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Abstract

This paper considers the problem of fault tolerant control (FTC) by trajectory tracking for uncertain nonlinear

system described by Takagi-Sugeno models. The considered faults are constant, exponential or polynomial. The

provided results are easily formulated in terms of Linear Matrix Inequalities by employing the descriptor redundancy

property. This latter introduces ”virtual” dynamics both in the active FTC control law scheme and in the output

error allowing to decouple the gains of the active FTC controller, the observer gain matrices and the system ones.

Numerical examples are given to illustrate the efficiency of the proposed approach.

Index Terms

Takagi-Sugeno models, active fault tolerant control, state and fault estimation, diagnosis, descriptor systems.

I. INTRODUCTION

If an unknown input (e.g. a fault) affects a system, it is known that classical control schemes lead to degraded

performances or even to the instability of the system. To overcome this drawback, new control strategies have been

introduced, especially active and passive fault tolerant control (FTC). The passive FTC has shown its interests [1] [2],

since the closed-loop system dynamics is stable and the fault effect is attenuated. In this case, the faults (generally

norm bounded) are viewed as external disturbances and the controller structure remains unchanged. Nevertheless,

in practice some faults are critical and passive FTC cannot guarantee the system stability. Thus, the active FTC,

where the control law is reconfigured according to the occurring fault in order to compensate its effect, is needed

to ensure the system stability with satisfactory performances. This can be done by estimating simultaneously the

fault and the system state.

Since the introduction of active FTC technique, many works have been developed. In the linear framework,

the pseudo-inverse technique leads to determine the controller gains by minimizing the Frobenius norm of the

transfer from the fault to the output as proposed by [3] [4] and improved by [5] [6]. In [7] [8] [9], the active FTC
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gains have been determined, based on eigenstructure assignment, such that the eigenvalues of the controlled faulty

system and those of a reference model are identical. Moreover, FTC for linear descriptor systems described by

algebraic-differential equations has been addressed in [10].

Some active FTC designs have been proposed for nonlinear systems, considering that the system evolves around

operating points [11] [12]. However, these approaches are only valid around these operating points. In [13], active

FTC for a class of nonlinear systems is envisaged with the absolute stability theory when the faults only affect

the actuators. Although some results in active FTC for nonlinear systems are applied to motor control [14] or in

attitude tracking of flexible spacecraft [15], it is still an open problem, as pointed in [16].

An efficient way to represent the behavior of nonlinear systems is to use the multimodel approach introduced

by Takagi and Sugeno [17] [18]. Takagi-Sugeno (T-S) models are very interesting since any nonlinear model can

be exactly written as a T-S model, on a compact set of the state space. It thus allows extending the linear control

theory to nonlinear systems. Many works devoted to T-S systems have been developed, dealing with stability and

stabilization [18] [19] [20] [21], observer design [22] [23] [24] [25] [26] [27] and diagnosis [28] [29] [30].

The active FTC design for T-S systems has been poorly studied in literature. In [31], an output active FTC

algorithm for vehicle lateral dynamics represented by an uncertain T-S model subject to constant sensor fault has

been proposed, but no uncertainties were considered in the output equation. Furthermore, trajectory tracking active

FTC design for T-S models subject to constant actuator fault has been investigated by [32] [33] [34] for T-S models

without uncertainties and affected only by constant faults.

However, in practice, the faults acting on a system are time varying. Hence, the present work aims to extend the

trajectory tracking active FTC to uncertain T-S systems with time varying faults. The faults being here envisaged are

modeled by exponential or polynomial functions. The obtained results are formulated in LMI terms by employing

the descriptor redundancy property [35] [36] [37] [38] [39]. The main idea is to introduce a ”virtual” dynamics in

both active FTC law and output error expressions in order to avoid crossed terms in the LMI and then decrease

the number of LMI conditions and consequently relax the conservatism. Indeed, the descriptor formulation is only

a mean to obtain relaxed LMI conditions, but singular systems are not the target of the present work. Based on

the descriptor approach, active FTC tracking controller design for T-S models without uncertainties subject to

time varying faults has been proposed by [40]. In this paper, the FTC design is developed to take into account

simultaneously the model uncertainties and the time varying faults occurring in the system. The control law is

determined to ensure the state tracking between the healthy system and the faulty one.

This paper is organized as follows. In the next section, the active FTC scheme and the system under study are

presented. In section 3, some FTC designs for uncertain T-S systems are established in the case of constant faults,

exponential faults and polynomial faults. In the last section, numerical examples are considered to illustrate the

applicability and the effectiveness of the proposed approaches.

Notations: In a block matrix, a star ∗ denotes the terms induced by symmetry. The term Πµ denotes a polytopic

matrix defined by Πµ =
∑r
i=1 µi (ξ (t))Πi, where µi (ξ (t)) are scalar weighting functions and Πi are matrices

with appropriate dimensions. Φ = diag(Φ1, · · · ,Φr) is a block diagonal matrix which diagonal entries are defined
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by Φ1,..., Φr.

The following lemma is needed to provide LMI conditions.

Lemma 1: [41] For any matrices X , Σ(t), Y with appropriate dimensions and ΣT (t)Σ(t) ≤ I and for any positive

real number τ , it follows:

XTΣT (t)Y + Y TΣ(t)X ≤ τXTX + τ−1Y TY (1)

II. PROBLEM STATEMENT

T-S models consist in a set of Linear Time Invariant (LTI) models interconnected with nonlinear weighting

functions µi(ξ(t)). These latter define the contribution of each linear submodel to the overall dynamics of the

multiple model. The nonlinear T-S model is given by:
ẋ(t) =

r∑
i=1

µi(ξ(t))(Aix(t) +Biu(t))

y(t) =
r∑
i=1

µi(ξ(t))(Cix(t) +Diu(t))
(2)

where r is the number of submodels defined by the matrices Ai ∈ Rn×n, Bi ∈ Rn×m, Ci ∈ Rp×n and

Di ∈ Rp×m. The nonlinear functions µi(ξ(t)) depend on the premise variable ξ(t) which can be measurable (u(t)

or y(t)) or unmeasurable (x(t)). In the present study, the premise variables are assumed to be real time accessible.

The functions µi(ξ(t)) are known and satisfy the convex sum property:
0 ≤ µi(ξ(t)) ≤ 1, i = 1, ..., r, ∀ t
r∑
i=1

µi(ξ(t)) = 1, ∀ t
(3)

Every nonlinear model can be written as a T-S model on a compact set of the state space [18]. The sector nonlinearity

approach [18] [42] allows an exact rewriting of a nonlinear model into a T-S form, without loss of informations.

The system (2) is considered as a reference model corresponding to a fault-free T-S model to be tracked by the

uncertain T-S model affected by faults defined by:
ẋf (t) =

r∑
i=1

µi (ξ (t))
(
Āixf (t) + B̄iuf (t) +Gif (t)

)
yf (t) =

r∑
i=1

µi (ξ (t))
(
C̄ixf (t) + D̄iuf (t) +Wif (t)

) (4)

where xf (t) ∈ Rn, yf (t) ∈ Rp, f(t) ∈ Rq and uf (t) ∈ Rm are respectively the faulty state, the faulty output,

the fault affecting the system behavior and the fault tolerant control. The matrices Gi ∈ Rn×q and Wi ∈ Rp×q are

the known distribution matrices of the faults on the system. The uncertain matrices of the system (4) are defined

by:

X̄i = Xi + ∆Xi(t), X ∈ {A,B,C,D} (5)

where ∆Ai(t), ∆Bi(t), ∆Ci(t) and ∆Di(t) are time varying unknown matrices describing the bounded model

uncertainties, defined by:

∆Xi(t) = Mx
i δ

x
i (t)Nx

i , (X,x) ∈ {(A, a), (B, b), (C, c), (D, d)} (6)
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where Ma
i , M b

i , M c
i , Md

i , Na
i , N b

i , N c
i and Nd

i are known matrices with appropriate dimensions and the matrix

functions δai (t), δbi (t), δci (t) and δdi (t) are bounded by:

δxi (t) (δxi (t))
T ≤ I, x ∈ {a, b, c, d} (7)

The aim of this work is to design a fault tolerant controller ensuring the tracking between the faulty system state

(4) and the healthy one (2). In other words, the objective is to find the control law uf (t) minimizing the difference

between the reference state x(t) of (2) and the faulty state xf (t) of (4). The proposed active FTC control law is: uf (t) = u (t) + uc (t)

uc (t) = Kµ (x (t)− x̂f (t))−Kf
µ f̂ (t)

(8)

where Ki ∈ Rm×n and Kf
i ∈ Rm×q are the state feedback gains to be determined, x̂f (t) and f̂(t) are the estimated

state and fault.

The controller design scheme is depicted by figure 1. The FTC law (8) requires the estimation of both the faulty

Fig. 1. Tracking fault tolerant controller design scheme

state and the fault. These informations are provided by a proportional integral observer (PIO) or a proportional

multiple integral observer (PMIO) depending on the fault model.

III. LMI CONDITIONS FOR FAULT TOLERANT CONTROLLER DESIGN

In this section, it is considered that some a priori knowledge about the fault characteristics is available. Indeed,

the fault may be a polynomial function, a constant one or described by an exponential function.
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A. Polynomial fault case

It is here assumed that the fault affecting the system behavior can be approximated by a kth order polynomial,

on a finite time window. Let us denote the (k + 1) first time derivatives of the fault by:

φ`(t) =
d`f(t)

dt`
, ` = 1, . . . , k + 1 (9)

Obviously, f(t) being a kth order polynomial, it follows that φk+1(t) = 0. The faulty state and the fault estimations,

needed for the control law (8), are provided by a proportional multiple integral observer (PMIO), since this kind

of observer is known to estimate polynomial unknown input. The proposed observer is defined by:

˙̂xf (t) = Aµx̂f (t) +Bµuf (t) +Gµf̂(t) + L1
µ (yf (t)− ŷf (t))

˙̂
f(t) = L2

µ(yf (t)− ŷf (t))− f̂(t)

˙̂
φ`(t) = L`+2

µ (yf (t)− ŷf (t))− φ̂`(t), ` = 1, . . . , k

ŷf (t) = Cµx̂f (t) +Dµuf (t) +Wµf̂(t)

(10)

where the matrices L1
i ∈ Rn×p and L`i ∈ Rq×p (` = 2, . . . , k+ 2), respectively defining the polytopic matrices L1

µ

and L`µ, are the observer gains to be determined with the controller gains Kµ and Kf
µ in (8).

In the remaining of the paper, for space convenience, the time variable t will be omitted when there is no

ambiguity.

Let us define the state tracking error, the state and the fault estimation errors, the fault derivative estimation errors,

the difference between the nominal and the FTC laws, denoted in the next, by the control error and the output

estimation error, given respectively by: 

ep = x− xf
es = xf − x̂f
ef = f − f̂

φ̃` = φ` − φ̂`
eu = u− uf
ey = yf − ŷf

(11)

Using equations (2), (4) and (10), the tracking error dynamics, the state and fault estimation error dynamics are

expressed as follows:

ėp = Āµep + B̄µeu −Gµf −∆Aµx−∆Bµu (12)

ės = Aµes −∆Bµeu + ∆Bµu+Gµef − L1
µey + ∆Aµ (x− ep) (13)

ėf = φ1 − L2
µey − ef + f (14)

The estimation error of the k first derivatives of the fault are given by

˙̃
φ` = φ`+1 + φ` − φ̃` − L`+2

µ ey, ` = 1, . . . , k − 1 (15)

˙̃
φk = φk − φ̃k − Lkµey (16)
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The output estimation error expression is given by:

ey = Cµes −∆Cµep +Wµef −∆Dµeu + ∆Dµu+ ∆Cµx (17)

The substitution of (8) and (17) in the above error dynamic equations (12), (13) and (14) implies to multiply the

matrices of the faulty system and the observer ones with those of the controller and the observer to be determined.

This coupling introduces cross terms leading to double summations and then to conservative results. A way to avoid

the coupling terms is to formulate the error dynamics in the descriptor form. The idea is to rewrite the output error

equation (17) and the active FTC law (8) as static equations encompassed in a descriptor system:

0ėy = Cµes + ∆Cµ(x− ep) +Wµef + ∆Dµ(u− eu)− ey (18)

0ėu = eu +Kµep +Kµes +Kf
µef −Kf

µf (19)

The combination of (12), (13), (14), (18) and (19) leads to the following descriptor form:

Ẽė = Ãµe+ B̃µω (20)

where Ẽ = diag(I2n+q(k+1), 0m+p),

Ãµ =



Āµ 0 0 0 · · · 0 B̄µ 0

−∆Aµ Aµ Gµ 0 · · · 0 −∆Bµ −L1
µ

0 0 −I 0 · · · 0 0 −L2
µ

0 0 0 −I · · · 0 0 −L3
µ

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · −I 0 −L(k+2)
µ

−Kµ −Kµ−Kf
µ 0 · · · 0 −I 0

−∆Cµ Cµ Wµ 0 · · · 0 −∆Dµ −I



(21)

B̃µ =



−∆Aµ −Gµ 0 · · · · · · · · · 0 −∆Bµ

∆Aµ 0 0 · · · · · · · · · 0 ∆Bµ

0 I I 0 · · · · · · 0 0

0 0 I I 0 · · · 0 0
...

... 0
. . . . . . . . .

...
...

...
...

...
. . . . . . . . . 0

...
...

...
...

. . . . . . . . . I
...

0 0 0 · · · · · · 0 I 0

0 Kf
µ 0 · · · · · · · · · 0 0

∆Cµ 0 0 · · · · · · · · · 0 ∆Dµ



(22)

eT =
(
eTp eTs eTf φ̃T1 · · · φ̃Tk eTu eTy

)
(23)

ωT =
(
xT fT φT1 φT2 . . . φT(k−1) φTk uT

)
(24)
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The conditions ensuring the stability of the descriptor system (20) and the attenuation level from the perturbation-like

term ω to the error dynamics e are provided in the following theorem.

Theorem 1: The system (20) describing the different estimation errors is stable and the L2-gain from the fault

and its derivatives to the state tracking error, the state and fault estimation error and the estimation error of the

fault derivatives is bounded by
√
γ̄, if there exists matrices X̄1 invertible, X̄2, K̄i, K̄i

f , Pj = PTj > 0, for

j = 1, 2, ..., k+ 3, L̄`,i, for ` = 1, 2, ..., k+ 2 and positive scalars γ̄, τ1, τ2, τ3 and τ4 such that the following LMIs

are verified, for i ∈ {1, ..., r}: 
Π̃i ∗ ∗

Θ̃i −φ̃i 0

Σ̃i 0 −ξ̄

 < 0 (25)

where

ξ̄ = diag(τ1I, τ2I, τ3I, τ4I)

φ̃i = diag(γ̄I − τ1(Na
i )TNa

i − τ3(N c
i )TN c

i , γ̄I, γ̄I, · · · , γ̄I, γ̄I − τ2(N b
i )TN b

i − τ4(Nd
i )TNd

i )

and Π̃i, Θ̃i and Σ̃i are defined by:

Π̃1,i =P1Ai +ATi P1 +Q1 + τ1 (Na
i )
T
Na
i + τ3 (N c

i )
T
N c
i

Π̃2,i =P2Ai +ATi P2 +Q2

Π̃`,i =− 2P` +Q`, for ` = 3, . . . , k + 3

Π̃82,i =X̄T
2 Ci − L̄1,i

Π̃83,i =X̄T
2 Wi − L̄2,i

Π̃71,i =BTi P1 − K̄i

Π̃7,i =− X̄1 − X̄T
1 + τ2

(
N b
i

)T
N b
i + τ4

(
Nd
i

)T
Nd
i

Π̃8,i =− X̄2 − X̄T
2

Π̃i =



Π̃1,i 0 0 0 · · · 0 ∗ 0

0 Π̃2,i ∗ 0 · · · 0 ∗ ∗

0 GTi P2 Π̃3,i 0 · · · 0 ∗ ∗

0 0 0 Π̃4,i · · · 0 0 ∗
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · Π̃k+3,i 0 ∗

Π̃71,i −K̄i −K̄f
i 0 · · · 0 Π̃7,i 0

0 Π̃82,i Π̃83,i −L̄3,i · · · −L̄k+2,i 0 Π̃8,i



(26)
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Θ̃i =



−τ1 (Na
i )
T
Na
i − τ3 (N c

i )
T
N c
i 0 0 0 · · · 0 0 0

−GTi P1 0 P3 0 · · · 0 (K̄f
i )T 0

0 0 P3 P4 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · Pk+3 0 ∗

0 0 0 0 · · · 0 −τ2
(
N b
i

)T
N b
i − τ4

(
Nd
i

)T
Nd
i 0


(27)

Σ̃i =


(Ma

i )
T
P1 − (Ma

i )
T
P2 0 0 · · · 0 0 0(

M b
i

)T
P1 −

(
M b
i

)T
P2 0 0 · · · 0 0 0

0 0 0 0 · · · 0 0 (M c
i )
T
X̄2

0 0 0 0 · · · 0 0
(
Md
i

)T
X̄2

 (28)

The observer and controller gains are then computed by:

Ki =
(
X̄T

1

)−1
K̄i, Kf

i =
(
X̄T

1

)−1
K̄f
i , L`i = (P`+1)

−1 (
L̄`,i

)T
(29)

Proof: Let us consider the weighted L2 constraint given by:∫ t

0

eT (σ)Qe(σ)dσ < γ2
∫ t

0

ωT (σ)ω(σ)dσ (30)

where γ is the attenuation level from the perturbation-like term ω to the errors e in (20) and Q is a known symmetric

semi positive definite weighting matrix chosen as Q = diag(Q1, Q2, Q3, Q4, · · · , Qk+3, 0, 0). It is well known that

the constraints (30) is satisfied if there exists a Lyapunov function V (e) such that:

V̇ (e) + eTQe− γ2ωTω < 0 (31)

Let us consider the following Lyapunov function candidate given by:

V (e) = eT ẼTPe, ẼTP = PT Ẽ ≥ 0 (32)

where P = diag(P1, P2, P3, P4, . . . , Pk+3, X̄1, X̄2). It can be shown that the LMI (25) implies (31) for V (e)

defined by (32). The mathematical details are given in appendix.

Remark 1: Thanks to the descriptor redundancy approach, the T-S system (20) is defined by a unique summation

whereas interconnecting a T-S system with a T-S controller (8) and a T-S observer (10) often leads to triple

summations. Thus, the number of LMI conditions in the theorem 1 is linear in the number of submodels denoted

r, contrarily to most of the previously published works on state estimation or diagnosis for T-S systems where the

number of LMI conditions is polynomial in r [18], [30], [32], [33], [34].

Remark 2: Since the descriptor redundancy approach is used to write the closed-loop system (20), the matrix

gains to be determined (namely Ki, K
f
i and Lji ) are neither pre-multiplied nor post-multiplied by any other matrix

in the entries of Ãi and B̃i. As a consequence, the Lyapunov stability conditions are easily expressed as LMI in

theorem 1 with simple variable changes. This is obtained without the need of conservative upper bounding usually

introduced to linearize the coupled terms.
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B. Constant fault case

Constant fault may occurs in practical situations when a sensor or an actuator is affected by a constant bias. It

can also be considered as an approximation of slowly varying fault. The constant fault case is obviously a special

case of the polynomial one. In this case, the fault satisfies:

d

dt
(f (t)) = 0 (33)

As a consequence, the PMIO can be reduced to a PIO defined by
˙̂xf (t) = Aµx̂f (t) +Bµuf (t) +Gµf̂(t) + L1

µ (yf (t)− ŷf (t))

˙̂
f(t) = L2

µ(yf (t)− ŷf (t))− f̂(t)

ŷf (t) = Cµx̂f (t) +Dµuf (t) +Wµf̂(t)

(34)

where the matrices L1
i ∈ Rn×p and L2

i ∈ Rq×p, respectively defining the polytopic matrices L1
µ and L2

µ, are the

observer gains to be determined taking into account specifications about the reconstruction errors.

Such observers are known to be efficient when estimating systems affected by slowly varying unknown inputs [43].

Similarly to what have been done in the previous section, the state tracking error, the state and fault estimation

errors, the difference between the nominal and the FTC laws are defined by (11). The tracking error dynamics and

the state estimation error are still defined by (12) and (13) respectively, whereas the fault estimation error is slightly

modified and is now defined by:

ėf = −L2
µey − ef + f (35)

The output estimation error and the active FTC law are also still defined by (18) and (19) respectively. The

combination of all these differential and algebraic equations leads to the following descriptor form:

˜̃E ˙̃e(t) = ˜̃Aµẽ(t) + ˜̃Bµω̃(t) (36)

where ˜̃E = diag(I, I, I, 0, 0), ẽT = (eTp eTs eTf eTu eTy ) and

ω̃ =


x

f

u

 ˜̃Aµ =



Āµ 0 0 B̄µ 0

−∆Aµ Aµ Gµ −∆Bµ −L1
µ

0 0 −I 0 −L2
µ

−Kµ −Kµ −Kf
µ −I 0

−∆Cµ Cµ Wµ −∆Dµ −I


˜̃Bµ =



−∆Aµ −Gµ −∆Bµ

∆Aµ 0 ∆Bµ

0 I 0

0 Kf
µ 0

∆Cµ 0 ∆Dµ


(37)

The equation (36) explicits the evolution of the error dynamics and, in particular, the influence of the fault on

these errors. The gains L1
i and L2

i of the observer and the gains Ki and Kf
i of the controller clearly appear in the

definition of the state matrices ˜̃Aµ and ˜̃Bµ.

It can be mentioned that the descriptor system (36) is the same as (20) where the state variables φ̃` and the inputs

φ` have been removed. Consequently, the matrices ˜̃Aµ and ˜̃Bµ in (37) are obtained from Ãµ and B̃µ defined by

(21) and (22) respectively by selecting the appropriate rows and columns.

The sufficient LMI stability conditions of the closed-loop system (36) are given in the following theorem.
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Theorem 2: The system (36) describing the tracking and estimation errors is stable and the L2-gain from the

faults to the state tracking error, the state and the fault estimation errors is bounded by
√
γ̄, if there exists matrices

P1 = PT1 > 0, P2 = PT2 > 0, P3 = PT3 > 0, X̄1 invertible, X̄2, K̄i, K̄
f
i , L̄1,i, L̄2,i and positive scalars γ̄, τ1, τ2,

τ3 and τ4, such that the following LMIs hold for i ∈ {1, ..., r}:

Λi < 0 (38)

where Λi is defined by:

Λi =



Π̃1,i 0 0 ∗ 0 ∗ ∗ 0 ∗ ∗ 0 0

0 Π̃2,i ∗ ∗ ∗ 0 0 0 ∗ ∗ 0 0

0 GTi P2 Π̃3,i ∗ ∗ 0 ∗ 0 0 0 0 0

Π̃71,i −K̄i −K̄f
i Π̃7,i 0 0 ∗ 0 0 0 0 0

0 Π̃82,i Π̃83,i 0 Π̃8,i 0 0 0 0 0 ∗ ∗

Λ61,i 0 0 0 0 Λ6,i 0 0 0 0 0 0

−GTi P1 0 P3 (K̄f
i )T 0 0 −γ̄I 0 0 0 0 0

0 0 0 Λ84,i 0 0 0 Λ8,i 0 0 0 0

(Ma
i )TP1 −(Ma

i )TP2 0 0 0 0 0 0 −τ1I 0 0 0

(M b
i )TP1 −(M b

i )TP2 0 0 0 0 0 0 0 −τ2I 0 0

0 0 0 0 (M c
i )T X̄2 0 0 0 0 0 −τ3I 0

0 0 0 0 (Md
i )T X̄2 0 0 0 0 0 0 −τ4I



(39)

where Π̃1,i, Π̃2,i, Π̃3,i, Π̃71,i, Π̃7,i, Π̃82,i, Π̃83,i, and Π̃8,i are defined in theorem 1 and

Λ61,i = −τ1 (Na
i )
T
Na
i − τ3 (N c

i )
T
N c
i

Λ6,i = −γ̄I + τ1 (Na
i )
T
Na
i + τ3 (N c

i )
T
N c
i

Λ84,i = −τ2
(
N b
i

)T
N b
i − τ4

(
Nd
i

)T
Nd
i

Λ8,i = −γ̄I + τ2
(
N b
i

)T
N b
i + τ4

(
Nd
i

)T
Nd
i

The observer and controller gains are then computed by:

Ki =
(
X̄T

1

)−1
K̄i, Kf

i =
(
X̄T

1

)−1
K̄f
i , L1

i = (P2)
−1 (

L̄1,i

)T
, L2

i = (P3)
−1 (

L̄2,i

)T
(40)

Proof: The proof is very similar to the one of Theorem 1. The considered weighted L2 constraint is now given

by: ∫ t

0

ẽT (σ)Qẽ(σ)dσ < γ2
∫ t

0

ω̃T (σ)ω̃(σ)dσ (41)

where γ is the attenuation level from the perturbation-like term ω̃ to the errors ẽ in (36) and Q is a known symmetric

semi positive definite weighting matrix chosen as Q = diag(Q1, Q2, Q3, 0, 0). It is well known that the constraint

(41) is satisfied if there exists a Lyapunov function V (ẽ) such that:

V̇ (ẽ) + ẽTQẽ− γ2ω̃T ω̃ < 0 (42)
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Let us consider the following Lyapunov function candidate given by:

V (ẽ) = ẽT ˜̃ETP ẽ, ˜̃ETP = PT ˜̃E ≥ 0 (43)

where P = diag(P1, P2, P3, X̄1, X̄2). Using the quadratic Lyapunov function candidate (43) and (36), the inequality

(42) leads to:  ẽ
ω̃

T

Ψµ

 ẽ
ω̃

 < 0 (44)

with

Ψµ =

 ˜̃ATµP + PT ˜̃Aµ +Q ∗
˜̃BTµX −γ2I

 (45)

Similarly to the proof of Theorem 1, it can be shown that the LMI (38) implies (44) and thus (42).

C. Exponential fault case

In this section, the fault is assumed to be defined, on a finite time window [t0 tf ], by an exponential function

which parameters are uncertain. Thus, each component of the fault is given by:

fi (t) = eαit+βi , for t0 ≤ t ≤ tf (46)

where αi, βi ∈ R, for i = 1, ..., q.

To model as closely as possible the dynamics of the exponential fault, the parameters αi in (46) can be expressed

as:  αi = α0,i + ∆αi

α = diag
(
α1 α2 . . . αq

) (47)

where α0,i and ∆αi respectively represent the nominal and the uncertain parts of the parameters αi. α0 = diag
(
α0,1 α0,2 · · · α0,q

)
∆α = diag

(
∆α1 ∆α2 · · · ∆αq

) (48)

It is assumed that there exists a known diagonal positive definite matrix ν ∈ Rq×q , such that the uncertain part of

the fault model can be bounded as:

∆αT∆α ≤ ν (49)

Using the PI observer (34) when the fault are described by (46), the fault estimation dynamics is given by:

ėf = ḟ − ˙̂
f (50)

= αf − L2
µey + f̂ (51)

By adding and subtracting f in (51), one can obtain:

ėf = −L2
µey − ef + (α+ I) f (52)
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The concatenation of (12), (13), (52), (18) and (19) leads to:

˜̃E ˙̃e(t) = ˜̃Aµẽ(t) + ˜̃Bµω̃(t) (53)

where ẽ, ω̃, ˜̃E and ˜̃Aµ have been already defined in (36) and ˜̃Bµ is now defined by

˜̃Bµ =



−∆Aµ −Gµ −∆Bµ

∆Aµ 0 ∆Bµ

0 α+ I 0

0 Kf
µ 0

∆Cµ 0 ∆Dµ


(54)

In order to compute the gains L1
µ, L2

µ, Kµ and Kf
µ , LMI conditions are given in the following theorem.

Theorem 3: The system (53) describing the different estimation errors is stable and the L2-gain from the fault to

the state tracking error, the state and fault estimation errors is bounded by
√
γ̄, if there exists matrices P1 = PT1 > 0,

P2 = PT2 > 0, P3 = PT3 > 0, X̄1 invertible, X̄2, K̄i, K̄
f
i , L̄1,i, L̄2,i, positive scalars γ̄, τ1, τ2, τ3, τ4 and η such

that the following LMIs are verified for i ∈ {1, ..., r}: Λi + TTψ + ψTT + ηϑTϑ ∗

ψ −ηI

 < 0 (55)

where Λi is given in theorem 2 and

T =
(

0 0 0 0 0 0 α0 0 0 0 0 0
)

(56)

ψ =
(

0 0 P3 0 0 0 0 0 0 0 0 0
)

(57)

ϑ =
(

0 0 0 0 0 0 ν1/2 0 0 0 0 0
)

(58)

The observer and controller gains are then computed by:

Ki =
(
X̄T

1

)−1
K̄i, Kf

i =
(
X̄T

1

)−1
K̄f
i , L1

i = (P2)
−1 (

L̄1,i

)T
, L2

i = (P3)
−1 (

L̄2,i

)T
(59)

Proof: The proof of this theorem is similar to the previous one. Considering the quadratic Lyapunov function

candidate defined by (43) and the L2 constraint (41), the development of (42) leads to: ẽ
ω̃

T

Ψ̃µ

 ẽ
ω̃

 < 0 (60)

where Ψ̃µ is defined by

Ψ̃µ = Ψµ + ZT ψ̄ + ψ̄TZ +XT ψ̄ + ψ̄TX (61)

where Ψµ is defined in (45), Z, X and ψ̄ are defined by:

Z =
(

0 0 0 0 0 0 α0 0
)

X =
(

0 0 0 0 0 0 ∆α 0
)

ψ̄ =
(

0 0 P3 0 0 0 0 0
)
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Applying Lemma 1 on (61), one can obtain:

Ψµ + ZT ψ̄ + ψ̄TZ +XT ψ̄ + ψ̄TX ≤ Ψµ + ZT ψ̄ + ψ̄TZ + ηϑ̄T ϑ̄+ η−1ψ̄T ψ̄ (62)

where ϑ̄ =
(

0 0 0 0 0 0 0 ν1/2
)

. Following the same steps of the previous proofs and applying the

Schur complement on the term η−1ψ̄T ψ̄, the sufficient LMI conditions proposed in theorem 3 follows.

IV. SIMULATION EXAMPLE

Let us consider the nonlinear reference and faulty systems (2) and (4), with r = 2 defined by:

A1 =


0 −1 −0.5

−1 −3 2.5

1 1 −2

 , B1 =


2.5

1

2

 , CT1 =


0.5

0.5

0



A2 =


−2 1 1

0 −3 3

0.5 1 −3

 , B2 =


2

2

1

 , CT2 =


0

−0.5

0


D1 = 1, D2 = 0.8, W1 = 1.5, W2 = 1,

GT1 =
(

1 0.5 0
)
, GT2 =

(
0.6 0.5 0.5

)
,

Na
1 =


0 0 0

0 −0.15 0.1

0.15 0 −0.2

 , Na
2 =


−0.15 0 0

0 −0.15 0

0 0 −0.1

 ,

Ma
1 =


0.1 0.3 0.2

0 0.15 0

0.15 0.1 0.2

 ,Ma
2 =


0.1 0.2 0.2

0.1 0.25 0.1

0.1 0.2 0.15

 ,

M bT
1 =

(
0.15 0.25 0.2

)
,M bT

2 =
(

0.2 0.25 0.2
)

N b
1 = 0.2, N b

2 = 0.1, Nd
1 = 0.25, Nd

2 = 0.15,

N c
1 =

(
0.2 0.15 0

)
, N c

2 =
(

0.1 0.05 0.15
)
,

Md
1 = 0.1,Md

2 = 0.15,M c
1 = 0.2,M c

2 = 0.25

The uncertainties are defined by:

δa1 (t) = δa2 (t) = 0.5 sin2(t)

δb1(t) = δb2(t) = 0.1 cos(t) sin(t)

δc1(t) = δc2(t) = 0.5 sin(t)

δd1(t) = δd2(t) = 0.3 cos2(t)
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The nominal input signal and the nonlinear weighting functions are respectively given by:

u (t) = sin (cos (0.5t) t), µ1 (u (t)) = 1−tanh(0.5−u(t))
2 and µ2 (u (t)) = 1− µ1 (u (t)).

A. Case of second order polynomial fault

The fault occurring when 8 s 6 t 6 18 s is modeled by the following second order polynomial:

f(t) = 0.03(t− 8)(t− 18) (63)

Figure 2 (left) represents, on the same graph, the reference model states and the faulty system states with and

without FTC. Clearly, when the fault occurs, the faulty system states deviate from the reference one. Implementing

the proposed strategy, one observes that, firstly, the fault is correctly estimated (figure 2 right) and, secondly, the

faulty system states follow the reference trajectory with a small error. These simulation results show the effectiveness

of the synthesized observer and active FTC controller compared to the classical controller, since the fault effect is

compensated and the tracking between the faulty system states and the reference model ones is ensured. Figure 3

allows the comparison of the nominal control and active FTC signals.

In the next, other kinds of faults (third order polynomial, sinusoidal and constant faults) are considered, while the

FTC law design is still computed for a second order polynomial fault. This illustrates the robustness of the above

FTC and observer design face to poorly modeled time varying faults.

B. Case of third order polynomial fault

The considered fault affecting the system behavior at 8 s ≤ t ≤ 18 s is defined by:

f(t) = 0.015(t− 8)(t− 18)2 (64)

The simulation results are given by the figures 4 and 5. From these results, one can remark that even if the

FTC controller and observer are synthesized for a second order polynomial fault, when the fault is a third order

polynomial it is still well estimated and compensated.

C. Case of sinusoidal fault

The considered fault occurring at 8 s ≤ t ≤ 18 s is defined by:

f(t) = 0.6 sin(t− 8) (65)

The simulation results are given by figures 6 and 7. Even if the fault is sinusoidal, the active FTC controller is

once again designed to cope with a second order polynomial fault. One can see that, although the model of the

fault is false, the controller ensures a very good tracking between the faulty system states and the fault-free system

ones.
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V. CONCLUSION

In this paper, the problem of active FTC design for uncertain faulty nonlinear systems represented by Takagi-

Sugeno models is treated. The aim of the FTC is to ensure the state trajectory tracking. Three kinds of faults have

been considered. The first one consists in faults modeled by polynomial functions. Constant faults are then treated as

a special case of the first ones. The last one deals with faults modeled by exponential functions. Based on Lyapunov

theory, a new approach dealing with the considered faults is proposed. This approach has been easily formulated

in LMI terms by using the descriptor redundancy property, which allowing to express the error dynamics of the

closed-loop system in descriptor form. Finally, academic examples have been considered to illustrate the efficiency

of the proposed approaches.
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APPENDIX A

PROOF OF THE THEOREM 1

Substituting (20) in (31), one can obtain:e
ω

T ÃTµP + PT Ãµ +Q ∗

B̃Tµ P −γ2I

e
ω

 < 0 (66)

The inequality (66) fulfilled if: ÃTµP + PT Ãµ +Q ∗

B̃Tµ P −γ2I

 < 0 (67)

In order to obtain LMI conditions, matrix P is chosen as follows: P = diag(P1, P2, P3, P4, . . . , Pk+3, X̄1, X̄2).

According to (32), we can find that, for j = 1, 2, ..., (k+3) Pj are symmetric positive definite matrices and X̄1, X̄2

are free matrices with X̄1 invertible. Note that, the chosen structure of P is not unique. Indeed, there are several

possibilities from the condition (32) to define the matrix P structure.

Considering the matrices Ãµ and B̃µ in (20) and P , the inequality (67) becomes: Πµ ∗

Υ̃µ −γ2I

 < 0 (68)

where Πµ, Υ̃µ are defined by

Πµ =



Π1,µ ∗ 0 0 · · · 0 ∗ ∗

−P2∆Aµ Π̃2,µ 0 0 · · · 0 ∗ ∗

0 GTµP2 Π̃3,µ 0 · · · 0 ∗ ∗

0 0 0 Π̃4,µ · · · 0 ∗ ∗
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · Π̃k+3,µ ∗ ∗

Π71,µ Π72,µ −X̄T
1 K

f
µ 0 · · · 0 −X̄1 − X̄T

1 ∗

−X̄T
2 ∆Cµ Π82,µ Π83,µ −LT3,µP4 · · · −LTk+2,µPk+3 −X̄T

2 ∆Dµ −X̄2 − X̄T
2



(69)
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Π1,µ = P1Ai +ATi P1 +Q1 Π71,µ = −X̄T
1 Kµ + B̄Tµ P1

Π72,µ = −X̄T
1 Kµ −∆BTµ P2 Π82,µ = X̄T

2 Cµ −
(
L1
µ

)T
P2

Π83,µ = X̄T
2 Wµ −

(
L2
µ

)T
P3

Υ̃µ =



−∆ATµP1 ∆ATµP2 0 0 · · · 0 0 ∆CTµ X̄2

−GTµP1 0 P3 0 · · · 0 (Kf
µ)T X̄1 0

0 0 P3 P4 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · Pk+3 0 0

−∆BTµ P1 ∆BTµ P2 0 0 · · · 0 0 ∆DT
µ X̄2


(70)

With (5-7) and applying lemma 1, (68) yields:
Π̄µ ∗ ∗

ϕ̄µ −φµ 0

Σµ 0 −ξ̄

 < 0 (71)

where φµ, Π̄µ, ϕ̄µ and Σµ are defined by

φµ =diag(γ2I − τ1(Na
µ)TNa

µ − τ3
(
N c
µ

)T
N c
µ, γ

2I,

γ2I, · · · , γ2I, γ2I − τ2(N b
µ)TN b

µ − τ4
(
Nd
µ

)T
Nd
µ)

Π̄µ =



Π̃1,µ 0 0 0 · · · 0 ∗ 0

0 Π̃2,µ ∗ 0 · · · 0 ∗ ∗

0 GTµP2 Π̃3,µ 0 · · · 0 ∗ ∗

0 0 0 Π̃4,µ · · · 0 ∗ ∗
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · Π̃k+3,µ ∗ ∗

−X̄T
1 Kµ −X̄T

1 Kµ −X̄T
1 K

f
µ 0 · · · 0 Π̃7,µ 0

0 Π82,µ Π83,µ −LT3,µP4 · · · −LTk+2,µPk+3 0 Π̃8,µ



(72)

ϕ̄µ =



−τ1Na
µ
TNa

µ − τ3N c
µ
TN c

µ 0 0 0 · · · 0 0 0

−GTµP1 0 P3 0 · · · 0 (Kf
µ)T X̄1 0

0 0 P3 P4 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · Pk+3 0 ∗

0 0 0 0 · · · 0 −τ2
(
N b
µ

)T
N b
µ − τ4

(
Nd
µ

)T
Nd
µ 0


(73)
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Σµ =



(
Ma
µ

)T
P1 −

(
Ma
µ

)T
P2 0 0 · · · 0 0 0(

M b
µ

)T
P1 −

(
M b
µ

)T
P2 0 0 · · · 0 0 0

0 0 0 0 · · · 0 0
(
M c
µ

)T
X̄2

0 0 0 0 · · · 0 0
(
Md
µ

)T
X̄2

 (74)

Considering the following bijective variable changes: X̄T
1 Kµ = K̄µ, X̄T

1 K
f
µ = K̄f

µ , γ2 = γ̄ and
(
L`µ
)T
P`+1 = L̄`,µ

for ` = 1, . . . , k + 2 and applying the Schur complement on Π̄µ, the sufficient LMI conditions in theorem 1 hold.
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Fig. 2. Second order polynomial fault. Reference model states, faulty system states with and without active FTC controller (left) ; fault and

its estimation (right)
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Fig. 3. Second order polynomial fault. Nominal and active FTC control signals
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Fig. 4. Third order polynomial fault. Reference model states, faulty system states with and without active FTC controller (left) ; fault and its

estimation (right)
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Fig. 5. Third order polynomial fault: nominal and active FTC control signals
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Fig. 6. Sinusoidal fault. Reference model states, faulty system states with and without active FTC controller (left) ; fault and its estimation

(right)
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Fig. 7. Sinusoidal fault: nominal and active FTC control signals
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