu-
tion of Riemann problems, or Lax-Friedrichs schemes, see e. g. [22], and these estimates are
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then the first step towards the analysis of the existence of solutions to (1.1)–(1.2), see [10, 11].

We set
Φ : ρ 7−→ Φ(ρ) such that ρΦ′(ρ) − Φ(ρ) = p(ρ).

Note that Φ′′(ρ) = p′(ρ)
ρ

, so that Φ is convex. Smooth solutions of (1.1)–(1.2) can be shown
to satisfy the local balance law

∂t

(
ρ

V 2

2
+ Φ(ρ)

)
+ ∂x

((
ρ

V 2

2
+ Φ(ρ) + p(ρ)

)
V
)

= 0.

It motivates an admissibility criterion to select among weak solutions: they are required to
satisfy the following global entropy inequality (for suitable boundary conditions)

d

dt

∫ (
ρ

V 2

2
+ Φ(ρ)

)
dx 6 0 (2.4)

indicating that entropy is dissipated in the admissible discontinuities of the solutions of (1.1)–
(1.2). It is therefore an issue to determine whether or not a numerical scheme produces
solutions that satisfy the entropy criterion. In order to proceed with the analysis of the
scheme we propose, it is worth having in mind how the computation works at the continuous
level. On the one hand, we check that

∂tΦ(ρ) + ∂x

(
Φ(ρ)V

)
=
(
Φ(ρ) − ρΦ′(ρ)

)
∂xV = −p(ρ)∂xV. (2.5)

On the other hand, for the kinetic energy we get

∂t

(
ρ

V 2

2

)
+ ∂x

(
ρ

V 2

2
V
)

=
(
∂t(ρV ) + ∂x(ρV 2)

)
V = −∂xp(ρ) V. (2.6)

The conclusion follows by adding the two relations and integrating by parts. Of course
time and space discretizations break this structure and the challenge consists in identifying
discrete version of the derivatives in (2.5) and (2.6).

3 Definition of the kinetic scheme on staggered grids

3.1 Maxwellian states

The kinetic scheme we shall study is based on the following definition

M0(ρ, V, ξ) =
ρ

2c(ρ)
1I|ξ−V |6c(ρ), (3.7)

M1(ρ, V, ξ) = V M0(ρ, V, ξ) + M̃(ρ, V, ξ)

with

M̃(ρ, V, ξ)j = ξL(ρ, V )1I|ξ|6|V |+c(ρ), L(ρ, V ) =
3

2
(|V | + c(ρ))−3 p(ρ).
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We remind that c(ρ) stands for the sound speed. In particular the definition of M0 is
reminiscent of Kaniel’s strategy for gas dynamics [20] with a support of the equilibrium that
exactly contains all the velocities in the interval [V −c(ρ), V +c(ρ)] defined by the fundamental
wave speeds of the system (1.1)–(1.2). From now on we adopt a slight abuse of notation for
λ± compared to Section 2, denoting λ−(ρ, V ) = V − c(ρ) 6 ξ 6 λ+(ρ, V ) = V + c(ρ). With
U = (ρ, ρV ), we set

F ±(U) =
∫

ξ≷0
ξ

(
M0(ρ, V, ξ)
M1(ρ, V, ξ)

)
dξ.

Consistency of the corresponding flux–splitting method is a consequence of the following
claim.

Proposition 3.1 We have

∫
(M0, M1)(ρ, V, ξ) dξ = (ρ, ρV ),

∫
ξ(M0, M1)(ρ, V, ξ) dξ = (ρV, ρV 2 + p(ρ)).

The flux decomposition is consistent since F +(U) + F −(U) = F (U) holds.

For the analysis of the scheme, we need the following property of the pressure law

The sound speed ρ 7→ c(ρ) is a strictly increasing function,
or, equivalently, the pressure ρ 7→ p(ρ) is a strictly convex function.

(3.8)

The assumption (3.8) implies that the function τ 7→ p( 1
τ
) is strictly convex and hence, as

remarked above, that the invariant regions of the system are convex, but this is not exactly
the way the assumption appears in the analysis of the scheme. Loss of convexity of the
pressure law arises in real-life applications, and it leads to specific difficulties, see [18].

For further purposes, it is convenient to introduce the following mappings

F ± : R+ × R −→ R

(ρ, V ) 7−→
∫

ξ≷0
ξM0(ρ, V, ξ) dξ.

(3.9)

Next, we set

F (ρ, V ) = F +(ρ, V ) + F −(ρ, V ) =
∫

ξM0(ρ, V, ξ) dξ = ρV,

F |·|(ρ, V ) = F +(ρ, V ) − F −(ρ, V ) =
∫

|ξ|M0(ρ, V, ξ) dξ > 0.
(3.10)

We shall need the following observation.

Lemma 3.1 Assume (3.8). Then, the functions F +, F −, F |·| satisfy the following prop-
erties:

(i) 0 6 F +(ρ, V ) 6
ρ

4c(ρ)
λ+(ρ, V )2, ∀V ∈ R, ∀ρ > 0.
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(ii) − ρ

4c(ρ)
λ−(ρ, V )2 6 F −(ρ, V ) 6 0, ∀V ∈ R, ∀ρ > 0.

(iii) ρ ∈ [0, ∞) 7→ F +(ρ, V ) is increasing for V ∈ R, and strictly increasing for V > 0.

(iv) ρ ∈ [0, ∞) 7→ F −(ρ, V ) is decreasing for V ∈ R, and strictly decreasing for V 6 0.

(v) ρ ∈ [0, ∞) 7→ F |·|(ρ, V ) > 0 is strictly increasing for V ∈ R,

(vi) (ρ, V ) 7→ F ±(ρ, V ) are C1 functions and they satisfy F +(ρ, −V ) = −F −(ρ, V ).

Proof. The conclusion follows by direct inspection of the following formula, where the
expression of F +(ρ, V ) changes depending on the Mach number V/c(ρ):

F +(ρ, V ) =





0 if V + c(ρ) 6 0,
ρ

4c(ρ)
(V + c(ρ))2 =

ρ

4c(ρ)
λ+(ρ, V )2 if V − c(ρ) < 0 < V + c(ρ),

ρV =
ρ

4c(ρ)
(λ+(ρ, V )2 − λ−(ρ, V )2) if 0 < V − c(ρ).

Similarly, we have

F −(ρ, V ) =





ρV =
ρ

4c(ρ)
(λ+(ρ, V )2 − λ−(ρ, V )2) if V + c(ρ) 6 0,

− ρ

4c(ρ)
(V − c(ρ))2 = − ρ

4c(ρ)
λ−(ρ, V )2 if V − c(ρ) < 0 < V + c(ρ),

0 if 0 < V − c(ρ).

The definition of the Maxwellian (M0, M1) is very specific. In the momentum fluxes, the
convection terms are dictated by the mass fluxes, while the pressure term has a very simple
expression. This remark, which is crucial in the analysis of the scheme, is made clear through
the following statement.

Lemma 3.2 For any ρ > 0, V ∈ R, we have

∫

ξ≷0
ξM̃(ρ, V, ξ) dξ =

p(ρ)

2
and

∫

ξ≷0
ξM1(ρ, V, ξ) dξ = V F ±(ρ, V ) +

p(ρ)

2
.

3.2 Staggered grids

From now on, we consider that the problem (1.1)–(1.2) holds on the bounded domain (0, L).
It is completed by the boundary condition

V (t, 0) = 0 = V (t, L), ∀t > 0. (3.11)

Note that it belongs to the framework designed in [12] for the analysis of initial boundary
value problems for systems of conservation laws. Roughly speaking, only one field is incoming
and we do not need further boundary data. Notice that with this boundary condition the
entropy balance (2.4) holds.
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We now wish to discuss the adaptation of the kinetic scheme on staggered grids. While
we present the framework in the one dimension case, the method can be adapted to higher
dimensions.

We consider a set of J +1 points which defines a subdivison of the computational domain
[0, L]: x1 = 0 < x2 < ... < xJ < xJ+1 = L. This is the primal mesh. We set δxj+1/2 =
xj+1 −xj and xj+1/2 = 1

2
(xj +xj+1) for j ∈ {1, ..., J}. The J points x3/2 < ... < xJ+1/2 realize

the dual mesh, where we set δx1 = δx3/2/2, δxJ = δxJ+1/2/2 and δxj = 1
2
(δxj−1/2 + δxj+1/2)

for j ∈ {2, ..., J − 1}. For the numerical unknowns:

• Densities are evaluated at primal cell centers: ρj+1/2, with j ∈ {1, ..., J},

• Velocities are evaluated at primal cell edges (or vertices): Vj with j ∈ {1, ..., J + 1}.

The density is updated with a Finite Volume approximation on the primal mesh, which thus
requires an approximation of the fluxes ρV at the interfaces x = xj. Namely, we have

δxj+1/2

δt
(ρk+1

j+1/2 − ρk
j+1/2) + F k

j+1 − F k
j = 0, ∀j = 1, .., J. (3.12)

We adopt the kinetic scheme. For internal edges, quite naturally, we use the value of the
velocity at the interface x = xj and we upwind the density:

F k
j = F +(ρk

j−1/2, V k
j ) + F −(ρk

j+1/2, V k
j ), ∀j = 2, . . . , J. (3.13)

For external edges, since we use homogeneous boundary conditions, the fluxes are set to
zero:

F k
1 = 0, F k

J+1 = 0. (3.14)

We proceed similarly to define a Finite Volume approximation of the momentum equation
on the cells (xj−1/2, xj+1/2) of the dual mesh. We introduce

ρk
j =

δxj+1/2ρ
k
j+1/2 + δxj−1/2ρ

k
j−1/2

2δxj

, ∀j = 2, . . . , J − 1. (3.15)

Since at the kth time iteration, the approximate density is seen as the piecewise constant
function

∑J
j=1 ρk

j+1/21[xj ,xj+1[, ρk
j is nothing but the mean value of the density on the cell

(xj−1/2, xj+1/2). We update the velocity with

δxj

δt
(ρk+1

j V k+1
j − ρk

j V k
j ) + F̃ k

j+1/2 − F̃ k
j−1/2 = 0, ∀j = 2, . . . , J − 1. (3.16)

The fluxes are defined by the kinetic scheme. As remarked in Lemma 3.2, M̃ only contributes
to the pressure. More precisely, it yields a centered difference of the pressure term since for
any ρ, V, V ′ we have

∫

ξ>0
ξM̃(ρ, V ) dξ +

∫

ξ<0
ξM̃(ρ′, V ′) dξ =

1

2
(p(ρ) + p(ρ′)).

This term is evaluated at the interface x = xj+1/2, it is thus natural to make use of the

available value of the density at this point: the corresponding contribution to the flux F̃ k
j+1/2

8



is therefore p(ρk
j+1/2). The convection flux is given by an approximation of

∫
ξV M0(ρ, V ) dξ

at x = xj+1/2. We mimic the formula obtained by the mass flux: we upwind the quantity
ρV , which is advected by the velocity V . The latter is evaluated at the interface. We are
thus led to

F̃ k
j+1/2 =

∫

ξ>0
ξV k

j M0(ρ̄
k
j , V̄ k

j+1/2, ξ) dξ +
∫

ξ<0
ξV k

j+1M0(ρ̄
k
j+1, V̄ k

j+1/2, ξ) dξ + p(ρk
j+1/2)

where we need to make ρ̄k
j , ρ̄k

j+1 and V̄ k
j+1/2 precise. Instead of using the basic interpolation

ρk
j , we bear in mind that

∫
ξ>0 ξM0(ρ̄

k
j , V̄ k

j+1/2, ξ) dξ represents the mass flux going from left
to right through the interface located at x = xj+1/2. We evaluate it as the average of the
(already known) mass fluxes from left to right at the interfaces x = xj and x = xj+1.
Reasoning the same way with the mass flux going from right to left (ξ < 0) yields

F̃ k
j+1/2 =

V k
j

2

(
F +(ρk

j−1/2, V k
j ) + F +(ρk

j+1/2, V k
j+1)

)

+
V k

j+1

2

(
F −(ρk

j+1/2, V k
j ) + F −(ρk

j+3/2, V k
j+1)

)
+ p(ρk

j+1/2), ∀j = 2, ..., J − 1.

(3.17)
For j = 1, (resp. j = J) we remind that V k

1 = 0 (resp. V k
J+1 = 0) so that the contribution

associated to the positive (resp. negative) ξ’s vanishes. Hence only the mass flux from right
to left at the interface x3/2 (resp. the mass flux from left to right at the interface xJ−/2) has
to be considered. Since there is no mass flux at x = 0 (resp. x = L), we arrive at

F̃ k
3/2 =

V k
2

2
F −(ρk

5/2, V k
2 ) + p(ρk

5/2), F̃ k
J+1/2 =

V k
J

2
F +(ρk

J−1/2, V k
J ) + p(ρk

J−1/2).

Due to the very specific form of the Maxwellian M1, the scheme treats differently inertia
and pressure, in the spirit of AUSM schemes [24, 23]. As pointed out in the Introduction,
the definition of the numerical mass and momentum fluxes does not involve the resolution
of Riemann problems, nor the computation of intricate integrals, that could be quite costly.

Remark 3.3 A simple variant of the scheme is obtained by replacing M0(ρ, V, ξ) by ρδ(ξ =
V ) in the definition of the mass fluxes, in the spirit of [29]. With such a definition of
the equilibrium state, convection terms are UpWinded, and the pressure is approached by a
centered difference. For the sake of simplicity, let us assume that we are working with a
uniform mesh with constant mesh size δx > 0. With [V ]± = 1

2
(|V | ± V ) = max(±V, 0), the

scheme reads

ρk+1
j+1/2 = ρk

j+1/2 − δt

δx

(
[V k

j+1]
+ρk

j+1/2 − [V k
j+1]

−ρk
j+3/2 − [V k

j ]+ρk
j−1/2 + [V k

j ]−ρk
j+1/2

)
,

ρk+1
j V k+1

j = ρk
j V k

j − δt

δx

(
p(ρj+1/2) − p(ρj−1/2)

)

− δt

2δx

(
[V k

j ]+ρk
j−1/2V

k
j + [V k

j+1]
+ρk

j+1/2V
k

j − [V k
j ]−ρk

j+1/2V
k

j+1

−[V k
j+1]

−ρk
j+3/2V

k
j+1 − [V k

j−1]
+ρk

j−3/2V
k

j−1 − [V k
j ]+ρk

j−1/2V
k

j−1

+[V k
j−1]

−ρk
j−1/2V

k
j + [V k

j ]−ρk
j+1/2V

k
j

)
,
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where ρk
j = 1

2
(ρk

j+1/2 + ρk
j−1/2). This scheme produces consistent results but with oscillations,

that remain of controlled amplitude, when the velocity vanishes.

Remark 3.4 Note that the numerical fluxes naturally incorporates the boundary condition
(3.11). In particular, since the density is evaluated only on “interior points”, we do not need
any ghost cells to treat the pressure gradient.

We conclude this Section with the following stability statement, which gives conditions
in order to produce non negative densities.

Proposition 3.2 Assume that the initial data satisfies ρ0
j+1/2 > 0 for any j = 1, . . . , J . We

assume the CFL-like condition

δt

δxj+1/2

1

4c(ρk
j+1/2)

(
λ2

+(ρk
j+1/2, V k

j+1) + λ2
−(ρk

j+1/2, V k
j )
)
6 1, ∀j = 1, . . . , J. (3.18)

at every time step. Then the scheme preserves the positivity of ρ.

Proof. We rewrite the evolution of the discrete density as follows

ρk+1
j+1/2 = ρk

j+1/2 +
δt

δxj+1/2

(
F −(ρk

j+1/2, V k
j ) − F +(ρk

j+1/2, V k
j+1)

)

+
δt

δxj+1/2

(
F +(ρk

j−1/2, V k
j ) − F −(ρk

j+3/2, V k
j+1)

)
.

By assumption the components ρk
ℓ+1/2 are non negative for any ℓ, and the contribution of

the last two terms is non negative. Next, Lemma 3.1 tells us that

ρk+1
j+1/2 > ρk

j+1/2

(
1 − δt

δxj+1/2

1

4c(ρk
j+1/2)

(
λ+(ρk

j+1/2, V k
j+1)

2 + λ−(ρk
j+1/2, V k

j )2
))

.

Hence ρk+1
j+1/2 > 0 when (3.18) is fulfilled.

Remark 3.5 Remark that the stability condition involves the characteristic speeds V ± c(ρ),
and not the material velocity V only. This is by contrast to the schemes analyzed e. g. in
[17] which is also based on staggered grids and UpWinding strategies based on the material
velocity.

4 Stability analysis: entropy dissipation

In this Section, we wish to establish a discrete analog of (2.4). We set (for 2 6 j 6 J):

ρk
j,min := min

(
ρk

j−1/2, ρk
j+1/2

)
, ρk

j,Max := max
(
ρk

j−1/2, ρk
j+1/2

)
,

and
ρk

min := min
j∈{1,...,J}

ρk
j+1/2, ρk

Max := max
j∈{1,...,J}

ρk
j+1/2.
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In order to avoid technical difficulties due to the presence of vacuum, we shall assume
throughout this section that

ρk
min > 0. (4.19)

(Note however that the scheme performs well in vacuum formation, see Test 5 in Section 5.)
In fact, we are going to analyze a slightly modified version of the scheme (3.12)–(3.17).
According to (3.17), we split the momentum flux as follows:

F̃ k
j+1/2 = G k

j+1/2 + π
k+1/2
j+1/2 , j = 1, . . . , J, (4.20)

with

G k
3/2 =

V k
2

2
F −(ρk

5/2, V k
2 ),

G k
j+1/2 =

V k
j

2

(
F +(ρk

j−1/2, V k
j ) + F +(ρk

j+1/2, V k
j+1)

)

+
V k

j+1

2

(
F −(ρk

j+1/2, V k
j ) + F −(ρk

j+3/2, V k
j+1)

)
, j = 2, . . . , J − 1,

G k
J+1/2 =

V k
J

2
F +(ρk

J−1/2, V k
J ),

and
π

k+1/2
j+1/2 = ρk

j+1/2Φ
′(ρk+1

j+1/2) − Φ(ρk
j+1/2), j = 1, . . . , J.

The flux G k
j+1/2 represents the contribution of the inertial terms whereas the term π

k+1/2
j+1/2

discretizes the pressure forces. The expression of the latter relies on the relation p(ρ) =

ρΦ′(ρ) − Φ(ρ). We have thus replaced p(ρk
j+1/2) in (3.17) by π

k+1/2
j+1/2 . It has the flavor of an

implicit relation; however, we should bear in mind that the density is updated by (3.12)
before computing the velocity and we thus have ρk+1

j+1/2 at hand without the need of an
intricate fixed point method. The motivation of this modification will appear clearly in
Section 4.1. Then, we shall prove the decay of the global entropy.

Theorem 4.1 We assume (3.8). At time tk the discrete unknown satisfies (4.19). Then,
there exists τ⋆ > 0 such that for any 0 < δt < τ⋆, the updated state verifies

1

δt

[ J∑

j=2

δxj

(
1

2
ρk+1

j

(
V k+1

j

)2
)

+
J∑

j=1

δxj+1/2Φ(ρk+1
j+1/2)

]

6
1

δt

[ J∑

j=2

δxj

(
1

2
ρk

j

(
V k

j

)2
)

+
J∑

j=1

δxj+1/2Φ(ρk
j+1/2)

]
.

The time step τ⋆ depends only on the state ρk, V k, on the parameters of the space discretiza-
tion, and on the properties of the pressure law; its identification relies on the combination
of quite intricate but explicit stability conditions.

By contrast to standard proofs in hyperbolic theory, we consider separately, in the two
next sections, the evolution of the internal energy Φ(ρ) (Section 4.1) and of the kinetic energy
ρV 2/2 (Section 4.2). Roughly speaking, the evolution of the kinetic energy is obtained by

11



multiplying the momentum equation by V . It can be split into two contributions: the work
of the pressure forces (see (2.5)) and the contribution of the inertial terms (see (2.6)). We
shall adopt the same splitting at the discrete level and the modification of the scheme will
be useful in order to compensate the work of the pressure forces with a similar contribution
coming from the evolution of the internal energy.

4.1 Evolution of the internal energy

This Section is devoted to the proof of the discrete analog of equality (2.5).

Proposition 4.2 We assume (3.8). At time tk the discrete unknown satisfies (4.19). Then,
there exists τ⋆ > 0 such that for any 0 < δt < τ⋆, the following inequality holds

J∑

j=2

δxj


π

k+1/2
j+1/2 − π

k+1/2
j−1/2

δxj


V k+1

j >
1

δt

[ J∑

j=1

δxj+1/2Φ(ρk+1
j+1/2) −

J∑

j=1

δxj+1/2Φ(ρk
j+1/2)

]

− 1

4δt

J∑

j=2

δxjρ
k+1
j

(
V k+1

j − V k
j

)2
.

As mentioned in Section 2, when assuming (3.8), uniform a priori estimates can be
established for the continous problem from the properties of the invariant regions, see [6].
In particular the density remains bounded and away from vacuum when the initial density
lies in L∞ and is positive. It is not obvious that a numerical scheme preserves such a strong
property, see [22, 11] for discussions on Lax-Friedrichs and Godunov schemes or [4, Section
2.2] for general conditions.

For this reason, we should check stepwise estimates on the updated solution. To this
end, we can adapt the proof of Proposition 3.2, which itself relies on Lemma 3.1, to show
that the discrete density at time tk+1 remains bounded from above and below (away from
vacuum) at the price of a slightly strengthened CFL condition compared to (3.18) (which
ensures only the positivity of the discrete density).

Lemma 4.3 If we assume that ρk
min > 0, then

ρk
min

2
6

ρk
j+1/2

2
6 ρk+1

j+1/2 6 2 max(ρk
j−1/2, ρk

j+1/2, ρk
j+3/2) 6 2ρk

Max, ∀j = 1, . . . , J

holds provided the two following CFL-like conditions are satisfied:

δt

δxj+1/2

1

2c(ρk
j+1/2)

(
λ2

+(ρk
j+1/2, V k

j+1) + λ2
−(ρk

j+1/2, V k
j )
)
6 1, ∀j = 1, . . . , J,

δt

δxj+1/2

(
λ2

+(ρk
j−1/2, V k

j )

4c(ρk
j−1/2)

+
λ2

−(ρk
j+3/2, V k

j+1)

4c(ρk
j+3/2)

)
6 1, ∀j = 1, . . . , J,

(4.21)

with the slight abuse of notation according to which the first (resp. second) term in the
parenthesis of the second condition vanishes when j = 1 (resp. j = J).
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We shall work with auxiliary densities defined from the ρk
j+1/2, V k

j ’s and the ρk+1
j+1/2, V k+1

j ’s,

but which might be out the interval [ρmin/2, 2ρMax]. For this reason, we introduce a bluff
extension of the internal energy, which is a mere quadratic polynomial function for small
and large values of ρ:

Φ̄(ρ) =





LΦ

[
ρmin

2

]
(ρ) if ρ 6

ρmin

2
,

Φ(ρ) if
ρmin

2
6 ρ 6 ρMax,

LΦ

[
2ρMax

]
(ρ) if ρ > 2ρMax,

where LΦ[ρ0](ρ) =
1

2
Φ′′(ρ0)(ρ − ρ0)

2 + Φ′(ρ0)(ρ − ρ0) + Φ(ρ0) is the second order Taylor

expansion of Φ. In particular, we will use in the sequel the following properties:
∣∣∣Φ̄′(ρ)

∣∣∣ 6 aM + bMρ, ∀ρ > 0, (4.22)
∣∣∣Φ̄′(ρ1) − Φ̄′(ρ2)

∣∣∣ 6 cM

∣∣∣ρ1 − ρ2

∣∣∣, ∀ρ1, ρ2 > 0, (4.23)

with
cM = sup

(ρmin/2, 2ρMax)
Φ′′,

bM = max
(
Φ′′(ρmin/2), Φ′′(2ρMax)

)
, aM = Φ′(2ρMax) + 2ρMaxbM .

We point out that dealing with this extended function will not modify the scheme, neither
the definition of the discrete internal energy since by virtue of Lemma 4.3, both ρk

j+1/2 and

ρk
j+1/2 belong to [ρmin/2, 2ρMax].

Let us introduce the following quantities

d±(ρ1, ρ2, V ) =





F ±(ρ1, V ) − F ±(ρ2, V )

ρ1 − ρ2

if ρ1 6= ρ2,

∂ρF ±(ρ1, V ) if ρ1 = ρ2,
(4.24)

and

d|·|(ρ1, ρ2, V ) =





F |·|(ρ1, V ) − F |·|(ρ2, V )

ρ1 − ρ2

if ρ1 6= ρ2,

∂ρF |·|(ρ1, V ) if ρ1 = ρ2.
(4.25)

Owing to Lemma 3.1, d+(ρ1, ρ2, V ) is non negative for any V ∈ R, positive when V > 0,
while d−(ρ1, ρ2, V ) is non positive for any V ∈ R, negative when V 6 0. Consequently
d|·| = d+ − d− is always positive. The proof of Proposition 4.2 makes use of the following
technical result.

Lemma 4.4 Let Φ̄ be a strictly convex function of class C2. Let ρ1, ρ2 > 0, V ∈ R. We
denote ρ = min(ρ1, ρ2), ρ = max(ρ1, ρ2), V + = |V |+V

2
and V − = |V |−V

2
. Let λ, µ ∈ R verify

λ, µ >

2 max
( ρ, ρ )

Φ̄′′

min
( ρ, ρ )

Φ̄′′
d|·|(ρ1, ρ2, V ), (4.26)
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Let us set

ρ1 = ρ1 − 1

µ

(
F −(ρ2, V ) − F −(ρ1, V )

)
, ρ2 = ρ2 − 1

λ

(
F +(ρ2, V ) − F +(ρ1, V )

)
.

Then, there holds

[
Φ̄(ρ2)−Φ̄(ρ1)

]
V +λ

[
Φ̄
(
ρ2

)
−Φ̄(ρ2)

]
+µ

[
Φ̄
(
ρ1

)
−Φ̄(ρ1)

]
+

1

4

|V | + d|·|

2

(
min
( ρ, ρ )

Φ̄′′
)
(ρ1−ρ2)

2 6 0.

We postpone to Appendix A the details of the proof; the arguments rely on the convexity
of the function Φ̄ and on the properties of the fluxes F + and F −. We now go back to the
proof of Proposition 4.2.

Proof of Proposition 4.2. We apply Lemma 4.4 with ρ1 = ρk
j−1/2, ρ2 = ρk

j+1/2, V = V k
j ,

λ =
δxj+1/2

2δt
, µ =

δxj−1/2

2δt
for any j ∈ {2, ..., J}. In view of (4.26), we are thus led to impose

the following conditions:

δt <

min
( ρk

j,min
, ρk

j,Max
)
Φ̄′′

max
( ρk

j,min
, ρk

j,Max
)
Φ̄′′

min
(
δxj−1/2, δxj+1/2

)

4d|·|(ρk
j−1/2, ρk

j+1/2, V k
j )

, ∀j = 2, . . . , J. (4.27)

Let us introduce the following quantities

ρj+1/2 = ρk
j+1/2 − 2δt

δxj+1/2

(
F +(ρk

j+1/2, V k
j ) − F +(ρk

j−1/2, V k
j )
)
, ∀j = 2, . . . , J,

ρj−1/2 = ρk
j−1/2 − 2δt

δxj−1/2

(
F −(ρk

j+1/2, V k
j ) − F −(ρk

j−1/2, V k
j )
)

∀j = 2, . . . , J.

and, at the boundary ρJ+1/2 = ρk
J+1/2, ρ3/2 = ρk

3/2. Then, we have, for all j = 2, . . . , J ,
[
Φ̄(ρk

j+1/2) − Φ̄(ρk
j−1/2)

]
V k

j

+
δxj+1/2

2δt

[
Φ̄
(
ρj+1/2

)
− Φ̄(ρk

j+1/2)
]

+
δxj−1/2

2δt

[
Φ̄
(
ρj−1/2

)
− Φ̄(ρk

j−1/2)
]

+
1

4

|V k
j | + d|·|(ρk

j−1/2, ρk
j+1/2, V k

j )

2

(
min

( ρk
j,min

, ρk
j,Max

)
Φ̄′′
)
(ρk

j+1/2 − ρk
j−1/2)

2 6 0.

(4.28)

The following observation is crucial to the proof: combining the equality F +(ρ, V )+F −(ρ, V ) =
ρV and the discrete mass balance (3.12), we obtain

ρj+1/2 + ρj+1/2

2
= ρk+1

j+1/2 +
δt

δxj+1/2

ρk
j+1/2

(
V k

j+1 − V k
j

)
, ∀j = 1, . . . , J.

We shall also need the following auxiliary quantities

ρj−1/2 = ρj−1/2 +
2δt

δxj−1/2

ρk
j−1/2

(
V k+1

j − V k
j

)
, ∀j = 2, . . . , J + 1,

ρj+1/2 = ρj+1/2 − 2δt

δxj+1/2

ρk
j+1/2

(
V k+1

j − V k
j

)
, ∀j = 1, . . . , J,
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which are defined so that

ρj+1/2 + ρj+1/2

2
= ρk+1

j+1/2 +
δt

δxj+1/2

ρk
j+1/2

(
V k+1

j+1 − V k+1
j

)
, j = 1, . . . , J. (4.29)

Since Φ̄ is convex, we have Φ̄(y) > Φ̄(x) + Φ̄′(x)(y − x) for any x, y; consequently we obtain,
for all j = 2, . . . , J :

Φ̄
(
ρj−1/2

)
> Φ̄

(
ρj−1/2

)
− 2δt

δxj−1/2

ρk
j−1/2

(
V k+1

j − V k
j

)
Φ̄′
(
ρj−1/2

)
,

Φ̄
(
ρj+1/2

)
> Φ̄

(
ρj+1/2

)
+

2δt

δxj+1/2

ρk
j+1/2

(
V k+1

j − V k
j

)
Φ̄′
(
ρj+1/2

)
.

Going back to (4.28), we find, for all j = 2, . . . , J :
[
Φ̄(ρk

j+1/2) − Φ̄(ρk
j−1/2)

]
V k

j

+
(

ρk
j+1/2Φ̄

′
(
ρj+1/2

)
− ρk

j−1/2Φ̄
′(ρj−1/2)

)(
V k+1

j − V k
j

)

+
δxj+1/2

2δt

[
Φ̄
(
ρj+1/2

)
− Φ̄(ρk

j+1/2)
]

+
δxj−1/2

2δt

[
Φ̄
(
ρj−1/2

)
− Φ̄(ρk

j−1/2)
]

+
1

4

|V k
j | + d|·|(ρk

j−1/2, ρk
j+1/2, V k

j )

2

(
min

( ρk
j,min

, ρk
j,Max

)
Φ̄′′
)
(ρk

j+1/2 − ρk
j−1/2)

2 6 0.

(4.30)

This inequality allows to define a flux Gk
j , for any j ∈ {2, ..., J}, which satisfies

Φ̄(ρk
j+1/2)V

k
j +

δxj+1/2

2δt

[
Φ̄
(
ρj+1/2

)
− Φ̄(ρk

j+1/2)
]

+
(

ρk
j+1/2Φ̄

′
(
ρj+1/2

)
− ρk

j−1/2Φ̄
′
(
ρj−1/2

))(
V k+1

j − V k
j

)

+
1

4

|V k
j | + d|·|(ρk

j−1/2, ρk
j+1/2, V k

j )

2

(
min

( ρk
j,min

, ρk
j,Max

)
Φ̄′′
)

(ρk
j−1/2 − ρk

j+1/2)
2

6 Gk
j 6 Φ̄(ρk

j−1/2)V
k

j − δxj−1/2

2δt

[
Φ̄
(
ρj−1/2

)
− Φ̄(ρk

j−1/2)
]
.

We set Gk
1 = Gk

J+1 = 0. We reorganize as follows: on the one hand, for any j ∈ {2, ..., J},

− Gk
j + Φ̄(ρk

j+1/2)V
k

j +
δxj+1/2

2δt

[
Φ̄
(
ρj+1/2

)
− Φ̄(ρk

j+1/2)
]

+
1

4

|V k
j | + d|·|(ρk

j−1/2, ρk
j+1/2, V k

j )

2

(
min

( ρk
j,min

, ρk
j,Max

)
Φ̄′′
)

(ρk
j−1/2 − ρk

j+1/2)
2

+
(

ρk
j+1/2Φ̄

′
(
ρj+1/2

)
− ρk

j−1/2Φ̄
′
(
ρj−1/2

))(
V k+1

j − V k
j

)
6 0,

and, on the other hand, for any j ∈ {1, ..., J},

Gk
j+1 − Φ̄(ρk

j+1/2)V
k

j+1 +
δxj+1/2

2δt

[
Φ̄
(
ρj+1/2

)
− Φ̄(ρk

j+1/2)
]
6 0.
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Since Gk
1 = V k

1 = 0 and ρ3/2 = ρk
3/2, summing all these inequalities leads to

−
J∑

j=1

Φ̄(ρk
j+1/2)(V

k
j+1 − V k

j ) +
1

2δt

J∑

j=1

δxj+1/2

[
Φ̄
(
ρj+1/2

)
+ Φ̄

(
ρj+1/2

)
− 2Φ̄(ρk

j+1/2)
]

+
J∑

j=2

(
ρk

j+1/2Φ̄
′
(
ρj+1/2

)
− ρk

j−1/2Φ̄
′
(
ρj−1/2

))(
V k+1

j − V k
j

)

+
1

4

J∑

j=2

|V k
j | + d|·|(ρk

j−1/2, ρk
j+1/2, V k

j )

2

(
min

( ρk
j,min

, ρk
j,Max

)
Φ̄′′
)

(ρk
j−1/2 − ρk

j+1/2)
2

6 0.

Using the convexity of Φ̄ again and (4.29) yields, for any j ∈ {1, ..., J},

Φ̄
(
ρj+1/2

)
+ Φ̄

(
ρj+1/2

)

2
> Φ̄

(
ρk+1

j+1/2 +
δt

δxj+1/2

ρk
j+1/2

(
V k+1

j+1 − V k+1
j

))

> Φ̄
(
ρk+1

j+1/2

)
+

δt

δxj+1/2

ρk
j+1/2Φ̄

′
(
ρk+1

j+1/2

)(
V k+1

j+1 − V k+1
j

)
.

Finally, we can conclude that

J∑

j=2

(
π

k+1/2
j+1/2 −π

k+1/2
j−1/2

)
V k+1

j >
1

δt

[ J∑

j=1

δxj+1/2Φ(ρk+1
j+1/2)−

J∑

j=1

δxj+1/2Φ(ρk
j+1/2)

]
+T1−T2−T3−T4,

with

T1 =
1

4

(
min

( ρk
j,min

, ρk
j,Max

)
Φ̄′′
) J∑

j=2

|V k
j | + d|·|(ρk

j−1/2, ρk
j+1/2, V k

j )

2
(ρk

j−1/2 − ρk
j+1/2)

2

T2 =
J∑

j=2

(
Φ(ρk

j+1/2) − Φ(ρk
j−1/2)

)
(V k+1

j − V k
j ),

T3 = −
J∑

j=2

ρk
j+1/2

(
Φ̄′(ρj+1/2) − Φ̄′(ρj−1/2)

)(
V k+1

j − V k
j

)
,

T4 = −
J∑

j=2

(
ρk

j+1/2 − ρk
j−1/2

)
Φ̄′(ρj−1/2)

(
V k+1

j − V k
j

)
.

Note that in some terms, we have moved Φ̄ into Φ. This is legitimate since ρk
j±1/2 and ρk+1

j±1/2

lie in the interval [ρmin/2, 2ρMax], see Lemma 4.3, where Φ̄ and Φ coincide.
It remains to estimate T2, T3 and T4. The discussion will make further restrictions on the
time step appear. Using the Young inequality and since Φ′ is a non decreasing function, we
find

T2 6 6δt
J∑

j=2

1

δxjρk
j

max
(∣∣∣Φ′(ρk

j−1/2)
∣∣∣
2
,
∣∣∣Φ′(ρk

j+1/2)
∣∣∣
2
)(

ρk
j+1/2 − ρk

j−1/2

)2

+
1

24δt

J∑

j=2

δxjρ
k
j (V k+1

j − V k
j )2.
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For T3, we use

T3 6 cM

J∑

j=2

ρk
j+1/2

∣∣∣ρj+1/2 − ρj−1/2

∣∣∣
∣∣∣V k+1

j − V k
j

∣∣∣.

By definition of ρj+1/2 and ρj−1/2, we have:

ρj+1/2 − ρj−1/2 = ρj+1/2 − ρj−1/2 − 2δt

δ̄xj

ρ̄k
j

(
V k+1

j − V k
j

)
,

where ρ̄k
j stands for the harmonic mean of ρk

j−1/2 and ρk
j+1/2:

ρ̄k
j

δ̄xj

=
ρk

j−1/2

δxj−1/2

+
ρk

j+1/2

δxj+1/2

, with
1

δ̄xj

=
1

δxj−1/2

+
1

δxj+1/2

.

Consequently, we have ρ̄k
j 6 ρk

j,Max while (4.27) implies

0 6
2δt

δ̄xj

6
4δt

min(δxj−1/2, δxj+1/2)
.

Moreover, the definition of ρj+1/2 and ρj−1/2 yields

ρj+1/2 − ρj−1/2 =
[
1 − 2δt

δxj+1/2

dk,+
j +

2δt

δxj−1/2

dk,−
j

](
ρk

j+1/2 − ρk
j−1/2

)
,

with
dk,±

j = d±(ρk
j−1/2, ρk

j+1/2, V k
j ).

Conditions (4.27) imply

0 6
2δt

δxj+1/2

dk,+
j 6

1

2
, and 0 6 − 2δt

δxj−1/2

dk,−
j 6

1

2
.

We are thus led to ∣∣∣ρj+1/2 − ρj−1/2

∣∣∣ 6
∣∣∣ρk

j+1/2 − ρk
j−1/2

∣∣∣,

and consequently,
∣∣∣ρj+1/2 − ρj−1/2

∣∣∣ 6
∣∣∣ρk

j+1/2 − ρk
j−1/2

∣∣∣+
4δt

min(δxj−1/2, δxj+1/2)
ρk

j,Max

∣∣∣V k+1
j − V k

j

∣∣∣.

We deduce that

T3 6 cM

J∑

j=2

ρk
j+1/2

∣∣∣ρk
j+1/2 − ρk

j−1/2

∣∣∣
∣∣∣V k+1

j − V k
j

∣∣∣

+ cM

J∑

j=2

ρk
j+1/2

4δt

min(δxj−1/2, δxj+1/2)
ρk

j,Max

∣∣∣V k+1
j − V k

j

∣∣∣
2

holds. Let us assume

(δt)2

δxj min(δxj−1/2, δxj+1/2)
6

1

192

ρk
j

cMρk
j+1/2ρ

k
j,Max

. (4.31)

17



By using the Young inequality, we arrive at

T3 6 12δt(cM)2
J∑

j=2

(ρk
j+1/2)

2

δxjρk
j

∣∣∣ρk
j+1/2 − ρk

j−1/2

∣∣∣
2

+
1

24δt

J∑

j=2

δxjρ
k
j

∣∣∣V k+1
j − V k

j

∣∣∣
2
.

For T4, we use (4.22) and the definition of ρj−1/2 to find:

T4 6
J∑

j=2

(
aM + bM |ρj−1/2|

)∣∣∣ρk
j+1/2 − ρk

j−1/2

∣∣∣
∣∣∣V k+1

j − V k
j

∣∣∣

+
2bMδt

δxj−1/2

J∑

j=2

ρk
j−1/2

∣∣∣ρk
j+1/2 − ρk

j−1/2

∣∣∣
(
V k+1

j − V k
j

)2
.

As a consequence of (4.27), we observe that

|ρj−1/2| 6 ρk
j−1/2 + |ρk

j+1/2 − ρk
j−1/2|.

Let us assume
(δt)2

δxj−1/2δxj

6
1

96bM

ρk
j

ρk
j−1/2

∣∣∣ρk
j+1/2 − ρk

j−1/2

∣∣∣
. (4.32)

The Young inequality then leads to

T4 6 12δt
J∑

j=2

(
aM + bMρk

j−1/2 + bM |ρk
j+1/2 − ρk

j−1/2|
)2

δxjρk
j

∣∣∣ρk
j+1/2 − ρk

j−1/2

∣∣∣
2

+
1

24δt

J∑

j=2

δxjρ
k
j

∣∣∣V k+1
j − V k

j

∣∣∣
2
.

Finally, gathering together all these information, we deduce an estimate from below of T1 −
T2 − T3 − T4 with sums containing either the factor |V k+1

j − V k
j |2, or |ρk

j+1/2 − ρk
j−1/2|2. The

former precisely reads

−3 × 1

24δt

J∑

j=2

δxjρ
k
j

∣∣∣V k+1
j − V k

j

∣∣∣
2 ≥ − 1

4δt

J∑

j=2

δxjρ
k+1
j

∣∣∣V k+1
j − V k

j

∣∣∣
2

since 1
2
ρk

j 6 ρk+1
j , as a consequence of Lemma 4.3. The latter becomes a non negative

contribution provided δt satisfies

1

4

(
min

( ρk
j,min

, ρk
j,Max

)
Φ̄′′
) |V k

j | + d|·|(ρk
j−1/2, ρk

j+1/2, V k
j )

2

− 6δt
1

δxjρk
j

max
(∣∣∣Φ′(ρk

j−1/2)
∣∣∣
2
,
∣∣∣Φ′(ρk

j+1/2)
∣∣∣
2
)

− 12δt(cM)2
(ρk

j+1/2)
2

δxjρk
j

− 12δt

(
aM + bMρk

j−1/2 + bM |ρk
j+1/2 − ρk

j−1/2|
)2

δxjρk
j

> 0. (4.33)
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This remark ends the proof of Proposition 4.2. The time step τ⋆ can be readily deduced from
the most restrictive condition among (4.21), (4.27), (4.31), (4.32) and (4.33).

4.2 Evolution of the kinetic energy

We start by observing that the mean density ρk
j still satisfies a discrete conservation law.

Lemma 4.5 Let us set

F k
j+1/2 =

F k
j + F k

j+1

2
, ∀j ∈ {1, . . . , J}.

Then, we have

δxj

δt
(ρk+1

j − ρk
j ) + F k

j+1/2 − F k
j−1/2 = 0, ∀j ∈ {2, . . . , J − 1}. (4.34)

Furthermore, the relation

G k
j+1/2 = V k

j F k,+
j+1/2 + V k

j+1F
k,−
j+1/2

=
1

2
(V k

j + V k
j+1)F

k
j+1/2 +

1

2
(V k

j − V k
j+1)F

k,|·|
j+1/2

(4.35)

holds for all j ∈ {1, . . . , J} with

F k,+
3/2 =

1

2
F +(ρk

3/2, V k
2 ) > 0, F k,−

3/2 =
1

2
F −(ρk

5/2, V k
2 ) 6 0,

F k,+
j+1/2 =

1

2

(
F +(ρk

j+1/2, V k
j+1) + F +(ρk

j−1/2, V k
j )
)
> 0, ∀j ∈ {2, . . . , J − 1},

F k,−
j+1/2 =

1

2

(
F −(ρk

j+3/2, V k
j+1) + F −(ρk

j+1/2, V k
j )
)
6 0, ∀j ∈ {2, . . . , J − 1},

F k,+
J+1/2 =

1

2
F +(ρk

J−1/2, V k
J ) > 0, F k,−

J+1/2 =
1

2
F −(ρk

J+1/2, V k
J ) 6 0,

F k,|·|
j+1/2 = F k,+

j+1/2 − F k,−
j+1/2 > 0, ∀j ∈ {1, . . . , J}.

Proof. We just use the definition of ρk
j and ρk+1

j+1/2 to obtain

δxj

δt
(ρk+1

j − ρk
j ) =

1

δt

(
δxj+1/2

2
(ρk+1

j+1/2 − ρk
j+1/2) +

δxj−1/2

2
(ρk+1

j−1/2 − ρk
j−1/2)

)

= −1

2

(
(F k

j+1 − F k
j ) + (F k

j − F k
j−1)

)
= −(F k

j+1/2 − F k
j−1/2).

We split the expression of F k
j+1/2 into positive and negative contributions

F k
j+1/2 = F k,+

j+1/2 + F k,−
j+1/2, ∀j ∈ {1, . . . , J}.
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Finally, the right hand side in (4.35) reads

V k
j F k,+

j+1/2 + V k
j+1F

k,−
j+1/2 =

V k
j

2

(
F +(ρk

j+1/2, V k
j+1) + F +(ρk

j−1/2, V k
j )
)

+
V k

j+1

2

(
F −(ρk

j+3/2, V k
j+1) + F −(ρk

j+1/2, V k
j )
)

and we recognize the convection terms given by the momentum flux G k
j+1/2, as defined in

(4.20). The statement makes a clear connection appear between the mass fluxes F k
j+1/2 and

the momentum fluxes G k
j+1/2, and it brings out the role of upwinding.

At the discrete level, the inertial terms are defined as follows:

Cj =
ρk+1

j V k+1
j − ρk

j V k
j

δt
+

G k
j+1/2 − G k

j−1/2

δxj

, j = 1, . . . , J.

The discrete analog to (2.6) states as follows.

Proposition 4.6 Assume that ρk
j+1/2, V k

j , ρk+1
j+1/2, V k+1

j are defined by (3.12)–(3.17), with the

modified flux (4.20). The following inequality holds:

J∑

j=2

δxjCjV
k+1

j >
1

2δt

J∑

j=2

δxj

(
ρk+1

j

(
V k+1

j

)2 − ρk
j

(
V k

j

)2
+ ρk+1

j

(
V k+1

j − V k
j

)2
)

− 1

2

J∑

j=2

(V k+1
j − V k

j )2
(
F k,+

j−1/2 − F k,−
j+1/2

)
,

the quantities F k,+
j−1/2 and F k,−

j+1/2 being defined in Lemma 4.5.

Proof. While the upwinding strategy is quite different, the proof of Proposition 4.6 is
inspired from [13]. Let us split the convection term to estimate as follows

J∑

j=2

δxjCjV
k+1

j = T1 + T2

with

T1 =
1

δt

J∑

j=2

δxj

(
ρk+1

j V k+1
j − ρk

j V k
j

)
V k+1

j and T2 =
J∑

j=2

(
G k

j+1/2 − G k
j−1/2

)
V k+1

j .

We begin our study with the flux term T2, rewritten as

T2 =
J∑

j=2

(
G k

j+1/2 − G k
j−1/2

)
V k

j

︸ ︷︷ ︸
T2,1

+
J∑

j=2

(
G k

j+1/2 − G k
j−1/2

)(
V k+1

j − V k
j

)

︸ ︷︷ ︸
T2,2

.
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In T2,1 we make use of (4.35) and we obtain

T2,1 =
1

2

J∑

j=2

(
(V k

j + V k
j+1)F

k
j+1/2 − (V k

j−1 + V k
j )F k

j−1/2

)
V k

j

+
1

2

J∑

j=2

(
(V k

j − V k
j+1)F

k,|·|
j+1/2 − (V k

j−1 − V k
j )F k,|·|

j−1/2

)
V k

j . (4.36)

Since V1 = VJ+1 = 0, we have

J∑

j=2

V k
j+1V

k
j F k

j+1/2 =
J∑

j=2

V k
j V k

j−1F
k
j−1/2.

Hence, the first term of the right hand side of (4.36) is equal to

1

2

J∑

j=2

(
(V k

j + V k
j+1)F

k
j+1/2 − (V k

j−1 + V k
j )F k

j−1/2

)
V k

j =
1

2

J∑

j=2

(
F k

j+1/2 − F k
j−1/2

)(
V k

j

)2
.

A similar reasoning allows us to rewrite the second term of the right hand side of (4.36) as
follows

1

2

J∑

j=2

(
(V k

j − V k
j+1)F

k,|·|
j+1/2 − (V k

j−1 − V k
j )F k,|·|

j−1/2

)
V k

j =
1

2

J∑

j=1

(V k
j − V k

j+1)
2F k,|·|

j+1/2.

We conclude that

T2,1 =
1

2

J∑

j=2

(
F k

j+1/2 − F k
j−1/2

)(
V k

j

)2
+

1

2

J∑

j=1

(V k
j − V k

j+1)
2F k,|·|

j+1/2

holds, the last term being non negative. We turn to T2,2. To this end, we rewrite G k
j−1/2 and

G k
j+1/2 as follows

G k
j−1/2 = V k

j F k
j−1/2 + (V k

j−1 − V k
j )F k,+

j−1/2, ∀j = 2, . . . , J + 1,

G k
j+1/2 = V k

j F k
j+1/2 + (V k

j+1 − V k
j )F k,−

j+1/2, ∀j = 1, . . . , J.

We obtain the following expression of T2,2

T2,2 =
J∑

j=2

(V k+1
j − V k

j )V k
j (F k

j+1/2 − F k
j−1/2) + T3

where T3 is defined by T3 = T3,1 + T3,2 with

T3,1 =
J∑

j=2

(V k+1
j − V k

j )(V k
j+1 − V k

j )F k,−
j+1/2,

and

T3,2 = −
J∑

j=2

(V k+1
j − V k

j )(V k
j−1 − V k

j )F k,+
j−1/2.
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The Young inequality yields

T3,1 >
1

2

J∑

j=2

(V k+1
j − V k

j )2F k,−
j+1/2 +

1

2

J−1∑

j=2

(V k
j+1 − V k

j )2F k,−
j+1/2,

and

T3,2 > −1

2

J∑

j=2

(V k+1
j − V k

j )2F k,+
j−1/2 − 1

2

J−1∑

j=1

(V k
j − V k

j+1)
2F k,+

j+1/2.

By summing these two inequalities, we find

T3 > −1

2

J∑

j=2

(V k+1
j − V k

j )2
(
F k,+

j−1/2 − F k,−
j+1/2

)

− 1

2

J∑

j=1

(V k
j+1 − V k

j )2F k,|·|
j+1/2 − 1

2

(
V k

2

)2
F k,−

3/2 +
1

2

(
V k

J

)2
F k,+

J−1/2.

The last two terms are non negative. Finally, we obtain the following bound for T2

T2 >
J∑

j=2

(V k+1
j − 1

2
V k

j )V k
j (F k

j+1/2 − F k
j−1/2) − 1

2

J∑

j=2

(V k+1
j − V k

j )2
(
F k,+

j−1/2 − F k,−
j+1/2

)
.

We can now use the mass balance on edges (4.34) to find

T2 > − 1

δt

J∑

j=2

δxj(V
k+1

j − 1

2
V k

j )V k
j (ρk+1

j − ρk
j ) − 1

2

J∑

j=2

(V k+1
j − V k

j )2
(
F k,+

j−1/2 − F k,−
j+1/2

)
.

It remains to treat the term T1 which recasts as

T1 =
1

δt

J∑

j=2

δxjρ
k+1
j (V k+1

j − V k
j )V k+1

j +
1

δt

J∑

i=2

δxj(ρ
k+1
j − ρk

j )V k
j V k+1

j

=
1

2δt

J∑

j=2

δxjρ
k+1
j

((
V k+1

j

)2 −
(
V k

j

)2
+
(
V k+1

j − V k
j

)2
)

+
1

δt

J∑

j=2

δxj(ρ
k+1
j − ρk

j )V k
j V k+1

j .

Gathering the last two estimates on T1 and T2, we obtain the conclusion.

4.3 Conclusion: proof of Theorem 4.1

Multiplying the discrete momentum equation by V k+1
j we are led to

[
δxjCj + π

k+1/2
j+1/2 − π

k+1/2
j−1/2

]
V k+1

j = 0.
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Combining Proposition 4.2 and 4.6 yields

1

δt

( J∑

j=1

δxj+1/2Φ(ρk+1
j+1/2) −

J∑

j=1

δxj+1/2Φ(ρk
j+1/2)

)
+

1

2δt

( J∑

j=2

δxjρ
k+1
j

∣∣∣V k+1
j

∣∣∣
2 −

J∑

j=2

δxjρ
k
j

∣∣∣V k
j

∣∣∣
2
)

+
1

2

J∑

j=2

(
δxj

2δt
ρk+1

j + F k,−
j+1/2 − F k,+

j−1/2

)∣∣∣V k+1
j − V k

j

∣∣∣
2

6
J∑

j=2

δxjCjV
k+1

j +
J∑

j=2

δxj

π
k+1/2
j+1/2 − π

k+1/2
j−1/2

δxj

V k+1
j = 0.

In order to obtain the dissipation of the total energy, we should guaranty that the last term
in the left hand side remains non negative. By virtue of Lemma 4.5, it amounts to say

δxj

δt
ρk+1

j + 2(F k,−
j+1/2 − F k,+

j−1/2) =
δxj

δt
ρk

j − F k,|·|
j+1/2 − F k,|·|

j−1/2 > 0.

Hence we arrive at the condition:

δxj

δt
ρk

j > F k,|·|
j+1/2 + F k,|·|

j−1/2.

This constraint has the same flavor as (3.18) and (4.21). The entropy-stability constraint
is completed with (4.27), (4.31) (4.32) and (4.33). We deduce the definition of τ⋆ from the
most restrictive condition among them. We point out that the constraint has the general
form δt ≤ mesh size×an intricate function of the state at the kth step.

It is likely that we can adapt arguments from [16, 17] in order to establish a Lax-Wendroff-
like statement for this scheme, which would prove that the limit of a converging sequence
of stepwise constant functions defined from the scheme is a weak solution of the system
of conservation laws that satisfies the global entropy inequality. This question is however
beyond the scope of the present paper. Note that, by contrast to the scheme studied in
[17], we prove here the decay of the global entropy, under suitable stability constraints: in
[17], the entropy production does not have a definite sign, but it is shown to vanish as the
discretization parameters tend to 0.

5 Numerical simulation

In this section, we present several numerical simulations to illustrate the behaviour of the
scheme. We numerically solve Riemann problems: the initial data is made of two constant
states (ρl, Vl) and (ρr, Vr) with a discontinuity located at x = 0. For such initial data, the
structure of the solution is well known: it is made of three constant states (the two initial
states (ρl, Vl) and (ρr, Vr), and an additional intermediate state (ρm, Vm)); these constant
states are linked by two propagating waves, each being associated with an eigenvalue of
the system. Each wave can be either a rarefaction wave or a shock wave depending on the
particular values of the initial left and right states. For the simulation, the computational
domain [a, b] is fitted to the region of interest, depending on the considered case. In order
to keep the structure described above, we use Neumann like boundary conditions: as far as
the waves do not reach the boundary the solution coincides with the solution of the problem
set on the whole line. The numerical parameters δt and δx are defined consistently with
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the stability assumption (3.18). For each test case, we precise the value of the following
quantity:

cfl =
δt

δx

1

min
(
λ±(ρl, Vl), λ±(ρm, Vm), λ±(ρr, Vr)

) .

Note that (3.18) makes the velocity λ±(ρ, V )2/c(ρ) appear, instead of the characteristic speed
λ±(ρ, V ) only. Therefore, in some circumstances (3.18) can be significantly more constrained
than the standard CFL condition. Furthermore, we should bear in mind that the entropy-
stability analysis of the scheme requires further restrictions. This is verified in the numerical
experiments.

5.1 Polytropic ideal gases

We first present simulations using the state law of polytropic ideal gases:

p(ρ) = kργ, (5.37)

where k > 0 and γ > 1 are two real constants.
We begin with three test cases coming from [5]. The state law is given by (5.37) with

k = (γ−1)2

4γ
and γ = 1.6. The computational domain [a, b] and the initial data are defined as

follows:

Test 1 (shock-shock)

a=-0.2 b=0.8

ρl = 1 ρr = 2

Vl = 1 Vr = 0.5

Test 2 (rarefaction-rarefaction)

a=-0.7 b=0.3

ρl = 0.5 ρr = 1

Vl = −0.5 Vr = −0.2

Test 3 (rarefaction-shock)

a=-0.7 b=0.3

ρl = 1 ρr = 0.5

Vl = −0.5 Vr = −0.5

The corresponding Riemann solutions develop two shocks, two rarefaction waves and a rar-
efaction wave followed by a shock wave, respectively. For the simulation, we make the
number J of cells within the grid vary; the time step is fixed according to the relation
Jδt = 0.25 (that is cfl = 0.3 for Test 1, cfl = 0.2 for Test 2 and 3). For each test case, we
plot the approximate density and velocity obtained for J = 100, 400, 3200 compared to the
exact solution at time T = 0.5. We also plot the evolution of the discrete L1 norm of the
error e between the approximate solution and the exact solution (ρex, Vex) at the final time
T = 0.5 = nδt:

J∑

j=1

δx
∣∣∣ρn

j+1/2 − ρex(T, xj)
∣∣∣ and

J+1∑

j=1

δx
∣∣∣V n

j − Vex(T, xj)
∣∣∣, (5.38)

as a function of the mesh size. It provides an evaluation of the convergence rate. The results
are given in Figures 1, 2 and 3, respectively. The exact solution is well approximated: the
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intermediate constant state (ρm, Vm) and the propagation speed of the waves are correctly
computed. For each test case, we obtain a convergence rate close to 1.

The next examples are more difficult. The state law is given by (5.37) with k = 1 and
γ = 1.4. Test 4 is inspired from [15]: the Riemann solution present two strong shocks. Test
5 is inspired from [30]: the Riemann solution is made of two symmetric rarefaction waves
and the difficulty relies on the formation of near-vacuum in the intermediate region. The
computational domain and the initial data for these test cases are given by:

Test 4 (shock-shock)

a=-0.1 b=0.15

ρl = 10 ρr = 20

Vl = 50 Vr = 0

Test 5 (rarefaction-rarefaction)

a=-0.5 b=0.5

ρl = 1 ρr = 1

Vl = −5 Vr = 5

The results are presented in Figures 5 and 4 respectively. For Test 4, as previously, we
plot the approximate density and velocity obtained for J = 400, 800, 3200 compared to the
exact solution at T = 0.005. For these runs, we impose δtJ = 0.0004 (that is cfl = 0.08;
the extreme value of λ(ρ, V )/c(ρ) in this case explains the discrepancy with the usual CFL
condition). We also plot the evolution of the discrete L1 norm of the error e between the
approximate solution and the exact solution at the final time T = 0.005 as a function of the
mesh size and we provide the associated convergence rates. We obtain a convergence rate
close to 1. The exact solution is well approximated, again. Nevertheless, near the first shock
for the velocity, we observe a small overshoot the amplitude of which decreases with the
time step. For Test 5, we plot the approximate density and velocity but also the momentum
obtained for J = 200, 400, 3200 compared to the exact solution at T = 0.07 (here we impose
δtJ = 0.01, that is cfl = 0.06). The velocity is poorly approximated in the near vacuum
region but the evaluation of the momentum, which is the quantity of interest, is fair. As
previously, we also plot the evolution of the discrete L1 norm of the error e between the
approximate solution and the exact solution at T = nδt = 0.07 as a function of the mesh
size and we provide the associated convergence rates. The L1 error norm for the momentum
is defined as follows:

J∑

j=1

δx
∣∣∣ρn

j V n
j − ρex(T, xj)Vex(t0, xj)

∣∣∣. (5.39)

We observe a convergence rate close to 1 for the density and the momentum.

5.2 Other examples

We complete the numerical illustration with examples that departs from the standard poly-
tropic ideal gas law. We start with the following state law:

p(ρ) = k

(
ρ

ρ∗ − ρ

)γ

with k =
(γ − 1)2

4γ
, γ = 0.6, ρ∗ = 3. (5.40)

This constitutive law appears as a particular case of the Van der Waals state law; it is
used in the modeling of dusty gases, see [1, 19] and the references therein. The interaction
forces between gas molecules are ignored here but the constant ρ∗ is intended to introduce a
correction accounting for the finite size of the molecules. In particular, we note that ρ 7→ p(ρ)
is not an homogeneous function. (In particular it is not clear how to define a co-localized
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kinetic scheme that makes the physical entropy decay.) Of course it is important for this
problem to preserve the natural bound ρ < ρ⋆. Such a discrete maximum principle can
be incorporated in the stability condition, as discussed in [2] for close-packing models in
fluid-particles flows.

The computational domain [a, b] and the initial data used in our simulation are defined
as follows:

Test 6 (shock-shock)

a=-0.2 b=0.8

ρl = 1 ρr = 2

Vl = 1 Vr = 0.5

The corresponding Riemann solutions develop two shocks. We perform simulations for sev-
eral number J of cells in the grid; the time step being imposed by the relation Jδt = 0.25 (that
is cfl = 0.3). We plot the approximate density and velocity obtained for J = 100, 200, 1600
compared to the exact solution at T = 0.5. The results are given in the Figure 6. The exact
solution is well approximated: the intermediate constant state (ρm, Vm) and the propagation
speed of shocks are correctly computed. We also plot the evolution of the discrete L1 norm
of the error e between the approximate solution and the exact solution at T = 0.5 as a
function of the mesh size. The convergence rate is close to 1.

Finally, we investigate the performances of the scheme with the following complicated
state law

p(ρ) = −Cv0
T0Γ0ρ0 +

K0

2
(χ + 1)2χ

(
2f0(χ) + χf ′

0(χ)
)

+ exp
(

Γ0

(
1 − ρ0

ρ

))
, (5.41)

where
χ =

ρ

ρ0

− 1,

and the function f0 is defined by:

f0(χ) =
1 +

(
s

3
− 2

)
χ + qχ2 + rχ3

1 − sχ
, with s = 1.5, q = −42080895

14941154
, r =

727668333

149411540
.

The parameters K0, ρ0, T0, Cv0
and Γ0 are the following constants:

K0 = 1011, ρ0 = 104, T0 = 300, Cv0
= 103, Γ0 = 1.5.

This example is an isentropic version of a model introduced in [18], referred to with the
nickname “Bizarrium”. The equation of state is non-convex. This toy-model has been pro-
posed to serve as a benchmark that reproduces the main features of “real-life” applications,
in order to evaluate how numerical schemes select the solution when the convexity of the
state law might vary. We refer the reader to [18] for detailed motivations and comparisons
of several numerical methods, and to [1] for further details on the mathematical theory for
such general equations of state.

For the simulation, the computational domain [a, b] and the initial data are defined as
follows:
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Test 7

a=-0.2 b=0.8

ρl = 11000 ρr = 10000

Vl = 0 Vr = 250

Test 8

a=-0.2 b=0.8

ρl = 14285 ρr = 10000

Vl = 0 Vr = 250

Test 9

a=-0.2 b=0.8

ρl = 13000 ρr = 12000

Vl = 0 Vr = 250

We plot the approximated density and velocity obtained for J = 1600, δt = 10−8 at time
T = 10−5. The results for Test 7 are given in Figure 7. For this test, the density remains
bounded between ρr = 10000 and ρl = 11000; on this range the pressure ρ 7→ p(ρ) is a
convex function so that the assumption (3.8) is satisfied. The scheme behaves very well in
this case. However, this is not the case for Test 8 and 9. In the range [10000, 14285] (Test
8), the pressure p(ρ) has two convexity changes and in the range [12000, 13000] (Test 9) the
pressure p(ρ) is concave. In these cases where assumption (3.8) is not satisfied, the structure
of the solutions of the Riemann problems is more complex than the structure described above
(see for instance [32] and [18]) and the numerical results exhibit oscillations. These results
illustrate the role of (3.8).

Nevertheless, the scheme can be improved to treat such cases with loss of convexity.
Roughly speaking the idea consists in extending the support of the Maxwellian M0. Designing
and analyzing a scheme for a general state law is beyond the scope of this work but to
illustrate the capability of the scheme we perform simulations with a simple adaptation of
M0 directly inspired from [21]. In order to replace M0, we define the following function

M0(ρ1, ρ2, V, ξ) =
2ρV

µ+(ρ1, ρ2, V )2 − µ−(ρ1, ρ2, V )2
1Iµ−(ρ1,ρ2,V )6ξ6µ+(ρ1,ρ2,V ), (5.42)

where

µ±(ρ1, ρ2, V ) = ± max
06σ61

[
± H

(
σ; V ± c(ρ1), V ± c(ρ2), τ±(ρ1), τ±(ρ2)

)]
,

with

τ±(ρ) =
1

2ρc(ρ)
(ρp′′(ρ) + 2p′(ρ)),

and H is the unique cubic polynomial function that satisfies the following interpolation
conditions:

H(0; a, b, a′, b′) = a, H(1; a, b, a′, b′) = b, H ′(0; a, b, a′, b′) = a′, H ′(1; a, b, a′, b′) = b′.

For internal edges (for j = 2, . . . , J), the discrete mass fluxes are then defined as follows:

F k
j =

∫

ξ>0
ξM0(ρ

k
j−1/2, ρk

j , V k
j , ξ) dξ +

∫

ξ<0
ξM0(ρ

k
j , ρk

j+1/2, V k
j , ξ) dξ.
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(a) Density at T = 0.5 (b) Velocity at T = 0.5

(c) L
1-error norm at T = 0.5 as a function of δx

(with δt = 0.25δx).

ℓ Jℓ

ln(eℓ+1/eℓ)

ln(Jℓ/Jℓ+1)
Density Velocity

1 100 0.85 0.9
2 200 0.88 0.92
3 400 0.94 0.94
4 800 1 0.97
5 1600 0.99 1.02
6 3200 - -

(d) Corresponding convergence rates.

Figure 1: Results for Test 1
(
p(ρ) = k (ρ)γ

)
.

Recall that ρk
j is defined by (3.15). The momentum fluxes are then deduced from these

mass fluxes as explained in Section 3.2. Figures 8 and 9 present the results for Test 8.
The modification of the support of the Maxwellian allows to reduce the amplitude of the
oscillations near the discontinuity: it becomes of the order of 2% (resp. 8%) of the height
discontinuity instead of 30% (resp. 20%) for the density (resp. velocity). Figures 10 and
11 present the results for Test 9. Simulations with the Maxwellian M0 show very strong
oscillations whereas there is only one oscillation located near each discontinuity when the
Maxwellian M0 is used. The amplitude of this oscillation is less than 25% (resp. 15%) of
the height of the discontinuity for the density (resp. velocity).
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(a) Density at T = 0.5 (b) Velocity at T = 0.5

(c) L
1-error norm at T = 0.5 as a function of δx

(with δt = 0.25δx).

ℓ Jℓ

ln(eℓ+1/eℓ)

ln(Jℓ/Jℓ+1)
Density Velocity

1 800 0.71 0.71
2 1600 0.73 0.74
3 3200 0.76 0.76
4 6400 0.79 0.78
5 12800 0.8 0.8
6 25600 - -

(d) Corresponding convergence rates.

Figure 2: Results for Test 2
(
p(ρ) = k (ρ)γ

)
.
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(a) Density at T = 0.5 (b) Velocity at T = 0.5

(c) L
1-error norm at T = 0.5 as a function of δx

(with δt = 0.25δx).

ℓ Jℓ

ln(eℓ+1/eℓ)

ln(Jℓ/Jℓ+1)
Density Velocity

1 800 0.74 0.75
2 1600 0.76 0.77
3 3200 0.78 0.79
4 6400 0.8 0.81
5 12800 0.82 0.82
6 25600 - -

(d) Corresponding convergence rates.

Figure 3: Results for Test 3
(
p(ρ) = k (ρ)γ

)
.
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(a) Density at T = 0.005 (b) Velocity at T = 0.005

(c) L
1-error norm at T = 0.005 as a function

of δx (with δt = 0.0004δx).

ℓ Jℓ

ln(eℓ+1/eℓ)

ln(Jℓ/Jℓ+1)
Density Velocity

1 400 0.78 0.91
2 800 1.04 0.97
3 1600 0.79 1.03
4 3200 1.05 0.91
5 6400 0.92 1.01
6 12800 - -

(d) Corresponding convergence rates.

Figure 4: Results for Test 4
(
p(ρ) = k (ρ)γ

)
.
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(a) Density at T = 0.07 (b) Velocity at T = 0.07

(c) Momentum at T = 0.07 (d) L
1-error norm at T = 0.07 as a function of

δx (with δt = 0.01δx).

ℓ Jℓ

ln(eℓ+1/eℓ)

ln(Jℓ/Jℓ+1)
Density Velocity Momentum

1 800 0.66 0.79 0.68
2 1600 0.71 0.73 0.71
3 3200 0.72 0.50 0.74
4 6400 0.77 0.57 0.76
5 12800 0.78 0.72 0.78
6 25600 - - -

(e) Corresponding convergence rates.

Figure 5: Result for Test 5
(
p(ρ) = k (ρ)γ

)
.
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(a) Density at T = 0.5 (b) Velocity at T = 0.5

(c) L
1-error norm at T = 0.5 as a function of δx

(with δt = 0.25δx).

ℓ Jℓ

ln(eℓ+1/eℓ)

ln(Jℓ/Jℓ+1)
Density Velocity

1 100 0.97 0.98
2 200 0.97 1.01
3 400 0.93 0.98
4 800 1.09 1.01
5 1600 0.99 1.02
6 3200 0.88 0.99
7 6400 - -

(d) Corresponding convergence rates.

Figure 6: Results Test 6
(
p(ρ) = k (ρ)γ (ρ∗ − ρ)−γ

)
.
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(a) Density at T = 10−5 (b) Velocity at T = 10−5

Figure 7: Results for Test 7 (p defined by (5.41), δt = 10−8, J = 1600).

(a) Scheme with M0 (cf (3.7)) (b) Scheme with M0 (cf (5.42))

Figure 8: Results for Test 8 (p defined by (5.41), δt = 10−8, J = 1600). Density at T = 10−5.
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(a) Scheme with M0 (cf (3.7)) (b) Scheme with M0 (cf (5.42))

Figure 9: Results for Test 8 (p defined by (5.41), δt = 10−8, J = 1600). Velocity at T = 10−5.

(a) Scheme with M0 (cf (3.7)) (b) Scheme with M0 (cf (5.42))

Figure 10: Results for Test 9 (p defined by (5.41), δt = 10−8, J = 1600). Density at
T = 10−5.
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(a) Scheme with M0 (cf (3.7)) (b) Scheme with M0 (cf (5.42))

Figure 11: Results for Test 9 (p defined by (5.41), δt = 10−8, J = 1600). Velocity at
T = 10−5.

A Proof of Lemma 4.4

We begin with some notation which are useful in the sequel. Let a, b ∈ R and let Φ̄ : R → R

be a function of class C1. We denote by PΦ(a, b) the following fraction:

PΦ̄(a, b) =





Φ̄(a) − Φ̄(b)

a − b
if a 6= b,

Φ̄′(a) if a = b.

We remind that d± and d|·| are defined by (4.24) and (4.25).

Lemma A.1 Let Φ̄ be a strictly convex function of class C2. Let ρ1 6= ρ2 be positive reals,
let V > 0 and λ, µ ∈ R verifiying:

λ, µ >

2 max
( ρ, ρ )

Φ̄′′

min
( ρ, ρ )

Φ̄′′
d|·|(ρ1, ρ2, V ). (A.43)

We denote ρ = min(ρ1, ρ2) and ρ = max(ρ1, ρ2) and we set

ρ1 = ρ1 − 1

µ

(
F −(ρ2, V ) − F −(ρ1, V )

)
, ρ2 = ρ2 − 1

λ

(
F +(ρ2, V ) − F +(ρ1, V )

)
.

Then, there exists ρ1/2 ∈ ( ρ, ρ ) such that:

Φ̄(ρ2) + PΦ̄

(
ρ2, ρ2

)
(ρ1/2 − ρ2) +

1

4

(
min
(ρ,ρ)

Φ̄′′
)

(ρ1 − ρ2)
2 = Φ̄(ρ1) + PΦ̄

(
ρ1, ρ1

)
(ρ1/2 − ρ1)

holds.
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Proof. Let us introduce the following shorthand notation

p1 = PΦ̄

(
ρ1, ρ1

)
and p2 = PΦ̄

(
ρ2, ρ2

)
.

We observe that

ρ1 = ρ1 − 1

µ
d−(ρ1, ρ2, V )(ρ2 − ρ1), ρ2 = ρ2 − 1

λ
d+(ρ1, ρ2, V )(ρ2 − ρ1).

Owing to Lemma 3.1, since V > 0, we know that

d+(ρ1, ρ2, V ) > 0, d−(ρ1, ρ2, V ) 6 0 and d|·| = d+ − d− > 0.

We assume that ρ1 < ρ2; the case ρ2 < ρ1 can be treated in a similar way.

By (A.43), λ, µ > d|·|), and we obtain

ρ1 6 ρ1 +
d−(ρ1, ρ2, V )(ρ1 − ρ2)

d|·|(ρ1, ρ2, V )
= ρ2 +

d+(ρ1, ρ2, V )(ρ1 − ρ2)

d|·|(ρ1, ρ2, V )
< ρ2.

Thus, we have
ρ1 6 ρ1 < ρ2 < ρ2.

Since Φ̄ is strictly convex, we deduce from the three chord lemma that

p1 < p2.

We can now define ρ1/2 as the solution of the following linear equation

Φ̄(ρ2) + p2(ρ1/2 − ρ2) +
1

4

(
min
( ρ, ρ )

Φ̄′′
)

(ρ1 − ρ2)
2 = Φ̄(ρ1) + p1(ρ1/2 − ρ1).

We are going to prove that ρ1 < ρ1/2 < ρ2. We start with the following equality

(p2 − p1)(ρ1/2 − ρ2) = Φ̄(ρ1) − Φ̄(ρ2) + p1(ρ2 − ρ1) − 1

4

(
min
( ρ, ρ )

Φ̄′′
)

(ρ1 − ρ2)
2. (A.44)

Since Φ̄ is strictly convex and ρ1 < ρ1 < ρ2, we arrive at

(p2 − p1)(ρ1/2 − ρ2) 6 Φ̄(ρ1) − Φ̄(ρ2) + p1(ρ2 − ρ1)

6 (ρ2 − ρ1)

(
−Φ̄(ρ1) − Φ̄(ρ2)

ρ1 − ρ2

+
Φ̄(ρ1) − Φ̄(ρ1)

ρ1 − ρ1

)
< 0.

This proves ρ1/2 < ρ2. Similarly, we have

(p1 − p2)(ρ1/2 − ρ1) = Φ̄(ρ2) − Φ̄(ρ1) + p2(ρ1 − ρ2) +
1

4

(
min
( ρ, ρ )

Φ̄′′
)

(ρ1 − ρ2)
2. (A.45)

Using the Taylor expansion of the function Φ̄, we can prove that the right hand side is non
positive. Indeed, let h = λ−1d+(ρ1, ρ2, V )(ρ2 − ρ1) > 0. We have

p2 =
Φ̄(ρ2 − h) − Φ̄(ρ2)

−h
= Φ̄′(ρ2) − 1

h

∫ ρ2

ρ2−h
Φ̄′′(u)(u − (ρ2 − h)) du,

while

Φ̄(ρ2) − Φ̄(ρ1) = Φ̄′(ρ2)(ρ2 − ρ1) −
∫ ρ2

ρ1

Φ̄′′(u)(u − ρ1) du.
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It yields

Φ̄(ρ2) − Φ̄(ρ1) + p2(ρ1 − ρ2)

= −
∫ ρ2

ρ1

Φ̄′′(u)(u − ρ1) du +
ρ2 − ρ1

h

∫ ρ2

ρ2−h
Φ̄′′(u)

(
u − (ρ2 − h)

)
du

6 −(ρ1 − ρ2)
2

2

[(
min
( ρ, ρ )

Φ̄′′
)

− h

ρ2 − ρ1

(
max
( ρ, ρ )

Φ̄′′
)]

.

Bearing in mind the definition of h, we obtain

Φ̄(ρ2) − Φ̄(ρ1) + p2(ρ1 − ρ2) 6 −(ρ1 − ρ2)
2

2

[(
min
( ρ, ρ )

Φ̄′′
)

− d+(ρ1, ρ2, V )

λ

(
max
( ρ, ρ )

Φ̄′′
)]

.

However, owing to (A.43), we have:
(

min
( ρ, ρ )

Φ̄′′
)

− d+(ρ1, ρ2, V )

λ

(
max
( ρ, ρ )

Φ̄′′
)
>

1

2

(
min
( ρ, ρ )

Φ̄′′
)

.

Going back to (A.45), it proves that

(p1 − p2)(ρ1/2 − ρ1) < 0,

and finally that ρ1/2 > ρ1.

Proof Lemma 4.4. The result is trivial when ρ1 = ρ2. Hence, we assume ρ1 6= ρ2. We
first focus on the case V > 0. We adopt the shorthand notations d± and d|·| instead of
d±(ρ1, ρ2, V ) and d|·|(ρ1, ρ2, V ), respectively. We bear in mind the equality V = d+ + d−.
The equality we wish to prove is equivalent to

[
Φ̄(ρ2) − Φ̄(ρ1)

]
V + λp2

[
ρ2 − ρ2

]
+ µp1

[
ρ1 − ρ1

]
+

1

4
d+
(

min
( ρ, ρ )

Φ̄′′
)
(ρ1 − ρ2)

2 6 0,

where
p1 = PΦ̄

(
ρ1, ρ1

)
, and p2 = PΦ̄

(
ρ2, ρ1,

)
.

With the definition of ρ2, ρ1, we find that this is again equivalent to:
[
Φ̄(ρ2) − Φ̄(ρ1)

]
(d+ + d−) − p2d

+(ρ2 − ρ1)

−p1d
−(ρ2 − ρ1) +

1

4
d+
(

min
( ρ, ρ )

Φ̄′′
)
(ρ1 − ρ2)

2 6 0.
(A.46)

However, both λ and µ satisfy the condition (A.43). Thus, we can apply Lemma A.1: there
exist ρ1/2 ∈ ( ρ, ρ ) such that

[
Φ̄(ρ2) − Φ̄(ρ1)

]
+ p2(ρ1/2 − ρ2) +

1

4

(
min
(ρ,ρ)

Φ̄′′
)

(ρ1 − ρ2)
2 = p1(ρ1/2 − ρ1).

We multiply this equality by d+ + d− and substract it to (A.46). It turns out that the
inequality we have to prove is equivalent to

−p2(ρ1/2 − ρ2)(d
+ + d−) + p1(ρ1/2 − ρ1)(d

+ + d−)

− p2d
+(ρ2 − ρ1) − p1d

−(ρ2 − ρ1) − 1

4
d−
(

min
(ρ,ρ)

Φ̄′′
)

(ρ1 − ρ2)
2 6 0.

(A.47)
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We can rearrange terms so that we are led to prove

−(p2 − p1)
(
(ρ1/2 − ρ1)d

+ − (ρ2 − ρ1/2)d
−
)

− 1

4
d−
(

min
(ρ,ρ)

Φ̄′′
)

(ρ1 − ρ2)
2 6 0.

Since ρ1/2 ∈ ( ρ, ρ ) and sgn(p2 − p1) = sgn(ρ2 − ρ1) (see the proof of Lemma A.1), we know
that

−(p2 − p1)(ρ1/2 − ρ1)d
+ 6 0.

And since d− 6 0, it is sufficient to prove

−(p2 − p1)(ρ2 − ρ1/2) +
1

4

(
min
(ρ,ρ)

Φ̄′′
)

(ρ1 − ρ2)
2 6 0.

However, equality (A.44) shows that the left hand side is exactly equal to

Φ̄(ρ1) − Φ̄(ρ2) + p1(ρ2 − ρ1)

which is non positive since Φ̄ is a convex function.

The result for V 6 0 is obtained by applying the obtained equality with −V , inverting the
role of ρ1, λ and ρ2, µ, and using Lemma 3.1-(vi).
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