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High resolution measurements reveal that condensation isotherms of 4 He in a silica aerogel become discontinuous below a critical temperature. We show that this behaviour does not correspond to an equilibrium phase transition modified by the disorder induced by the aerogel structure, but to the disorder-driven critical point predicted for the athermal out-of-equilibrium dynamics of the Random Field Ising Model. Our results evidence the key role of non-equilibrium effects in the phase transitions of disordered systems.
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The Ising model has a central role in statistical physics. At the root of the critical scaling concept in clean systems, it is also a prototype to study the effect of disorder on phase transitions. In the Random Field Ising Model (RFIM), the key question is whether a random local magnetic field acting on the Ising spins destroys the order induced by the spin coupling. After years of fierce theoretical debate, it is now accepted that, in three dimensions and at low temperature, an ordered phase should exist below a critical disorder strength [1,2]. The experimental situation is not that clear-cut. In magnetic systems, the mixing of random field and random exchange effects makes the situation complex. As proposed thirty years ago [3,4], the condensation (or the demixion) of (binary) fluids in disordered porous media should offer an alternative testing ground for the theory. Indeed, the pure Ising model and the liquid-vapor (or demixing) transition fall in the same universality class, and the preferential attraction of the substrate for one phase is equivalent to the effect of a random field. However, while early experiments conducted in Vycor, a porous glass, were originally interpreted in terms of a random-field transition [5][6][7], the observations could also be accounted by wetting effects in a confined, non-random, geometry [8]. Subsequently, a breakthrough came when Wong and Chan measured in 1990 the condensation isotherms of helium in very porous silica aerogels, and found that their shape changed from discontinuous to continuous at a temperature below the bulk critical temperature [9]. The same behavior has been observed for the condensation of nitrogen [10], and the demixion of binary fluids inside silica gels [11], and similarly interpreted in terms of the equilibrium behavior of the RFIM. But, although these results still greatly influence present researches [12], further studies demonstrated that the condensation of helium in aerogels is reversible only very close to to the bulk critical temperature, in which case the condensation isotherms are always smooth [13,14]. A steepening of the isotherms was only observed at lower temperatures [15],

where condensation and evaporation are strongly hysteretic, rising the question whether the equilibrium state is really reached. In fact, these observations have been suggested [16] to result from a totally different phenomenon, introduced by Sethna et al. [17,18] for the RFIM, and extended to condensation of fluids in highly porous random materials by Kierlik et al. [19], namely the occurence of an out-of-equilibrium disorder-driven critical point. In this Letter, we report experiments which demonstrate the reality of this new paradigm.

The key feature of the Sethna et al. theory [17,18] is to consider the RFIM model in the athermal limit, where the disorder-induced barriers cannot be overcome by thermal activation. As the external field H is swept up, the magnetization M then reverses from negative to positive by a series of avalanches [20], corresponding to flips of spin clusters taking place for specific values of H. Remarkably, below a critical value for the ratio of disorder strength to spin coupling, the largest avalanche becomes macroscopic. Correspondingly, the M (H) curve which is smooth above the critical disorder, presents a jump below. Although similar to the one occurring at an equilibrium paramagnetic-ferromagnetic critical point, this change of shape has a totally different origin, which Sethna et al. emphasize by using the term of disorder-driven critical point. Although in principle universal, disorder-driven critical points have only been experimentally reported in two magnetic systems [21,22]. In both cases, however, the critical exponents deduced from a scaling analysis of the M (H) curves differ from the values predicted for the 3D athermal RFIM [23]. As in the equilibrium case, this may result from the presence of antiferromagnetic interactions [22].

A Sethna et al.-like transition has been predicted for condensation of fluids confined in random disordered porous materials by Kierlik et al. [19]. Using a local mean-field approach, these authors show that the analog of the magnetisation curve, the condensation isotherm Φ(P ), where Φ is the liquid fraction, and P the pressure, presents a change of shape similar to the one predicted within the athermal RFIM for decreasing disorder [24]. It takes place when increasing the porosity [24] or decreasing the temperature at constant, large enough, porosity [25]. In this paper, we observe such a disorder-driven transition for the condensation of helium into a high porosity aerogel (95% porosity, density 102 g/L) synthetized by a onestep process at pH = 9 [START_REF] Phalippou | Handbook of sol-gel Science and Technology -Processing characterization and application[END_REF] [START_REF]Aerogels grown in basic pH are an experimental realization of the numerical gels studied in ref[END_REF]. We obtain four major results: (i) using optical means to resolve on a local scale the condensation process, we evidence the predicted transition from discontinuous (vertical) to smooth isotherms; (ii) we demonstrate unambiguously the non-equilibrium nature of this transition; (iii) in ageement wih theory, the occurence of the transition depends on the pressure history; (iv) in contrast to simple expectation, the macroscopic avalanche does not follow from some purely geometric capillary instability [4].

Our aerogel was grown as a 3.7 mm thick, 13 mm diameter cylinder between Teflon plates to obtain surfaces of good optical quality, and moved to a copper cell closed by two sapphire windows. Condensation of 4 He is studied in an optical cryostat between 4.4 K and the bulk critical temperature, T c ≈ 5.2 K. The cell temperature is regulated within 10 µK. The temperature heterogeneity within the aerogel resulting from the absorption of the 300 K infrared radiation transmitted through the cryostat windows is estimated smaller than 1 µK [START_REF] Melich | [END_REF]. Blocking this IR radiation using shutters thermalized at 4 K has no influence on the isotherms, nor on our optical measurements [START_REF] Melich | [END_REF]. Condensation is performed at a fixed flowrate by heating between 80 K and 180 K an external reservoir connected to the cell [29]. The typical condensation time is 10 to 20 h, long enough for the isotherm shape to be independent of the flowrate. P is measured at room temperature by a pressure gauge connected to the cell by a separate capillary, with a resolution of 10 µbar. The amount of for the fully filled sample, the small and uniform brightness is due to the silica background scattering. When approaching the steep part of the condensation isotherm, the scattered signal starts to grow, showing that the fluid density becomes heterogeneous at the scale of the optical wavelength [16]. At 4.40 K, above Φ ≈ 0.3, the pictures become macroscopically heterogeneous: the central bright region is surrounded by a darker region corresponding to the fully filled state of the aerogel. This shows that the aerogel does not fill uniformly. As more 4 He is added to the cell, the bright region recesses. Scanning the aerogel with the laser sheet evidences that the bright region always collapses in the same outer part of the aerogel when Φ → 1 (Fig. 2(c)). This implies that the non uniform condensation does not result from fluid transport from the surface to the center of the sample, but from some heterogeneity of the sample. scattered at 135 • from a region corresponding to one CCD pixel [START_REF]The choice of 135 •[END_REF]. Taking into account the pixel size and the laser sheet thickness, this corresponds to a parallelepipedic region about 50 µm wide and high, and 70 µm deep. This is much smaller than the sample size, but much larger than the aerogel microscopic scales (the silica correlation length is estimated around 10 nm [16]). In practice, because the probed region is locally homogeneous in the vertical direction, we improve the signal-to-noise ratio by averaging I 135 in a vertical rectangle about (ii) Non-equilibrium nature of the transition

In the spirit of ref. [9], this change of shape, together with the coexistence of bright and dark regions in Fig. 2, could be interpreted in terms of a first order equilibrium phase transition between a gas-like phase (inside the bright region) and the liquid phase. In this interpretation, T * would be the transition critical temperature, shifted below T c due to disorder, while the observed hysteresis would be explained by the pinning of the macroscopic interface between the two presumed phases. Hysteresis should then be absent above T * , where the concept of interface has no meaning. This is not the case as hysteresis is observed up to 5.16 K, well above T * [14]. Moreover, optical measurements show that the fluid distribution in the gas-like region is not the same on condensation and evaporation, directly

showing that this region does not correspond to a true thermodynamic phase. This is illustrated by figure 4(a) which shows pictures taken at 4.60 K (< T * ) when reverting from condensation to evaporation before the aerogel is fully filled. Starting from the empty state, we condense up to the pressure P B , where the dot in Fig. 4(a) is just filled (picture B), then evaporate by decreasing the pressure. In the interpretation of a pinned interface, one would expect, once the pressure reaches the pressure P D of the evaporation branch of the full hysteresis loop, the interface to move backwards, retracing in reverted order the same states than during filling. This is not observed. At P D , when the dot starts to empty, its state differs from the state upon filling, as indicated by the increased local brightness (picture D and fig. 4(b)). This set of results excludes that the abrupt condensation below T * corresponds to an equilibrium phase transition.

(iii) History dependence

We now identify this phenomenon to the out-of-equilibrium transition predicted by Sethna et al. by studying its dependence on history. From results on the athermal RFIM on a random graph [START_REF] Pérez-Reche | [END_REF], one expects that, starting from an empty aerogel, a macroscopic jump of ϕ follows from a reentrance of the outer envelope of the distribution of metastable states in the (P, ϕ) plane, as, for this initial condition, condensation proceeds along this envelope. For length. One could then interpret the abrupt condensation below T * as a capillary instability of the microscopic liquid-vapor meniscii connecting neighboring silica strands, a scenario first introduced by de Gennes [4]. The abrupt condensation event should then take place for a given meniscii configuration, independently on temperature, hence for a given average size of the liquid microdomains. This is not the case. While, at a given temperature, the value of I 135 just before full condensation (i.e. the value of I 135max in Fig. 3) is the same across the aerogel width, consistent with the macroscopic avalanche occurring for a given average size of the liquid microdomains, this size depends on temperature. To show it, we have measured the scattering anisotropy, as given by the ratio of the intensities scattered at 45 • and 135 • , after subtraction of the silica background [34]. This ratio increases from 2 at 4.40 K up to 5 at 4.70 K, implying that the size of the liquid microdomains at the avalanche threshold increases with temperature. This behavior is in qualitative agreement with preliminary simulations within the Kierlik et al.'s model [START_REF] Aubry | La condensation de l'hélium 4 dans les aérogels : une réalisation expérimentale du RFIM athermique[END_REF].

Conclusion

Our measurements demonstrate that, despite the finite temperature, the concept of athermal, out-of-equilibrium, dynamics accounts for the process of fluid condensation into our 95% porosity aerogel. We confirmed the universal character of this concept by measurements on a lighter (98.5%) aerogel [36]. The larger value of T * measured in this case agrees with the theoretical expectation that T * increases when disorder decreases [START_REF] Detcheverry | [END_REF]. Our results lead to revisit earlier experiments [9][10][11] where a change of the isotherms shape has been interpreted in terms of a disorder-shifted equilibrium critical point. Similarly to our case, it could rather result from an out-of-equilibrium critical point. As hysteresis occurs on both sides of T * in the out-of-equilibrium scenario, this would naturally explain the slow dynamics reported above T * in these experiments. While our results thus suggest that observing a true equilibrium behavior in RFIM-like disordered systems could be challenging, they also show the pertinence of non-equilibrium concepts to describe the properties of first-order phase transitions in presence of disorder.

We acknowledge fruitful discussions with J.C. Anglès d'Auriac, E. Kierlik, and M. L. Rosinberg, and support from ANR-06-BLAN-0098.
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 1 Figures 1(a) and (b) show the full hysteresis loop at 4.40 K and 4.95 K, and details of its condensation branch for T decreasing from 5.06 K to 4.40 K. The isotherms become steeper as the temperature decreases, but their slope saturates at low temperature: at 4.40 K, the aerogel fills over a range of 500 µbar. As shown by optical measurements, this finite width results from the macroscopic heterogeneity of our sample, which masks a disorder-driven transition occuring close to 4.7 K.

Figure 2 (

 2 Figure 2(a) shows our optical set-up. The sample is illuminated with a 50 µm thick HeNe laser sheet at a 45 • angle with respect to the cylinder axis, and the thus defined slice is imaged at 45 • and 135 • from the incident direction. Figure 2(b) shows the same slice for

  Figure 2(b) shows the same slice for increasing values of Φ for two temperatures [30]. In both cases, at low liquid fraction, or
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 1 FIG. 1. (color online) (a) Hysteresis between adsorption and desorption isotherms at T = 4.40 K and 4.95 K. P sat (T ) is the bulk vapor pressure. (b) Adsorption isotherms for T = 4.40 K, 4.50 K, 4.60 K, 4.70 K, 4.80 K, 4.90 K, 4.95 K and 5.06 K. P (T ) is the pressure at which the slope of the isotherm is maximum. The y scale applies to the 4.40 K curve, the other curves are vertically shifted by 0.2 for clarity.
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 33 FIG. 2. (color online) (a) Positions of the laser sheet and of the CCD cameras relative to the aerogel. (b) Pictures of the illuminated region (1 cm height) taken with the 135 • CCD (logarithmic grayscale) at increasing liquid fractions (given above the pictures) during isotherms at T = 4.40 K and 4.95 K. The arrows show the corresponding points on the isotherms. (c) Perspective view of a 3D tomographic reconstruction (see text) close to the end of the condensation isotherm (Φ ≈ 0.95) at 4.60 K. The bright region, i.e. the not yet filled part of the aerogel, is located in its left part.

  such a distribution, illustrated in fig. 4(c), filling from an only partly emptied initial state should suppress the jump. As shown by figure 4(b), this is indeed the behavior observed for the dot of figure 4(a): When starting from P D , where it was only partly emptied, the dot continuously fills (its scattered signal continuously decreases to the liquid state value, unlike what observed when filling from the fully emptied state.) (iv) Microscopic origin of the abrupt condensation At 4.7 K, liquid and gas can be discriminated on the scale of the aerogel correlation

FIG. 4 .

 4 FIG. 4. (color online) (a) Central parts of pictures taken along a minor hysteresis loop at T = 4.6 K (< T * ). (b) Corresponding optical signal from the dot in Fig. 4(a) as a function of pressure. In chronological order, dark grey/red : initial filling; black: partial emptying; light grey/green: filling from the partially emptied state. (c) Hypothetical distribution of metastable states (shaded area, only shown for P > P D ) in the (P, ϕ) plane, and paths deduced from the local optical signal in Figs. 4(a) and (b).

He inside the aerogel, computed by subtracting the contents of the external reservoir and of the dead volumes from the total known amount in the system, is converted to a global liquid fraction Φ as described elsewhere[16].