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Overlap fluctuations in glass-forming liquids

Ludovic Berthier
Laboratoire Charles Coulomb, UMR 5221, CNRS and Université Montpellier 2, Montpellier, France
(Dated: September 7, 2018)

We analyse numerically thermal fluctuations of the static overlap between equilibrium configura-
tions in a glass-forming liquid approaching the glass transition. We find that the emergence of slow
dynamics near the onset temperature correlates with the development of non-Gaussian probability
distributions of overlap fluctuations, measured using both annealed and quenched definitions. Below
a critical temperature, a thermodynamic field conjugate to the overlap induces a first-order phase
transition, whose existence we numerically demonstrate in the annealed case. These results establish
that the approach to the glass transition is accompanied by profound changes in the nature of ther-
modynamic fluctuations, deconstructing the view that glassy dynamics occurs with little structural

evolution.

PACS numbers: 05.10.-a, 05.20.Jj, 64.70.Q-

Theoretical approaches to the physics of glass-forming
materials are broadly organized in two categories [1]. A
first class of theories concentrates on thermodynamic as-
pects, typically starting from a description of (assumed)
relevant structural features of viscous liquids (configu-
rational entropy, geometrical motifs, free volume), from
which slow dynamics is predicted to emerge [2]. A sec-
ond class of models is based on the opposite view that
the thermodynamics of viscous liquids is not evolving in
any essential way, and focuses directly on relaxational
aspects. This dynamical viewpoint is justified by the ob-
servation that the structure of viscous liquids does not
seem to differ drastically from that of simple liquids, at
least at the level of two-body static correlations. In re-
cent years, this view gained support as it can directly
be connected to detailed studies of dynamic heterogene-
ity in glassy materials [3], which have unambiguously
established that nontrivial spatio-temporal fluctuations
accompany the glass transition [4].

In this work, we show that nontrivial, measurable ther-
modynamic fluctuations develop in supercooled liquids
approaching the glass transition. We characterize their
nature and show that they are also intimately related
to dynamics. To obtain these results, we analyze the
thermal fluctuations of a thermodynamic quantity, the
overlap between equilibrium configurations. The physi-
cal motivation is that if the glass transition is controlled
by a sharp decrease in the number of available metastable
states [5] possibly leading to the entropy crisis first dis-
cussed by Kauzmann [6], it should then become more
likely for two independent equilibrium configurations to
belong to the same state, and thus to have a large mu-
tual overlap. Therefore, thermal fluctuations of the over-
lap, just as the more technical construction of point-to-
set correlations [7], should directly reveal and quantify
the emergence of growing structural correlations in glass-
forming liquids approaching the glass transition.

In the context of supercooled liquids, the fluctuations
of the overlap @ between equilibrium configurations have

first been analyzed for spin glass models displaying a
random first order transition (RFOT) [8, 9], where the
overlap distribution is needed to characterize the low-
temperature phase. However, the overlap is also useful
above the glass transition, as it allows the introduction
of a Landau free energy V(Q), also called ‘effective po-
tential’ [10]. The potential was shown theoretically to
capture the temperature evolution of RFOT free energy
landscapes. In the mean-field limit where these concepts
are well-defined, V(Q) loses convexity when metastable
states first appear, it then develops a local minimum at
the mode-coupling singularity, which becomes the global
one at the ‘ideal’ or Kauzmann glass transition [10].
Direct measurements of V(@) in finite dimensions are
scarce and conflicting [11-14]. Tt was found to display
none of the mean-field features in two lattice glass mod-
els [12, 13], while a recent investigation using soft spheres
suggests a change in the convexity of V(Q) near the
mode-coupling temperature [14].

The potential V' (Q) also serves as a starting point for
field-theoretical calculations attempting to extend RFOT
results to finite dimensions [15-19]. These calculations
additionally suggest that the RFOT mecan-field landscape
is highly fragile with respect to finite dimensional fluctu-
ations [20], which could even affect the universality class
to be considered [21]. Since these findings directly chal-
lenge the relevance of a thermodynamic perspective to
supercooled liquids, detailed studies of V(@) in finite di-
mensions are needed.

A more direct interpretation of the effective potential is
obtained from its definition as a ‘large deviation’ function
for the equilibrium fluctuations of the overlap,

P(Q) ~ exp[-BNV(Q)], 1)

where P(Q) is the probability distribution of equilib-
rium overlap fluctuations in a system with N particles
at temperature 7 = B~ 1 (we set Boltzmann’s constant
to unity). Equation (1) shows that the temperature evo-
lution of V(Q) directly affects the nature of thermal fluc-
tuations of the overlap, and also suggests a conceptually



simple way of measuring V(Q). Interestingly, Eq. (1)
provides a direct connection with dynamical views of
glasses. Recently, large deviations of dynamical observ-
ables have been analyzed [22]. The emergence of spa-
tially heterogeneous dynamics was related to the ap-
pearance of non-Gaussian (nearly exponential) probabil-
ity distributions of dynamic fluctuations. Equivalently,
these broad tails imply that a field conjugated to the
dynamic activity should induce a nonequilibrium first-
order phase transition between two phases with distinet
dynamics, as observed numerically [23, 24]. While the
existence of long-lived metastable states (as in RFOT)
is sufficient to explain these dynamic fluctuations and
nonequilibrium transitions [25], alternative explanations
with trivial thermodynamics also exist [23]. Therefore,
establishing the existence of thermodynamic observables
obeying a phenomenology similar to dynamic ones will
provide a concrete bridge between static and dynamic
viewpoints [26].

We use computer simulations to analyze static fluctu-
ations of the overlap in a simple numerical model of a
glass-forming material. We consider a 50:50 binary mix-
ture of harmonie spheres [27] of diameter ratio 1.4, which
we study using Monte Carlo dynamics. The Hamiltonian
reads H({r}) = >_ j>i 1(%“—') with the harmonic pair

interaction v(r < 1) = %(1 —r)?, truncated for distances
larger than the mean diameter o;; = %(U.; + oj), and
{r} = (r1,---,r,). For the density p = 0.675 (using the
small particle diameter as unit length), this model be-
haves as a binary hard sphere mixture [27], which is a well
established model to analyze the glass transition. It is
characterized by an onsct temperature around Ty, =~ 10,
and a mode-coupling temperature Ty, = 5.2, with tem-
peratures expressed in units of 107%F [29]. The overlap

(712 between configurations 1 and 2 is defined as

N
1
Quz =+ > 0a—|ri: — o)), (2)

=1

where () is the Heaviside function, ry ; denotes the po-
sition of particle i within configuration 1, and we take a =
0.3. By definition, 1; = 1, while (12 is small for uncor-
related configurations. (of order ~ %ﬁpa“ = Qrand < 1).
Note that exchanging the positions of two particles does
not decrease (J12. Therefore, the overlap represents an
‘agnostic’ measure of the degree of similarity between two
amorphous density fields, with no reference to a specific
type of structural order.

By definition, V(@) represents the free energy cost to
maintain two thermalized copies of the liquid at a fixed
value of their mutual overlap. Formally, this amounts to
performing the following ‘quenched’ calculation:

LT o~ 512 I
V@ =~ [ g [driet5(@ - Q)

(3)

where Hy = H({r1}) and Hs = H({r2}), while Z5 is
the corresponding partition functions. In Eq. (3), the
thermal fluctuations of @2 are first probed for a fixed
configuration 2 drawn from the equilibrium distribution,
and then the logarithm of the probability distribution is
averaged by sampling independent configurations.

This procedure is numerically demanding as it requires
two successive averages. A simpler, but approximate,
procedure is to use an ‘annealed’ definition:

T . ‘
Va(Q) = —log /[drgdrlc BHz A §((Q) — Q12), (4)

where configurations 1 and 2 are fluctuating simultane-
ously, and no disorder average is needed.

Direct measurements of V(@) are difficult because typ-
ical fluctuations of ) are small compared to the average
value = Qrana. To probe large deviations of the over-
lap, we use umbrella sampling techniques to measure the
statistical weight of untypical values of the overlap. In
practice, we use for each temperature T a series of n
independent simulations, each simulation being biased
by a Gaussian perturbation to the original Hamiltonian,
Wi(Q) = ki(Q — Q;)?, for (i = 1,---,n), which biases
the overlap towards a desired value Q; € [Qrand, 1]. We
make sure that each independent simulation first reaches
the (biased) equilibrium, and that simulations are long
enough that they can properly sample equilibrium flue-
tuations in the biased phase space. Thus, each simu-
lations returns the measurement of the (biased) proba-
bility distribution functions, P;(Q). We then use multi-
histogram reweighting methods to reconstruct the unbi-
ased probability P(Q) from the n independently mea-
sured P;(QQ) [30],

i B(Q)
T
where the Z; are defined self-consistently as

o i Bi(@) :
Z-f-. - L dQ Z;:l eﬁ{H,vi_.Wj)/Zj . (())

P(Q) = (5)

We find that up to 16 independent simulations are needed
to accurately reconstruct P(Q) over the entire relevant
range, depending on the system size studied, N = 64,
108 and 256, and on the temperature, T > 7. We were
not able to properly sample fluctuations for T < 7 (and
thus closer to Tinet). The more demanding simulations
are for large @, large V and low T'. Up to 40 independent
samples were used for the disorder average in Eq. (3). Fi-
nally, note that using biasing potentials W;(Q) efficiently
solves the problem (first discussed in Ref. [11]) of trans-
lational and rotational invariances in Eqgs. (3, 4).

We present in Fig. 1 the numerical results obtained for
both V(@) and V,(Q) in harmonic spheres for a range of
temperatures, 7 = 7, which thus encompasses the onset
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FIG. 1: Temperature evolution of effective potential using (a)
annealed and (b) quenched averages, for N = 108 particles.
Very similar behaviour is obtained for N = 64 and N = 256
(not shown). Data are vertically shifted data at different T’
such that V(Q) = 0 at the low-Q mininum. Dashed lines
represent straight lines, and temperature decreases from top
to bottom.

of slow dynamics. These results indicate that thermal
fluctuations of the overlap become broader as temper-
ature is lowered and deviate increasingly from a Gaus-
sian behaviour, which would correspond, via Eq. (1), to
a parabolic V(Q). As suggested by the dashed lines, the
fluctuations are well described for temperatures 7" < 10
and for intermediate Q by an exponential behaviour.
Note that for the annealed case at the lowest T the po-
tential is clearly not convex, at least for this moderate
system size [31]. Overall, this behaviour is in excellent
agreement with results obtained within mean-field mod-
els displaying a RFOT, where the convexity of V4(Q)
is lost below To,. For finite dimensional systems, con-
vexity should be restored through the emergence of in-
terfaces and phase separation between high-Q and low-@)
phases [14], therefore yielding exponential decay in P(Q),
and thus linear behaviour for V(Q) ~ —T'log P(Q), as
observed in Fig. 1. We find quantitative, rather than
qualitative, differences between V, and V. The main
effect of the quenched disorder in these data is to intro-
duce an additional source of fluctuations which depresses
slightly the emergence of exponential decay from T' ~ 10
for the annealed case to T ~ 8 for the quenched case.

Tt is remarkable that V' (@), which quantifies the ther-
mal fluctuations of a purely static observable, loses con-

vexity near (or slightly below) the onset temperature.
Below Ty, time correlation functions develop a two-step
decay, and dynamics become spatially heterogeneous.
Our results are thus qualitatively distinct from the emer-
gence of non-Gaussian fluctuations of dynamic observ-
ables [22], and they demonstrate that thermodynamic
fluctuations are (at least) as relevant as dynamic ones.
The physical interpretation of the behaviour of V(Q) of-
fered by RFOT is that Ty, marks the emergence of many
metastable states, whose number decreases as tempera-
ture is lowered further. This makes it more and more
likely for two configurations drawn at random to belong
the same state and thus to have a large mutual overlap,
as observed in Fig. 1. This also suggests that the driving
force for structural relaxation is reduced at low T', which
is the RFOT theory explanation for the slowing down of
the dynamics [32].

A direct, but spectacular, consequence of the loss of
convexity of V(Q) is that a field conjugated to the over-
lap should induce an equilibrium first-order phase transi-
tion [10, 33-36], because its main effect is to ‘tilt’ the po-
tential towards large @) values. Physically, this amounts
to studying the phase diagram of two coupled copies of
the same system:

Hiot({r1}, {ra}) = H({r1}) + H({r2}) —eQ12.  (7)

In the quenched version, copy 2 is drawn from the equi-
librium distribution, the thermal properties of copy 1
are measured and then averaged over independent copies
2. In the annealed scheme, the copies evolve simultane-
ously under the influence of Hiot, in Eq. (7). Generalizing
Eq. (5) to take into account the presence of the thermo-
dynamic field €, we directly estimate P(Q), €) from the set
of numerical simulations described above. We can then
explore relevant features of the (T, ¢) phase diagram.
We present in Fig. 2 our main findings for the anncaled
case, which establish the existence of first-order phase
transition terminating at a second order critical point.
Figure 2a shows the evolution of isotherms €(Q), in a
representation which underlies the analogy with the stan-
dard liquid-gas coexistence region. While @ increases
smoothly with € at high temperature, it develops a sharp
jump as temperature becomes lower than 7' ~ 10. By
construction, this must correspond to the temperature
where V,(Q) loses convexity in Fig. 1. A stronger indica-
tion of the emergence of a first-order phase transition is
obtained by measuring the fluctuations of the overlap at
finite €, as shown in Fig. 2b. While the fluctuations are
nearly Gaussian for small and large values of the cou-
pling field, they are clearly bimodal at intermediate e,
with peak positions revealing the values of the overlap in
the coexisting two phases. Finally, Fig. 2c presents data
for the static susceptibility x(Q, €) = N[(Q?) —(Q)?]. In-
creasing € at constant 7" we find that y displays a maxi-
mum at a well-defined value of the field, which coincides
with the value for which P(Q) is bimodal. We report
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FIG. 2: Numerical indications of a thermodynamic first-order
equilibrium phase transition ending at a critical point near
(T. = 9.8, e« ~ 10). (a) Isotherms ¢(Q) for N = 256,
the dashed coexistence line is drawn using the d = 3 Ising
model critical exponent. (b) Probability distribution of over-
lap fluctuations across the first-order transition at 7' = 8 and
N = 108, the coexistence occurring near € ~ 6.17. (c) Tem-
perature evolution of the maximum of the static susceptibility
for different system sizes.

the temperature evolution of this maximum for various
system sizes in Fig. 2c. These data indicate that fluctua-
tions are enhanced with increasing NV at low enough tem-
perature, supporting the existence of a first-order phase
transition in the thermodynamic limit below a critical
temperature T, which is expected to be in the same uni-
versality class as the d = 3 Ising model [37]. Indeed, our
data are compatible with x ~ L% at low-T, while the
data for x/LY/* cross near T, ~ 9.8 & 1. when using the
3d Ising values of the critical exponents. We note that

the isotherms in Fig. 2a are well-described below T, by a
jump in Q increasing as AQ ~ (e, — €)” using again the
Ising value for 8 and €. ~ 10. By contrast, the quenched
coupling is believed to be in a different universality class,
the one of the random field Ising model [38]. We would
need data at lower temperature to test this interesting
prediction, a task we leave for future work.

The present results unambiguously demonstrate the
emergence of strongly non-Gaussian thermodynamic fluc-
tuations in a three-dimensional, bulk supercooled liquids
approaching its glass transition. This is also revealed by
the existence, which we establish using finite size scal-
ing analysis, of an equilibrium first-order phase transi-
tion in the (7, ¢). Such a phase transition was hinted in
earlier numerical studies [14, 35, 36], but thermalization
and sampling issues, finite size effects, the location of the
critical point and its connection with the onset of slow
dynamics had not been discussed.

This shows that the nature of V(Q) in finite dimen-
sional liquids is compatible with the mean-field RFOT
starting point used in field-theoretical calculations, and
seems to contradict the claim that a different form of the
potential should be used [21]. Tt also shows, somewhat
surprisingly, that mean-field results are more robust for
real liquids than for more abstract spin glass models [20].

Interestingly, the present first-order transition is more
easily studied numerically than the transition induced
by a random pinning field recently analyzed for the same
model [39]. While both transitions result from the unique
properties of RFOT free energy landscapes, only the lat-
ter corresponds to an ideal glass transition line [40], of
the type possibly occurring in bulk liquids at low tem-
perature. It would be interesting to perform a finite size
scaling analysis of the type presented here for the random
pinning case as well.

Although of purely thermodynamic origin, the present
phase transition shares in fact many similarities with the
nonequilibrium transition induced by a field conjugate
to the dynamic activity [23]. Both are first-order transi-
tions induced by an external biasing ficld and differ qual-
itatively from the bulk glass transition. Their qualitative
similarity is further demonstrated by the observation that
the jump in the overlap reported in Fig. 2a is accompa-
nied by a sharp change in the dynamics. We find for
instance a decrease of 3 decades of the self-diffusion con-
stant for "= 9 when the overlap jumps from 0.25 to 0.7.
This shows that a first-order change of the dynamic ac-
tivity can in fact be easily triggered by a thermodynamic
field in fully equilibrium conditions. Combined to the re-
sults in Ref. [25], our work suggests that non-equilibrium
first-order transitions in space-time are natural conse-
quences of the emergence of a non-trivial effective poten-
tial V(Q), which efficiently captures the complexity of
the underlying free energy landscape.

More generally, the parallel evolution of static and dy-
namic fluctuations unveiled here suggests that the tem-



perature evolution of thermodynamic fluctuations drives
the slow dynamics in glass-forming liquids, deconstruct-
ing the familiar view that glassy dynamics occurs with
little structural evolution.
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