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This paper studies large sample properties of the matrix exponential spatial specification (MESS). We find that the quasi-maximum likelihood estimator (QMLE) for the MESS is consistent under heteroskedasticity, a property not shared by the QMLE of the SAR model. For the general model that has MESS in both the dependent variable and disturbances, labeled MESS(1,1), the QMLE can be consistent under unknown heteroskedasticity when the spatial weights matrices in the two MESS processes are commutative. We also consider the generalized method of moments estimator (GMME). In the homoskedastic case, we derive a best GMME that is as efficient as the maximum likelihood estimator under normality and can be asymptotically more efficient than the QMLE under non-normality. In the heteroskedastic case, an optimal GMME can be more efficient than the QMLE asymptotically. The QML approach for the MESS has the computational advantage over that of a SAR model. The computational simplicity carries over to MESS models with any finite order of spatial matrices. No parameter range needs to be imposed in order for the model to be stable.

Results of Monte

Carlo experiments for finite sample properties of the estimators are reported. Finally, the MESS(1,1) is applied to Belgium's outward FDI data and we observe that the dominant motivation of Belgium's outward FDI lies in finding cheaper factor inputs.

Introduction

The Matrix Exponential Spatial Specification (MESS) has been initially proposed by [START_REF] Lesage | A matrix exponential spatial specification[END_REF] as a substitute to the well-known spatial autoregressive (SAR) specification. The difference between the two rests on the type of decay which characterizes the influence of space. The MESS uses an exponential decay while the SAR specification is based on a geometrical decay. The motivation of these authors to use the MESS is its computational simplicity. Indeed, in contrast to the SAR, the quasi-maximum likelihood (QML) function of the MESS does not involve any Jacobian of the transformation and thus reduces to a nonlinear regression estimation. This is so even for its extension to models with a finite number of spatial weights matrices. A second advantage of the MESS is the absence of constraints on the parameter space of the coefficient that captures interactions between observations since the reduced form of the MESS always exists (see [START_REF] Chiu | The matrix-logarithmic covariance model[END_REF]. Furthermore, no positivity constraint on the Jacobian of the transformation needs to be imposed as it does not appear in the quasi log-likelihood function. In Section 2, we nevertheless show that MESS and SAR models cannot be seen as perfect substitutes since neither a one-to-one correspondence between the parameters capturing interactions nor between impacts (except in some specific cases) can be derived. Furthermore, a MESS model is always a stable spatial process, but a SAR model with strong spatial interaction might be unstable. 2A third advantage of the MESS, proved in this paper, is that the quasi-maximum likelihood estimator (QMLE) is consistent even in the presence of unknown heteroskedasticity, a feature not shared by the SAR model (see Lin and Lee, 2010, p. 36). These two authors have however shown in this SAR context that a Generalized Method of Moments Estimator (GMME) with properly modified quadratic moment conditions could still be consistent in presence of unknown heteroskedasticity. 3 Using quadratic moment conditions similar to those in [START_REF] Lin | GMM estimation of spatial autoregressive models with unknown heteroskedasticity[END_REF], we derive an optimal GMME consistent in presence of unknown heteroskedasticity and also generally more efficient with respect to the QMLE (with either normal or nonnormal disturbances). The relative efficiency of the optimal GMME results from the optimal weighting of the GMM estimation method which uses the same moments that the QMLE integrates. In the homoskedastic case, we derive a best (optimal) GMME that is as efficient as the MLE under normality and can be more efficient than the QMLE under non-normality. 4 The best GMME takes a much simpler form than that for the SAR model and the optimal orthogonal conditions do not involve any estimated parameters 5 .

Even though [START_REF] Lesage | A matrix exponential spatial specification[END_REF] present the maximum likelihood and Bayesian estimators of the MESS, no asymptotic theory has been derived for this specification. In this paper, we focus our attention on the general model where a MESS is present in both the dependent variable and in the error terms (MESS(1,1) for short), and develop large sample properties for QML and GMM methods under both homoskedastic and heteroskedastic cases. 6 In the homoskedastic case, the best GMME for models with normal disturbances or commutative spatial weights matrices in the MESS(1,1) is as efficient as the QMLE but generally more efficient than the QMLE for other ones. In the (unknown) heteroskedastic case, the QMLE for the MESS(1,1) can be consistent only when the spatial weights matrices for the MESS in the dependent variable and in disturbances are commutative, but it is less efficient than an optimal GMME. If different variances in the heteroskedastic case could be estimated consistently, a best GMME could also be implemented. 7 We also perform Monte Carlo experiments to assess the small sample performance of our proposed estimators.

Analysis of significance of determinants' causal effects on the dependent variable is of interest for economists. In this paper, we derive a lemma allowing to perform inference on the elements of the matrix of impacts implied by the reduced form of the MESS(1,1). The lemma is based on an adapted version of the Delta method and can be used to test the significance of (functions of) impacts as long as the number of constraints is not dependent on the sample size. This lemma is valuable for applied economists since until now, with the exception of [START_REF] Lesage | Introduction to spatial econometrics[END_REF] who provide inference for scalar summaries of these impacts in the SAR model either by simulating the distributions or estimating them via Bayesian methods, 8 there does not exist any classical statistical test to assess the significance of (functions of) individual impacts.

The developed estimators are finally applied to a modified gravity equation aimed at explaining Belgium's outward FDI. [START_REF] Blonigen | FDI in space: Spatial autoregressive relationships in foreign direct investment[END_REF] propose four different classifications of FDI which can be distinguished based on the sign of spatial autocorrelation and market-potential of host countries. In addition to obtaining significant and expected signs for the traditional variables included in the gravity model when spatial autocorrelation is accounted for, namely GDP, population and bilateral distance, we find a significant negative spatial autocorrelation and a positive but non-significant market potential effect for hosts countries.

Thus vertical FDI is the dominant type of outward FDI for Belgium. We further compare MESS(1,1) and 5 See [START_REF] Lee | Best spatial two-stage least squares estimators for a spatial autoregressive model with autoregressive disturbances[END_REF][START_REF] Lee | GMM and 2SLS estimation of mixed regressive, spatial autoregressive models[END_REF] for further details. 6 In a supplementary file, we consider the QML estimation of a high order MESS, namely MESS(p,q), with p and q being the orders of the MESS in the dependent variable and in the errors respectively. While the parameter spaces for high order SAR models can be hard to find [START_REF] Lee | Efficient GMM estimation of high order spatial autoregressive models with autoregressive disturbances[END_REF][START_REF] Elhorst | On model specification and parameter space definitions in higher order spatial econometric models[END_REF], high order MESS models have the advantage that the parameter spaces are not restricted.

7 For the SAR model under unknown heteroskedasticity, [START_REF] Lin | GMM estimation of spatial autoregressive models with unknown heteroskedasticity[END_REF] have not discussed the possible best GMME.

8 See [START_REF] Elhorst | Applied spatial econometrics: Raising the bar[END_REF] for a step-by-step explanation on how to simulate the distributions.

SARAR results and show that their economic conclusions in terms of impacts are very similar. However, the MESS, for several reasons, namely computational, technical and statistical, can be more appealing. Finally, statistical significance on impacts is analyzed through the application of the derived lemma for inference.

The rest of the paper is organized as follows. Section 2 compares MESS and SAR models in a more formal way. Section 3 considers the large sample properties the QML and GMM estimators under both homoskedasticity and unknown heteroskedasticity. It also derives a lemma to perform inference on the elements of the matrix of impacts of explanatory variables obtained from the reduced form of the MESS(1,1).

Section 4 presents Monte Carlo experiments while Section 5 presents the application of our estimators and applies the lemma for inference on the determinants of Belgium's outward FDI. Section 6 concludes. Some lemmas and proofs are collected in Appendix A. 9

Comparison of MESS and SAR Specifications

The MESS in LeSage and Pace ( 2007) is

e αWn y n = X n β + ǫ n , ǫ n = (ǫ n1 , . . . , ǫ nn ) ′ , (1) 
where n is the sample size, y n is an n-dimensional vector of observations on the dependent variable, X n is an n × k matrix of exogenous variables with corresponding coefficient vector β, W n is an n × n spatial weights matrix modeling interactions among observations (with zero diagonal elements), ǫ ni 's are independent with mean zero, and α is the parameter measuring the intensity of interactions between observations. For any n × n square matrix A n , let A 0 n be the n × n identity matrix I n . The matrix exponential e αAn , defined as

e αAn = ∞ i=0 α i A i n i!
, is always invertible, with the inverse being e -αAn [START_REF] Chiu | The matrix-logarithmic covariance model[END_REF]. As a result, the variance-covariance (VC) matrix of y n which equals to e -α0Wn E (ǫ n ǫ ′ n ) e -α0W ′ n with α 0 being the true value of α, is always positive definite. No restriction on the parameter space of α needs to be imposed.

In this paper, we consider a general model that has MESS in both the dependent variable and the disturbances that we label MESS(1,1) (which should be viewed as an analog of the SAR model with SAR disturbances, i.e., SARAR model): 10 e αWn y n = X n β + u n , e τ Mn u n = ǫ n , ǫ n = (ǫ n1 , . . . , ǫ nn ) ′ , (2)

9 Except the proof of Proposition 8 which is presented in Appendix A, proofs of remaining propositions are similar to those in [START_REF] Lee | Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models[END_REF] and [START_REF] Lee | GMM and 2SLS estimation of mixed regressive, spatial autoregressive models[END_REF]. Those proofs are provided in a supplementary file, which is available upon request.

10 As pointed out by an anonymous referee, on the r.h.s. of the main equation of (2), to reflect local spatial dependence as in a spatial Durbin model, we may include an additional term WnXn, or WnX 1n if Wn is row-normalized and Xn contains an intercept term so that Xn = [ln, X 1n ]. However, as WnXn or WnX 1n has the same properties as Xn, the asymptotic analyses below will be similar. Thus, the additional term is not included for simplicity.

where W n and M n are n × n spatial weights matrices. The M n may or may not be different from W n . For purposes of comparison and later reference, we put down the SARAR model with the same W n , M n , X n , y n and ǫ n :

(I n -λW n )y n = X n β + u n , (I n -ρM n )u n = ǫ n .
(3)

The parameter spaces of λ and ρ should be restricted so that the VC matrix of y n , namely (

I n -λW n ) -1 (I n - ρM n ) -1 E (ǫ n ǫ ′ n ) (I n -ρM ′ n ) -1 (I n -λW ′ n ) -1 exists.
For the QMLE of the SARAR model with a normalized W n matrix, the parameter space for λ is typically considered to be (-1, 1). 11

The quasi log likelihood function of the MESS(1,1) presented in (2), as if the ǫ ni 's were i.i.d. normal, is

L n (θ) = - n 2 ln(2πσ 2 ) + ln |e αWn | + ln |e τ Mn | - 1 2σ 2 (e αWn y n -X n β) ′ e τ M ′ n e τ Mn (e αWn y n -X n β),
where θ = (γ ′ , σ 2 ) ′ with γ = (α, τ, β ′ ) ′ . Let θ 0 be the true parameter vector. Since |e αWn | = e α tr(Wn) and Mn) , as long as W n and M n have zero diagonals, the Jacobian of the transformation disappears and the quasi log likelihood function is simplified to Another difference between these two specifications is that one does not need to normalize the interaction matrices in the MESS. In the SARAR model, the purpose of normalizing the interaction matrices is to standardize the parameter spaces for λ and ρ so that they correspond to (-1, 1), which facilitates the interpretation of these parameters. However, in the MESS, since no parameter constraint is involved, the normalization of the interaction matrices may not play a special role.

|e τ Mn | = e τ tr(
L n (θ) = - n 2 ln(2πσ 2 ) - 1 2σ 2 (e αWn y n -X n β) ′ e τ M ′ n e τ Mn (e αWn y n -X n β). (4) 
LeSage and Pace (2007) present the MESS as a computationally simpler substitute for the SAR model. being the maximum row sum matrix norm. However, this approximation is not always right since the matrix 11 See [START_REF] Kelejian | Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances[END_REF] for a detailed discussion about the parameter space for λ. For high order SARAR models, finding the parameter spaces can be hard. [START_REF] Elhorst | On model specification and parameter space definitions in higher order spatial econometric models[END_REF] have outlined a procedure for finding the stationary region, but the parameter spaces can be complicated even for a SAR model with two spatial weights matrices for the dependent variable. By contrast, parameters in high order MESS models, labeled MESS(p,q), where p and q are the orders of the MESS in the dependent variable and disturbances respectively, do not need to be restricted and the effort to find the parameter spaces is saved. The supplementary file considers the QML estimation of these high order MESS models.

12 Han and Lee (2012) consider the J-test procedure to choose between MESS and SAR models.

norm should be taken over the absolute value of matrix elements. By contrast, if one turns to the impact analysis, an equivalence between the two specifications can be traced back at least in some specific cases.

Before presenting this correspondence, it is important to discuss the features of impact analysis in spatial autoregressive (SAR or MESS) regressions. Impact analysis, which is one of the main focuses for economists, is based on the reduced form of the estimated econometric specification. For the MESS(1,1) case, the reduced form is y n = e -αWn (X n β + e -τ Mn ǫ n ). One then computes the matrix of impact for each regressor X nk ,

k = 1, • • • , k
, by calculating the partial derivative of y n with respect to the concerned regressor. For a continuous regressor X nk , this matrix is

Ξ yn X nk = ∂E(y n |X n ) ∂X ′ nk = β k e -αWn . (5) 
The diagonal elements of this matrix contain the direct effects including own-spillover effects, which are inherently heterogeneous in presence of spatial autocorrelation due to differentiated friction terms in the interaction matrix. This is what [START_REF] Debarsy | Testing for spatial autocorrelation in a fixed effects panel data model[END_REF] call interactive heterogeneity. Off-diagonal elements of this matrix represent indirect effects, meaning the impact of a change in explanatory variable for individual j on the dependent variable for individual i. These direct and indirect effects are, respectively,

∂E(yn|Xn)i ∂X nk,i ≡ Ξ yn X nk ii and ∂E(yn|Xn)i ∂X nk,j ≡ Ξ yn X nk ij .
For the SARAR model, its associated reduced form is

y n = (I n -λW n ) -1 [X n β + (I n -ρM n ) -1 ǫ n ],
and the implied impact matrix for regressor X nk is

Ξ yn X nk = ∂E(y n |X n ) ∂X ′ nk = β k (I n -λW n ) -1 . ( 6 
)
To summarize the information conveyed by these matrices of impacts, [START_REF] Lesage | Introduction to spatial econometrics[END_REF] propose extracting several scalar measures, as the average direct effect (mean of the diagonal elements), average total effect (average of the row or column sums) and average indirect effect (average of the column or row sums excluding the diagonal element).

Consider a row-normalized interaction matrix W n in the MESS(1,1) model. Suppose that a shock of the same magnitude ∆x is applied on the kth explanatory variable X nk to all spatial units. The new explanatory variable is now X nk + l n ∆x, with l n being the n-dimensional vector of ones. For the MESS(1,1), from its reduced form, one calculates a total impact of ∆y n = e -αWn l n ∆xβ k . The average total effect is thus equal to 1 n l ′ n ∆y n = e -α ∆xβ k .13 Correspondingly, the average total impact of X nk in the SARAR model

is 1 n l ′ n ∆y n = 1 1-λ ∆xβ k .
Equating the two gives the relation α = ln(1 -λ) or λ = 1 -e α . Thus, there is a negative relation between λ and α. λ = 0 if and only if α = 0. When 0 < λ < 1, α will take on negative values and vice-versa. When the normalization used for W n differs from the row-normalization, such a relation does not exist.

Even though a relation between λ and α can be found for a row-normalized W n , we nevertheless cannot consider these two models as substitutes of each other. The underlying reason lies in the comparison of parameter spaces. As mentioned above, for the SARAR model with normalized W n , λ is usually restricted to the range (-1, 1). However, in the MESS(1,1), α ∈ (-∞, ∞). So, while λ < -1 is not allowed for a SARAR model, α can be greater than ln(2), meaning that parameter spaces of α and λ do not correspond.

So, for high negative spatial autocorrelation, we could observe substantial difference between these two models.14 Furthermore, in a SAR model, if λ > 1, it would be an unstable model, while unstability does not occur for the MESS with any finite value of α.

Estimations of the MESS(1,1) Model

We consider the QML estimation as well as the GMM estimation of the MESS(1,1) in this section. From (4), it is apparent that the QMLE of γ is the minimizer of the function

Q n (γ) = (e αWn y n -X n β) ′ e τ M ′ n e τ Mn (e αWn y n -X n β). (7) 
The derivatives of Q n (γ) with respect to α, τ and β at γ 0 are, respectively,

∂Q n (γ 0 ) ∂α = 2(X n β 0 + e -τ0Mn ǫ n ) ′ W ′ n e τ0M ′ n ǫ n , ∂Q n (γ 0 ) ∂τ = 2ǫ ′ n M n ǫ n , ∂Q n (γ 0 ) ∂β = -2X ′ n e τ0M ′ n ǫ n . (8)
When ǫ ni 's are i.i.d. with mean zero and variance σ 2 0 , as

E(ǫ ′ n M n ǫ n ) = tr[M n E(ǫ n ǫ ′ n )] = σ 2 0 tr(M n ) = 0 and E(ǫ ′ n e -τ0M ′ n W ′ n e τ0M ′ n ǫ n ) = σ 2 0 tr(W ′ n e τ0M ′ n e -τ0M ′ n ) = σ 2 0 tr(W ′ n ) = 0, the expected value of ∂Qn(γ0)
∂γ is zero, which verifies that the minimizer of E Q n (γ) can be γ 0 . When ǫ ni 's are independent with mean zero but different variances

σ 2 ni 's, E(ǫ ′ n M n ǫ n ) = tr(M n Σ n ) = 0 since the diagonal elements of M n are all zero,
and Σ n = Diag(σ 2 n1 , . . . , σ 2 nn ) is a diagonal matrix containing the different variances as diagonal elements.

In addition, E(ǫ

′ n e -τ0M ′ n W ′ n e τ0M ′ n ǫ n ) = tr(e -τ0M ′ n W ′ n e τ0M ′ n Σ n )
, which may not be zero in general. But if

W n M n = M n W n , then W ′ n e τ0M ′ n = e τ0M ′ n W ′ n and E(ǫ ′ n e -τ0M ′ n W ′ n e τ0M ′ n ǫ n ) = tr(W ′ n Σ n ) = 0. Therefore,
when the matrix W n in the spatial lag process can be commutative with the matrix M n in the spatial error process, the QMLE for γ, derived from the minimization of Q n (γ), can be consistent even under unknown heteroskedasticity. This includes the special cases that there is no MESS process in the disturbances or that M n = W n . This robustness of the QMLE for the MESS(1,0) and MESS(1,1) to unknown heteroskedasticity is a nice feature not shared by the QMLE for the SARAR model.

The function Q n (γ) may be written as Q n (γ) = (y n -e -αWn X n β) ′ (e -αWn e -τ Mn e -τ M ′ n e -αW ′ n ) -1 (y ne -αWn X n β). Using the reduced form of the MESS(1,1), namely y n = e -α0Wn (X n β 0 + e -τ0Mn ǫ n ), and assuming that E(ǫ n ǫ ′ n ) = σ 2 0 I n , the VC matrix of y n is σ 2 0 e -α0Wn e -τ0Mn e -τ0M ′ n e -α0W ′ n and the QMLE can be seen as a continuously updating version of the generalized nonlinear least squares (GNLS). The similarity between the QML and GNLS is due to the special structure of the matrix exponential specification. By contrast, there is no such a similarity for the SARAR model (3). 15

In addition to the QML estimation, we may also consider the GMM estimation of the MESS(1,1) using both linear and quadratic moments, as for the SARAR model. The linear moments would be of the form 

F ′ n ǫ n (γ) = 0,
(γ 0 )P ni ǫ n (γ 0 )] = tr(P ni Σ n ) = 0.
The basic regularity conditions for estimation are assumed below. The specific sets of hypotheses required for both methods will be given subsequently. Assumptions 1 and 2 follow from the literature, see, e.g., [START_REF] Kelejian | A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances[END_REF] and [START_REF] Lee | Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models[END_REF].

QMLE

For the QMLE from (4), we may just investigate the minimizers of the functions {Q n (γ)}. For a fixed

φ = (α, τ ) ′ , minimizing Q n (γ) yields βn (φ) = (X ′ n e τ M ′ n e τ Mn X n ) -1 X ′ n e τ M
′ n e τ Mn e αWn y n . Substituting βn (φ) into Q n (γ), we obtain a function of only φ:

Q n (φ) = y ′ n e αW ′ n e τ M ′ n H n (τ )e τ Mn e αWn y n , (9) 
15 A function for the SARAR model with a structure similar to Qn(γ

) is Q * n (ψ) = [(In -λWn)yn -Xnβ] ′ (In -ρM ′ n )(In - ρMn)[(In -λWn)yn -Xnβ] with ψ = (λ, ρ, β ′ ) ′ . At ψ 0 , E ∂Q * n (ψ 0 ) ∂λ = -2σ 2 0 tr[Wn(In -λ 0 Wn) -1 ] and E ∂Q * n (ψ 0 ) ∂ρ = -2σ 2 0 tr[Mn(In -ρ 0 Mn) -1 ],
where tr[Wn(Inλ 0 Wn) -1 ] = 0 and tr[Mn(Inρ 0 Mn) -1 ] = 0 in general. Thus the minimizer of Q * n (ψ) is not expected to be a consistent estimator of ψ in the SARAR model (3).

where H n (τ ) = I n -e τ Mn X n (X ′ n e τ M ′ n e τ Mn X n ) -1 X ′ n e τ M ′ n is a projection matrix. The function Q n (φ) can be used for the analysis of the consistency of the QMLE. Although we may not need to restrict the parameter space of φ in practice, φ should be bounded in analysis so that e αWn and e τ Mn would be bounded in both row and column sum norms, since 

||e αWn || = || ∞ i=0 α i W i n i! || ≤ ∞ i=0 |α| i ||Wn|| i i! = e |α|•
Φ = [-δ, δ] × [-δ, δ].
For consistency of the QMLE, we need to show that the difference between Q n (φ)/n and some nonstochastic function Qn (φ)/n converges to zero uniformly over the parameter space Φ. 16 The Qn (φ) will have different forms in the homoskedastic and heteroskedastic cases. By Assumptions 2 and 3, 1 n X ′ n e τ M ′ n e τ Mn X n is bounded. The Q n (φ) is a well-defined function for large enough n if the limit of 1 n X ′ n e τ M ′ n e τ Mn X n exists and is nonsingular. In addition, we require that the sequence of the smallest eigenvalues of e τ M ′ n e τ Mn be bounded away from zero uniformly in τ , so that H n (τ ) is bounded in both row and column sum norms uniformly in τ . As e τ M ′ n e τ Mn is positive definite, its smallest eigenvalue is positive. The condition further limits all the eigenvalues to be strictly positive uniformly over the parameter space for all n.

Assumption 4. The limit lim n→∞ 1 n X ′ n e τ M ′ n e τ Mn X n exists and is nonsingular for any τ ∈ [-δ, δ], and the sequence of the smallest eigenvalues of e τ M ′ n e τ Mn is bounded away from zero uniformly in τ ∈ [-δ, δ].

QMLE: Homoskedastic Case

In this part, we establish consistency and asymptotic normality of the QMLE for the MESS(1,1) with i.i.d. disturbances.

Assumption 5. The ǫ ni 's are i.i.d. with mean zero and variance σ 2 0 and the moment E |ǫ ni | 4+η for some η > 0 exists.

Define Qn (φ) = min β E Q n (γ), then Qn (φ) = (X n β 0 ) ′ e (α-α0)W ′ n e τ M ′ n H n (τ )e τ Mn e (α-α0)Wn X n β 0 + σ 2 0 tr(e -τ0M
′ n e (α-α0)W ′ n e τ M ′ n e τ Mn e (α-α0)Wn e -τ0Mn ).

(10)

The identification of φ 0 can be based on the minimum values of { Qn (φ)/n}. To ensure the identification uniqueness, the following condition is assumed. Assumption 6. Either (i) lim n→∞ n -1 (X n β 0 ) ′ e (α-α0)W ′ n e τ M ′ n H n (τ )e τ Mn e (α-α0)Wn X n β 0 = 0 for any τ and α = α 0 , and lim n→∞ n -1 tr(e (τ -τ0)M ′ n e (τ -τ0)Mn ) > 1 for any τ = τ 0 , or (ii) lim n→∞ n -1 tr(e -τ0M ′ n e (α-α0)W ′ n e τ M ′ n e τ Mn e (α-α0)Wn e -τ0Mn ) > 1 for any φ = φ 0 .

The identification of α 0 can come from the first term on the r.h.s. of (10). As H n (τ )e τ Mn X n = 0, the first term at α 0 is zero for any τ . Thus the first term is not sufficient to identify τ 0 . Given the identification of α 0 , τ 0 can be identified from the second term. As lim n→∞ n -1 X ′ n e τ M ′ n e τ Mn X n is nonsingular, by the partition matrix formula, lim n→∞ n -1 (X n β 0 ) ′ e (α-α0)W ′ n e τ M ′ n H n (τ )e τ Mn e (α-α0)Wn X n β 0 is non-zero if and only if lim n→∞ n -1 (X n , e (α-α0)Wn X n β 0 ) ′ e τ M ′ n e τ Mn (X n , e (α-α0)Wn X n β 0 ) is nonsingular.

Thus, the first part of (i) in Assumption 6 relates to asymptotic non-multicollinearity of e (α-α0)Wn X n β 0 with X n . In the proof of Proposition 1, it is shown by the inequality of arithmetic and geometric means that n -1 tr(e (τ -τ0)M ′ n e (τ -τ0)Mn ) ≥ 1 holds for any τ . The second part of (i) further requires n -1 tr(e (τ -τ0)M ′ n e (τ -τ0)Mn ) to be strictly greater than 1 in the limit when τ = τ 0 . For a finite n, the arithmetic and geometric means are equal if and only if all the eigenvalues of e (τ -τ0)M ′ n e (τ -τ0)Mn are equal to each other, which implies that e (τ -τ0)M ′ n e (τ -τ0)Mn is proportional to I n . This assumption rules out this possibility in the limit whenever τ = τ 0 . The identification of φ 0 can come only from the second term on the r.h.s. of (10), which is given in (ii) of Assumption 6. This relates to the uniqueness of the VC matrix of y n , namely σ 2 0 e -α0Wn e -τ0Mn e -τ0M ′ n e -α0W ′ n , since tr(e -τ0M ′ n e (α-α0)W ′ n e τ M ′ n e τ Mn e (α-α0)Wn e -τ0Mn ) =

tr[e -α0Wn e -τ0Mn e -τ0M ′ n e -α0W ′ n (e -αWn e -τ Mn e -τ

M ′ n e -αW ′ n ) -1 ].
It is obvious that Assumption 6 (i) fails to hold when β 0 = 0. In this case, the identification will rely solely on (ii). Another case of the failure of (i) even if β 0 = 0 occurs is when X n contains only an intercept term, i.e., X n = l n , and W n is row-normalized. In this case, H n (τ )e τ Mn l n = 0. Other cases might be due to very special structures on W n or M n . For example, elements of W n and M n except the diagonal ones are all equal to a constant and X n contains an intercept term. Let

W n = M n = (n -1) -1 (l n l ′ n -I n ) for instance. Then H n (τ )e τ Mn W k n = (-1) k (n -1) -k H n (τ )e τ Mn
. By the expansion form of e (α-α0)Wn , H n (τ )e τ Mn e (α-α0)Wn X n = e (α0-α)/(n-1) H n (τ )e τ Mn X n = 0. Thus the first part in (i) does not hold.

Furthermore, since the eigenvalues of

M n are (1-n) -1 , . . . , (1-n) -1 and 1, it follows that M k n has eigenvalues (1 -n) -k , . . . , (1 -n) -k , 1. Hence, with this symmetric M n , 1 n tr(e (τ -τ0)M ′ n e (τ -τ0)Mn ) = 1 n tr(e 2(τ -τ0)Mn ) = 1 n ∞ k=0 2 k (τ -τ 0 ) k tr(M k n ) k! = 1 n ∞ k=0 2 k (τ -τ 0 ) k [1 + (n -1)(1 -n) -k ] k! = 1 n e 2(τ -τ0) + n -1 n e 2(τ -τ0)/(1-n) ,
which is equal to 1 in the limit. Then the second part in (i) does not hold either. In this case, lim n→∞

1 n Qn (φ) is equal to σ 2 0 for any φ. Looking into Q n (φ) directly, we have Q n (φ) = e -2α/(n-1) y ′ n e τ M ′ n H n (τ )e τ Mn y n ,
which is monotonically decreasing in α. Then the QMLE of α will diverge to positive infinity, which is not equal to α 0 . 17

In general, (ii) in Assumption 6 would not hold as long as W n and M n are equal. When

M n = W n ,
tr(e -τ0M ′ n e (α-α0)W ′ n e τ M ′ n e τ Mn e (α-α0)Wn e -τ0Mn ) = tr(e (α+τ -α0-τ0)W ′ n e (α+τ -α0-τ0)Wn ).

As long as α

+ τ = α 0 + τ 0 , 1 n tr(e -τ0M ′ n e (α-α0)W ′ n e τ M
′ n e τ Mn e (α-α0)Wn e -τ0Mn ) = 1. So for the case that M n = W n , the parameter identification depends crucially on Assumption 6 (i). This situation is apparent as the model becomes y n = e -α0Wn X n β 0 + e -(α0+τ0)Wn ǫ n . Thus, when there are no exogenous variables and W n = M n in the MESS(1,1), α 0 and τ 0 cannot be identified.

With the identification uniqueness and uniform convergence of [Q n (φ) -Qn (φ)]/n to zero on the parameter space Φ, consistency of the QMLE follows.

Proposition 1. Under Assumptions 1-6, the QMLE γn of the MESS(1,1) is consistent.

The asymptotic distribution of γn can be derived from applying the mean value theorem to the first-order condition ∂Qn(γn) ∂γ = 0 at the true γ 0 , which yields

√ n(γ n -γ 0 ) = -1 n ∂ 2 Qn(γn) ∂γ∂γ ′ -1 1 √ n ∂Qn(γ0) ∂γ
, where γn is between γn and γ 0 . Let W n = e τ0Mn W n e -τ0Mn and A s = A + A ′ for any square matrix A. Under some regularity conditions,

1 n ∂ 2 Qn(γn) ∂γ∂γ ′ = C n + o P (1)
, where

C n = E 1 n ∂ 2 Q n (γ 0 ) ∂γ∂γ ′ = 1 n       σ 2 0 tr(W s n W s n ) + 2(W n e τ0Mn X n β 0 ) ′ (W n e τ0Mn X n β 0 ) * * σ 2 0 tr(W s n M s n ) σ 2 0 tr(M s n M s n ) * -2(e τ0Mn X n ) ′ W n e τ0Mn X n β 0 0 2(e τ0Mn X n ) ′ (e τ0Mn X n )      
.

17 See [START_REF] Smith | Estimation bias in spatial models with strongly connected weight matrices[END_REF] for a discussion of this special case in the SAR model.

As tr(AB) = vec ′ (A ′ ) vec(B) for two conformable matrices A and B, where vec(•) denotes the vectorization of a matrix, C n may be written as

C n = 1 n C ′ 1n C 1n ,
where

C 1n =    σ 0 vec(W s n ) σ 0 vec(M s n ) 0 √ 2W n e τ0Mn X n β 0 0 - √ 2e τ0Mn X n    . ( 11 
)
Thus C n is positive semi-definite. The following assumption guarantees that C n is nonsingular in the limit.

Assumption 7. lim n→∞ 1 n (W n e τ0Mn X n β 0 ) ′ H n (τ 0 )(W n e τ0Mn X n β 0 )+ σ 2 0 2 tr(M s n M s n ) tr(W s n W s n ) tr(M s n M s n )- tr 2 (W s n M s n ) = 0 and lim n→∞ 1 n tr(M s n M s n ) = 0.
As M s n M s n in the above assumption is positive semi-definite but not a zero matrix, tr 8), the first-order derivatives of Q n (γ) at γ 0 have mean zero and are linear and quadratic functions of ǫ n . Thus the central limit theorem for linear-quadratic forms in Kelejian and Prucha

(M s n M s n ) > 0. Note that (W n e τ0Mn X n β 0 ) ′ H n (τ 0 )(W n e τ0Mn X n β 0 ) ≥ 0, and tr(W s n W s n ) tr(M s n M s n ) -tr 2 (W s n M s n ) ≥ 0 by the Cauchy- Schwarz inequality. By (
(2001) is applicable. Let µ 3 = E ǫ 3 ni , µ 4 = E ǫ 4
ni , and vec D (A) be a vector containing the diagonal elements of the square matrix A.

The VC matrix Ω n of 1 √ n ∂Qn(γ0) ∂γ is Ω n = 2σ 2 0 C n +Ω 1n with Ω 1n = 1 n       (µ 4 -3σ 4 0 ) vec D ′ (W s n ) vec D (W s n ) + 4µ 3 (W n e τ0Mn X n β 0 ) ′ vec D (W s n ) * * 0 0 * -2µ 3 (e τ0Mn X n ) ′ vec D (W s n ) 0 0      
.

When ǫ ni 's are normal, µ 3 = µ 4 -3σ 4 0 = 0; when τ 0 = 0 or W n and M n are commutative, vec D (W s n ) = vec D (W s n ) = 0 as W n has a zero diagonal. These cases imply that Ω 1n = 0 and Ω n simplifies to 2σ 2 0 C n . As Ω n is a VC matrix, it is positive semi-definite. We may also directly show that Ω n is positive semi-definite.

Note that E(ǫ

2 ni -σ 2 0 ) 2 E ǫ 2 ni ≥ E[(ǫ 2 ni -σ 2 0 )ǫ ni ] 2 , i.e. (µ 4 -σ 4 0 )σ 2 0 ≥ µ 2 3
, by the Cauchy-Schwarz inequality.

In addition, tr(Diag

(W s n ) Diag(W s n )) = vec D ′ (W s n ) vec D (W s n ), and tr(Diag(W s n )M s n ) = 0 as M n has a zero
diagonal, where Diag(A) for a square matrix A denotes a diagonal matrix whose diagonal is equal to that of A. Then Ω n can be written as

Ω n = 1 n Ω ′ 2n Ω 2n ,
where

Ω 2n =    √ 2σ 2 0 vec W s n -Diag(W s n ) + σ 2 0 (µ4-σ 4 0 )-µ 2 3 2σ 6 0 Diag(W s n ) √ 2σ 2 0 vec(M s n ) 0 2σ 0 W n e τ0Mn X n β 0 + µ3 σ0 vec D (W s n ) 0 -2σ 0 e τ0Mn X n    .
Thus Ω n is positive semi-definite.

Proposition 2. Under Assumptions 1-7, √ n(γ n -γ 0 ) d -→ N (0, lim n→∞ C -1 n Ω n C -1 n ). If ǫ n ∼ N (0, σ 2 0 I n ); τ 0 = 0; or W n and M n are commutative, then √ n(γ n -γ 0 ) d -→ N (0, 2σ 2 0 lim n→∞ C -1 n ).
When the disturbances ǫ ni 's are normal, the generalized information matrix equality holds, thus the limiting distribution of the MLE γn does not depend on moments of the disturbances higher than the second order. Even when the disturbances ǫ ni 's are not normally distributed, if there is no MESS process in the disturbances or the spatial weights matrices M n and W n are commutative, the limiting distribution of the QMLE does not involve moments of the disturbances higher than the second order.

QMLE: Heteroskedastic Case when W n and M n are Commutative

When the disturbances ǫ ni 's are independent but may have different variances, the following assumption is made about the disturbances.

Assumption 8. The ǫ ni 's are independent (0, σ 2 ni ) and the moments E |ǫ ni | 4+η for some η > 0 exist and are uniformly bounded for all n and i.

As argued earlier, when W n and M n can commute, or τ 0 = 0, the minimization of the function Q n (γ) may yield a consistent estimator γn of γ under unknown heteroskedasticity, since the first-order derivatives of Q n (γ) at γ 0 have zero expectation. In practice for some situations, one may use a single spatial weights matrix W n for both the main equation and the disturbance process, which implies the commutative property.

Assumption 9. W n and M n are commutative or τ 0 = 0. Define Qn (φ) = min β E Q n (γ). The identification of φ 0 can be based on minimizers of { Qn (φ)}. Using Assumption 9, we have Qn (φ) = Q1n (φ)+ Q2n (φ), where Q1n (φ) = (X n β 0 ) ′ e (α-α0)W ′ n e τ M ′ n H n (τ )e τ Mn e (α-α0)Wn X n β 0 and Q2n (φ) = tr(e (α-α0)W ′ n e (τ -τ0)M ′ n e (τ -τ0)Mn e (α-α0)Wn Σ n ). It is obvious that Q1n (φ) ≥ 0 and Q1n (φ 0 ) = 0. As W n and M n have zero diagonals and Σ n is a diagonal matrix, ∂ Q2n(φ0)

∂α = tr[(W ′ n + W n )Σ n ] = 0 and ∂ Q2n(φ0) ∂τ = tr[(M ′ n + M n )Σ n ] = 0.
Thus φ 0 is a stationary point of Q2n (φ) and also Qn (φ). Using the commutative property of W n and M n , we have ∂ 2 Q2n(φ)

∂α 2 = tr[Σ 1/2 n e (α-α0)W ′ n e (τ -τ0)M ′ n (W ′2 n + W 2 n + 2W ′ n W n )e (τ -τ0)Mn e (α-α0)Wn Σ 1/2 n ], ∂ 2 Q2n (φ) ∂τ 2 = tr[Σ 1/2 n e (α-α0)W ′ n e (τ -τ0)M ′ n (M ′2 n + M 2 n + 2M ′ n M n )e (τ -τ0)Mn e (α-α0)Wn Σ 1/2 n ]
and

∂ 2 Q2n(φ) ∂α∂τ = tr{Σ 1/2 n e (α-α0)W ′ n e (τ -τ0)M ′ n [(W ′ n + W n )M n + M ′ n W n + W ′ n M ′ n ]e (τ -τ0)Mn e (α-α0)Wn Σ 1/2 n }. If W ′ n W n = W n W ′ n , then W ′2 n + W 2 n + 2W ′ n W n = (W ′ n + W n ) 2 ; if M ′ n M n = M n M ′ n , then M ′2 n + M 2 n + 2M ′ n M n = (M ′ n + M n ) 2 ; if M ′ n W n = W n M ′ n , then (W ′ n + W n )M n + M ′ n W n + W ′ n M ′ n = (W ′ n + W n )(M ′ n + M n ). Thus, under the conditions that W ′ n W n = W n W ′ n , M ′ n M n = M n M ′ n and M ′ n W n = W n M ′ n , by the Cauchy-Schwarz inequality, ∂ 2 Q2n(φ) ∂α 2 ∂ 2 Q2n(φ) ∂τ 2 ≥ ∂ 2 Q2n(φ) ∂α∂τ 2 . In this case, ∂ 2 Q2n(φ) ∂φ∂φ ′
is positive semi-definite and Q2n (φ) is a concave function. It follows that φ 0 is a global minimizer of Q2n (φ) and Qn (φ). Hence, with some extra conditions on W n and M n , it is possible that φ 0 uniquely minimizes Qn (φ)/n in the limit.

It is also possible that φ 0 is only a local minimizer of Qn (φ). For example, in the case that

W n = M n , ∂ 2 Q2n(φ0) ∂α 2 = ∂ 2 Q2n(φ0) ∂τ 2 = ∂ 2 Q2n(φ0) ∂α∂τ = tr[(W ′2 n + W 2 n + 2W ′ n W n )Σ n ], which is positive if elements of W n are non-negative. Then ∂ 2 Q2n(φ0) ∂φ∂φ ′
is positive semi-definite and Q2n (φ) is concave at φ 0 . Hence, φ 0 is a local minimizer of Q2n (φ) and Qn (φ). These considerations motivate the following identification condition.

Assumption 10. lim n→∞

1 n [ Qn (φ) -tr(Σ n )] > 0 for any φ = φ 0 .
Proposition 3. Under Assumptions 1-4 and 8-10, the QMLE γn is consistent for γ 0 .

Let D n = 1 n E ∂ 2 Qn(γ0) ∂γ∂γ ′ and ∆ n = 1 n E ∂Qn(γ0) ∂γ ∂Qn(γ0) ∂γ ′
, then

D n = 2 n       tr(W s n W n Σ n ) + (W n e τ0Mn X n β 0 ) ′ (W n e τ0Mn X n β 0 ) * * tr(M s n W n Σ n ) tr(M s n M n Σ n ) * -(e τ0Mn X n ) ′ W n e τ0Mn X n β 0 0 (e τ0Mn X n ) ′ (e τ0Mn X n )      
, and

∆ n = 2 n       tr(Σ n W s n Σ n W s n ) + 2(W n e τ0Mn X n β 0 ) ′ Σ n (W n e τ0Mn X n β 0 ) * * tr(Σ n M s n Σ n W s n ) tr(Σ n M s n Σ n M s n ) * -2(e τ0Mn X n ) ′ Σ n W n e τ0Mn X n β 0 0 2(e τ0Mn X n ) ′ Σ n (e τ0Mn X n )      
.

Note that ∆ n , being the VC matrix of a vector of linear-quadratic forms of disturbances, does not involve higher than the second moments of disturbances, because W n and M n in the quadratic forms ǫ ′ n W s n ǫ n and ǫ ′ n M s n ǫ n have zero diagonals (see [START_REF] Lee | GMM and 2SLS estimation of mixed regressive, spatial autoregressive models[END_REF]. We may write ∆ n as ∆ n = 1 n ∆ ′ 1n ∆ 1n , where

∆ 1n =    √ 2 vec(Σ 1/2 n W s n Σ 1/2 n ) √ 2 vec(Σ 1/2 n M s n Σ 1/2 n ) 0 2Σ 1/2 n W n e τ0Mn X n β 0 0 -2Σ 1/2 n e τ0Mn X n    ,
thus ∆ n is positive semi-definite. To make sure that D n is invertible for large enough n, we need the following assumption.

Assumption 11. lim n→∞

1 n tr(M s n M n Σ n ) = 0 and lim n→∞ 1 n (W n e τ0Mn X n β 0 ) ′ H n (τ 0 )(W n e τ0Mn X n β 0 ) + tr(W s n WnΣn) tr(M s n MnΣn)-tr 2 (M s n WnΣn) tr(M s n MnΣn) = 0.
When elements of W n and M n are non-negative, tr(M

s n M n Σ n ) > 0, tr(M s n W n Σ n ) ≥ 0 and tr(W s n W n Σ n ) >
0, because M n and W n are not zero matrices and the diagonal elements of Σ n are positive in general.

Proposition 4. Under Assumptions 1-4 and 8-11,

√ n(γ n -γ 0 ) d -→ N (0, lim n→∞ D -1 n ∆ n D -1 n ).
With the requirement of τ 0 = 0 or commutativeness of W n and M n , in addition to the consistency, the QMLE under unknown heteroskedasticity has an asymptotic distribution that does not involve higher than the second moments of the disturbances, whether the disturbances are normal or not.

To make asymptotically valid inference using the QMLE γn under unknown heteroskedasticity, we need a consistent estimator for D -1 n ∆ n D -1 n . As in [START_REF] White | A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity[END_REF] 

GMME

We now consider the GMM estimation of the MESS(1,1). Let the moment vector be

g n (γ) = 1 n ǫ ′ n (γ)P n1 ǫ n (γ), . . . , ǫ ′ n (γ)P n,kp ǫ n (γ), ǫ ′ n (γ)F n ′ , (12) 
where ǫ n (γ) = e τ Mn (e αWn y n -X n β), the n-dimensional square matrices P ni 's for the quadratic moments have zero traces when ǫ ni 's are i.i.d. and have zero diagonals when ǫ ni 's are independent but with different variances, and the n × k f instrumental variable matrix F n used in the 2SLS approach can consist of the

independent columns of X n , W n X n , M n X n , W 2 n X n , M 2
n X n and so on. 18 The GMM objective function with the weighting matrix a n a ′ n is g ′ n (γ)a n a ′ n g n (γ), where the full column rank (k p + k f ) × k a matrix a n with k a ≥ k + 2 converges to a full rank matrix a 0 by design.

GMME: Homoskedastic Case

When the disturbances are i.i.d., the GMME can be consistent when the matrices P ni 's have zero traces but not necessarily zero diagonals. The P ni 's are constructed from W n and M n , thus we may assume that P ni 's are bounded in row and column sum norms.

Assumption 12. The n-dimensional square matrices P n1 , . . . , P n,kp have zero traces and are bounded in both row and column sum norms. Elements of F n are uniformly bounded constants.

For any γ,

E[ǫ ′ n (γ)P ni ǫ n (γ)] = (e (α-α0)Wn X n β 0 -X n β) ′ e τ M ′ n P ni e τ Mn (e (α-α0)Wn X n β 0 -X n β) + σ 2 0 tr(e -τ0M
′ n e (α-α0)W ′ n e τ M ′ n P ni e τ Mn e (α-α0)Wn e -τ0Mn ), ( 13)

E[F ′ n ǫ n (γ)] = F ′ n e τ Mn (e (α-α0)Wn X n β 0 -X n β). ( 14 
)
The identification of γ 0 requires a unique solution of the limiting equations lim n→∞ E g n (γ) = 0 at γ 0 .

When α = α 0 and β = β 0 , E[F ′ n ǫ n (γ)] = 0 whatever τ is. Thus τ cannot be identified from the linear moments E[F ′ n ǫ n (γ)] = 0, because it only plays a role as weighting. It is possible that α 0 and β 0 may be identified from E[F ′ n ǫ n (γ)] = 0, and τ 0 be identified from the quadratic moments

E[ǫ ′ n (γ)P ni ǫ n (γ)] = 0, i = 1, . . . , k p . Let F n = (F 1n , F 2n ) such that lim n→∞ 1 n F ′ 2n e τ Mn X n is nonsingular for any τ ∈ [-δ, δ], which is a part of a rank condition for valid IV's. The E[F ′ n ǫ n (γ)] = 0 is equivalent to F ′ 1n e τ Mn (e (α-α0)Wn X n β 0 - X n β) = 0 and F ′ 2n e τ Mn (e (α-α0)Wn X n β 0 -X n β) = 0.
From the equation involving only F 2n , we have

β = (F ′ 2n e τ Mn X n ) -1 F ′ 2n e
τ Mn e (α-α0)Wn X n β 0 . With substitution, the equation involving F 1n becomes

F ′ 1n H 1n (τ )e τ Mn e (α-α0)Wn X n β 0 = 0, where H 1n (τ ) = I n -e τ Mn X n (F ′ 2n e τ Mn X n ) -1 F ′ 2n . Furthermore, it
reduces to F ′ 1n H 1n (τ )e τ Mn X n β 0 = 0 when α = α 0 . In the case that α 0 can be identified from the equation, F ′ 1n H 1n (τ )e τ Mn e ηWn X n β 0 = 0 for any η = 0. When α = α 0 and β = β 0 , (13) becomes σ 2 0 tr(e (τ -τ0)M ′ n P ni e (τ -τ0)Mn ) = 0. Then the identification of τ 0 requires some matrix P ni such that lim n→∞ 1 n tr(e (τ -τ0)M ′ n P ni e (τ -τ0)Mn ) = 0 when τ = τ 0 . It is also possible that α 0 cannot be identified from the linear moment ( 14), then the identification of (α 0 , τ 0 ) would be from the quadratic moments. 19Assumption 13. Suppose that F n may be written as

F n = (F 1n , F 2n ) such that lim n→∞ 1 n F ′ 2n e τ Mn X n is nonsingular for any τ ∈ [-δ, δ]. Furthermore, either 1) lim n→∞ 1 n F ′
1n H 1n (τ )e τ Mn e ηWn X n β 0 = 0 for any η = 0 and for all τ ∈ [-δ, δ]; and, for any τ = τ 0 , lim n→∞

1 n tr(e (τ -τ0)M ′ n P ni e (τ -τ0)Mn ) = 0, for some i ∈ {1, • • • , k p }; or, 2) for any (α, τ ) = (α 0 , τ 0 ), lim n→∞ 1 n β ′ 0 X ′ n e (α-α0)W ′ n e τ M ′ n H ′ 1n (τ )P ni H 1n (τ )e τ Mn e (α-α0)Wn X n β 0 + σ 2 0 n tr(e -τ0M ′ n e (α-α0)W ′ n e τ M ′ n P ni e τ Mn e (α-α0)Wn e -τ0Mn ) = 0, for some i ∈ {1, • • • , k p }.
As usual for nonlinear extremum estimators, we assume the compactness of the parameter space of γ [START_REF] Amemiya | Advanced econometrics[END_REF].

Assumption 14. The parameter space Γ of γ is compact and the true γ 0 is in the interior of Γ.

Proposition 6. Under Assumptions 1, 2, 5 and 12-14, the GMM estimator γn from the minimization of

g ′ n (γ)a n a ′ n g n (γ) is a consistent estimator of γ 0 , and √ n(γ n -γ 0 ) d -→ N 0, lim n→∞ (G ′ n a n a ′ n G n ) -1 G ′ n a n a ′ n V n a n a ′ n G n (G ′ n a n a ′ n G n ) -1 , where V n = n E[g n (γ 0 )g ′ n (γ 0 )] = 1 n   σ 4 0 2 ω ′ n ω n + 1 4 (µ 4 -3σ 4 0 )ω ′ nd ω nd 1 2 µ 3 ω ′ nd F n 1 2 µ 3 F ′ n ω nd σ 2 0 F ′ n F n   and G n = E ∂g n (γ 0 ) ∂γ ′ = 1 n   σ 2 0 2 ω ′ n vec(W s n ) σ 2 0 2 ω ′ n vec(M s n ) 0 F ′ n W n e τ0Mn X n β 0 0 -F ′ n e τ0Mn X n   ,
with ω n = vec(P s n1 ), . . . , vec(P s n,kp ) and ω nd = vec D (P s n1 ), . . . , vec D (P s n,kp ) , under the condition that lim n→∞ a ′ n G n exists and has the full rank k + 2.

Within the GMM framework, with moments g n (γ), an optimum GMM will use V -1 n as the optimum weighting in place of a n a ′ n . The variance matrix V n of g n (γ 0 ) in the preceding proposition can be put into a more informative form as a positive semi-definite matrix. Let ω # n = (vec(P #s n1 ), . . . , vec(P #s n,kp )), where

P #s ni = 1 2 µ 4 -σ 4 0 - µ 2 3 σ 2 0 Diag(P s ni ) + √ 2σ 2 0 2 [P s ni -Diag(P s ni )], then V n = 1 n    ω # n 0 µ3 2σ0 ω nd σ 0 F n    ′    ω # n 0 µ3 2σ0 ω nd σ 0 F n    .
Thus V n is positive semi-definite. We require the non-singularity of V n to formulate the feasible optimal GMM, which is guaranteed by the following assumption.

Assumption 15. The limits of 1 n F ′ n F n and

σ 4 0 2n (ω ′ n ω n -ω ′ nd ω nd )+ 1 4n (µ 4 -σ 2 0 - µ 2 3 σ 2 0 )ω ′ nd ω nd + µ 2 3 4nσ 2 0 ω ′ nd H Fn ω nd exist and are nonsingular, where H Fn = I n -F n (F ′ n F n ) -1 F ′ n .
Note that ω ′ n ω n -ω ′ nd ω nd = vec(P n ω ′ nd H Fn ω nd is nonsingular. A consistent estimator Vn for V n may be obtained from replacing the σ 2 0 , µ 3 and µ 4 in V n by their consistent estimators.

Proposition 7. Under Assumptions 1, 2, 5 and 12-15, the feasible optimal GMME γn,o from the minimiza-

tion of g ′ n (γ) V -1 n g n (γ) is a consistent estimator of γ 0 , and √ n(γ n,o -γ 0 ) d -→ N 0, lim n→∞ (G ′ n V -1 n G n ) -1 .
As the possible selections of linear and quadratic moments via F n and P ni 's are numerous, there is an issue regarding the best design for those matrices. For that purpose, we follow [START_REF] Breusch | Redundancy of moment conditions[END_REF] to show that additional linear and quadratic moments are redundant given properly selected ones. 20 If e τ0Mn X n contains an intercept term due to the presence of an intercept term in X n , let X * n be the submatrix of X n with the intercept term deleted, so that e τ0Mn X n = [e τ0Mn X * n , c(τ 0 )l n ], where c(τ 0 ) is a scalar function of τ 0 . 21 Otherwise, X * n = X n and e τ0Mn X * n = e τ0Mn X n . Suppose that there are k * columns in X * n . Let X * nl be the lth column of X * n , η 3 = µ 3 σ -3 0 and η 4 = µ 4 σ -4 0 be the skewness and kurtosis of the disturbances. 

(γ) = 1 n (P * n1 ǫ(γ), . . . , P * n,k * +4 ǫ(γ), F * n ) ′ ǫ(γ), where P * n1 = W n , P * n2 = Diag(W n ), P * n3 = Diag(e τ0Mn W n X n β 0 ) (t) , P * n4 = M n , P * n,l+4 = Diag(e τ0Mn X * nl ) (t) for l = 1, . . . , k * , and F * n = (F * n1 , F * n2 , F * n3 , F * n4 ) with F * n1 = e τ0Mn X * n , F * n2 = e τ0Mn W n X n β 0 , F * n3 = l n , and F * n4 = vec D (W n ). Denote V * n = n E[g * n (γ 0 )g * ′ n (γ 0 )]. Then γ * n = min γ g * ′ n (γ)V * -1 n g * n (γ)
is the best GMME within the class of GMMEs with linear and quadratic moments, and γ * n has the asymptotic distribution that

√ n(γ * n -γ 0 ) d -→ N 0, lim n→∞ Λ * -1 n , where Λ * n = G * ′ n V * -1 n G * n with G * n = E ∂g * n (γ0) ∂γ ′ .
The detailed proof of this proposition is in Appendix A. From the proof, Λ * n has the following expression

Λ * n = 1 n       tr(P * s αn W n ) + σ -2 0 (e τ0Mn W n X n β 0 ) ′ F * αn * * tr(P * s τ n W n ) tr(P * s τ n M n ) * -σ -2 0 (e τ0Mn X n ) ′ F * αn 0 σ -2 0 (e τ0Mn X n ) ′ F * βn       , (15) 
where

P * αn = P * n1 - (η4-3)-η 2 3 (η4-1)-η 2 3 P * n2 - σ -1 0 η3 (η4-1)-η 2 3 P * n3 , P * τ n = M n , P * βnl = P * n,l+4 for l = 1, . . . , k * , F * αn = η4-1 (η4-1)-η 2 3 F * n2 - η 2 3 (η4-1)-η 2 3 F * n3 ( 1 n l ′ n e τ0Mn W n X n β 0 ) -2σ0η3 (η4-1)-η 2 3 F * n4 , F * βn = η 4 -1 (η 4 -1) -η 2 3 F * n1 - η 2 3 (η 4 -1) -η 2 3 F * n3 ( 1 n l ′ n e τ0Mn X * n )
if e τ0Mn X n does not contain an intercept term; otherwise

F * βn = η 4 -1 (η 4 -1) -η 2 3 F * n1 (I k * , 0 k * ×1 ) + η 4 -1 (η 4 -1) -η 2 3 c(τ 0 )F * n3 e ′ kk - η 2 3 (η 4 -1) -η 2 3 F * n3 ( 1 n l ′ n e τ0Mn X n ),
where e kj is the jth unit vector in R k . From the proof, the best moments in Proposition 8 are equivalent to the use of the following moments

1 n P * αn ǫ n (γ), P * τ n ǫ n (γ), P * βn1 ǫ n (γ) . . . , P * βnk * ǫ n (γ), F * αn , F * βn ′ ǫ n (γ).
The above vector relates the moments to the skewness and kurtosis.

In the case of normal disturbances, as η 3 = η 4 -3 = 0, the best moments can be simplified and are equiv-

alent to 1 n W n ǫ n (γ), M n ǫ n (γ), P * βn1 ǫ n (γ) . . . , P * βnk * ǫ n (γ), e τ0Mn W n X n β 0 , e τ0Mn X n ′ ǫ n (γ). Furthermore, the 21 
If Mn is row-normalized and Xn contains an intercept term, e τ 0 Mn ln = ∞ j=0 1 j! τ j 0 M j n ln = e τ 0 ln. In this case, c(τ 0 ) = e τ 0 . Otherwise e τ 0 Mn Xn generally does not contain an intercept term.

moments P * βn1 ǫ n (γ) . . . , P * βnk * ǫ n (γ) ′ ǫ n (γ) can be shown to be redundant given

g # n (γ) = 1 n W n ǫ n (γ), M n ǫ n (γ), e τ0Mn W n X n β 0 , e τ0Mn X n ′ ǫ n (γ), (16) 
by an argument similar to the proof of Proposition 8. This result can also be shown by using the generalized Cauchy-Schwarz inequality, as in subsequent section.

The G n in Proposition 7 can be written as

G n = 1 nσ 2 0 G ′ 2n G 1n
, where

G 1n =    √ 2σ 2 0 2 vec(W s n ) √ 2σ 2 0 2 vec(M s n ) 0 σ 0 W n e τ0Mn X n β 0 0 -σ 0 e τ0Mn X n    and G 2n =    √ 2σ 2 0 2 ω n 0 0 σ 0 F n    .
When ǫ ni 's are normal, µ 3 = µ 4 -3σ 4 0 = 0. Furthermore, even under non-normal disturbances, if P n1 , ..., P n,kp are chosen to have zero diagonal, then ω nd = 0. For those cases, V n in Proposition 7 reduces

to V n = 1 n G ′ 2n G 2n . Thus for those cases, G ′ n V -1 n G n ≤ Λ n by the generalized Cauchy-Schwarz inequality, where Λ n = 1 nσ 4 0 G ′ 1n G 1n .
As W n and M n both have zero traces, when the moment vector is g # n (γ) in ( 16), 16) when ǫ ni 's are normal. When W n and M n can commute, the best moment vector, with the restriction that P ni 's have zero diagonals, is22 

G ′ n V -1 n G n = Λ n . Thus the best moment vector is g # n (γ) in (
g # n,d (γ) = 1 n W n ǫ n (γ), M n ǫ n (γ), e τ0Mn W n X n β 0 , e τ0Mn X n ′ ǫ n (γ). ( 17 
) Since G 1n = √ 2σ0 2 C 1n
, where C 1n is given in (11), the asymptotic VC matrix Λ -1 n for the best GMME in the case of normal disturbances is the same as that for the MLE of γ. It is of interest to note that for the case with non-normal disturbances, when W n and M n can commute the QMLE of γ happens to be asymptotically efficient within the class of GMMEs with linear and quadratic moments where the quadratic matrices P ni 's have zero diagonals.

Corollary 1. Suppose that Assumptions 1, 2, 5 and 12-15 hold.

(i) When the disturbances ǫ ni 's are normal, for the class of GMMEs with linear and quadratic moments where the quadratic matrices P ni 's have zero traces, the best GMME is the optimal GMME with the moment vector g # n (γ) in ( 16);

(ii) When W n and M n can commute, for the class of GMMEs with linear and quadratic moments where the quadratic matrices P ni 's have zero diagonals, the best GMME is the optimal GMME with the moment

vector g # n,d (γ) in (17).
The best moments in the case of normal disturbances are of interest to be compared with those for the SARAR model. For the latter model, the best instruments are R n [X n , W n S -1 n X n β 0 ] and the matrices for the best quadratic moments are

R n W n S -1 n R -1 n -I n tr(W n S -1 n )/n and M n R -1 n -I n tr(M n R -1 n )/n, where
R n = I n -ρ 0 M n and S n = I n -λ 0 W n . Thus, in addition to X n and W n X n , higher order spatially lagged X n , i.e., W 2 n X n , W 3 n X n , etc., will provide additional information. For the quadratic moments, spatial weights matrices of higher order, namely, W 2 n , W 3 n , etc., from which the average of their diagonal elements is subtracted from each diagonal element, can be used as additional orthogonal conditions. On the other hand, the best instruments and quadratic moments for the MESS(1,1) rely simply on spatial weights matrices W n and M n . Note also that when there is no MESS process in the disturbances, the moment vector for the best GMME in the case of normal disturbances can be simply taken as

1 n [ǫ ′ n (γ)W n ǫ n (γ), ǫ ′ n (γ)(W n X n , X n ) IN ] ′ ,
where (W n X n , X n ) IN denotes the independent columns of (W n X n , X n ). 23 Thus it has a simple form which does not involve any unknown parameter. By contrast, the moment vector for the best optimal GMME of the SAR model can be taken as

1 n [ǫ ′ n (γ)(W n S -1 n -I n tr(W n S -1 n )/n)ǫ n (γ), ǫ ′ n (γ)(W n S -1 n X n , X n ) IN ] ′ , which
involves the unknown parameter λ 0 in the matrix inverse S -1 n .

There exists a link between the MLE (or QMLE) and moment conditions. The first order conditions for the MLE using the function Q n (γ) can be written as

∂Q n (γ) ∂α = 2(e τ Mn W n X n β) ′ ǫ n (γ) + 2ǫ ′ n (γ)e τ Mn W n e -τ Mn ǫ n (γ), (18) 
∂Q n (γ) ∂τ = 2ǫ ′ n (γ)M n ǫ n (γ) and

∂Q n (γ) ∂β = -2(e τ Mn X n ) ′ ǫ n (γ). ( 19 
)
Thus the underlying moments integrated by the MLE are also the linear moments with instruments from e τ0Mn X n and e τ0Mn W n X n , and the quadratic moments with the matrices W n and M n . The matrix e τ0Mn in front of X n and W n X n is a transformation for the MESS disturbances. When the likelihood function is correctly specified under the normal disturbances, the combinations of linear and quadratic moments in ( 18)-( 19) are the efficient ones. But they might not be so when the likelihood function is only a quasi one.

The optimal GMME employs an optimal weighting matrix when using the moments g # n (γ), but the QMLE might not. Thus a best GMME within the class of linear and quadratic moments can be more efficient asymptotically than the QMLE when the disturbances are non-normal or W n and M n cannot commute.

This can be shown analytically. Let

h n (γ) = 2 n       (e τ0Mn W n X n β 0 ) ′ ǫ n (γ) + ǫ ′ n (γ)W n ǫ n (γ) ǫ ′ n (γ)M n ǫ n (γ) -(e τ0Mn X n ) ′ ǫ n (γ)       = Ag # n (γ), with A = 2       1 0 1 0 0 1 0 0 0 0 0 -I k      
.

The h n (γ) and 1 n ∂Qn(γ) ∂γ have a similar structure: replacing τ 0 in the components e τ0Mn W n X n β 0 and e τ0Mn X n in h n (γ) by τ yields

1 n ∂Qn(γ) ∂γ . It is obvious that E ∂hn(γ0) ∂γ ′ = 1 n E ∂ 2 Qn(γ0) ∂γ∂γ ′ and E nh n (γ 0 )h ′ n (γ 0 ) = 1 n E ∂Qn(γ0) ∂γ ∂Qn(γ0) ∂γ ′
. Thus, by Proposition 4, the asymptotic VC matrix for the QMLE of γ is equal to

lim n→∞ E ∂hn(γ0) ∂γ ′ -1 E nh n (γ 0 )h ′ n (γ 0 ) E ∂hn(γ0) ∂γ -1 . Therefore, E ∂h n (γ 0 ) ∂γ ′ -1 E[h n (γ 0 )h ′ n (γ 0 )] E ∂h ′ n (γ 0 ) ∂γ -1 = G # ′ n (γ 0 )A ′ A E g # n (γ 0 )g # ′ n (γ 0 ) A ′ -1 AG # n (γ 0 ) -1 ≥ G # ′ n (γ 0 ) E g # n (γ 0 )g # ′ n (γ 0 ) -1 G # n (γ 0 ) -1 , (20) 
by the generalized Cauchy-Schwarz inequality, where

G # n (γ 0 ) = E ∂g # n (γ0)
∂γ ′ . The last term above is the asymptotic VC matrix of the feasible optimal GMME with the moment vector g # n (γ). The inequality in (20) becomes an equality if there is a matrix ∆ gh such that

G # n (γ 0 ) = E g # n (γ 0 )g # ′ n (γ 0 ) A ′ ∆ gh . From
Proposition 6, we have

G # n (γ 0 ) = 1 n       σ 2 0 tr(W s n W n ) σ 2 0 tr(W s n M n ) 0 σ 2 0 tr(M s n W n ) σ 2 0 tr(M s n M n ) 0 (e τ0Mn W n X n β 0 , e τ0Mn X n ) ′ e τ0Mn W n X n β 0 0 -(e τ0Mn W n X n β 0 , e τ0Mn X n ) ′ e τ0Mn X n       and E g # n (γ 0 )g # ′ n (γ 0 ) A ′ = 2σ 2 0 n G # n + 2 n 2       (µ 4 -3σ 4 0 ) vec D ′ (W n ) vec D (W n ) + µ 3 vec D ′ (W n )e τ0Mn W n X n β 0 0 -µ 3 vec D ′ (W n )e τ0Mn X n 0 0 0 µ 3 (e τ0Mn W n X n β 0 , e τ0Mn X n ) ′ vec D (W n ) 0 0      
.

When τ 0 = 0; W n and M n can commute; or µ 3 = µ 4 -3σ 4 0 = 0, we have ∆ gh = n 2σ 2 0 I k+2 . Except for those cases, ∆ gh may not exist. As g # n (γ) in ( 16) is only a special case of linear and quadratic moments, the best GMME in Proposition 8 can be more efficient asymptotically than the QMLE.

The best moment vector g * n (γ) and the optimal weighting matrix V * -1 n involve unknown parameters.

In practice, g * n (γ) and V 

= min γ g * ′ n (γ)V * -1 n g * n (γ).

GMME: Heteroskedastic Case

When the disturbances are independent but may have different variances, the GMME can be consistent when the matrices P ni 's have zero diagonals. 24Assumption 16. The n-dimensional square matrices P n1 , . . . , P n,kp have zero diagonals and are bounded in both row and column sum norms. Elements of F n are uniformly bounded constants.

By taking into account variances of disturbances, the identification condition is similarly derived as that in the homoskedastic case.

Assumption 17. Suppose that F n may be written as

F n = (F 1n , F 2n ) such that lim n→∞ 1 n F ′ 2n e τ Mn X n is nonsingular for any τ ∈ [-δ, δ]. Furthermore, either 1) lim n→∞ 1 n F ′
1n H 1n (τ )e τ Mn e ηWn X n β 0 = 0 for any η = 0 and for all τ ∈ [-δ, δ]; and, for any τ = τ 0 , lim n→∞

1 n tr(e (τ -τ0)M ′ n P ni e (τ -τ0)Mn Σ n ) = 0, for some i ∈ {1, • • • , k p }; or, 2) for any (α, τ ) = (α 0 , τ 0 ), lim n→∞ 1 n β ′ 0 X ′ n e (α-α0)W ′ n e τ M ′ n H ′ 1n (τ )P ni H 1n (τ )e τ Mn e (α-α0)Wn X n β 0 + 1 n tr(e -τ0M ′ n e (α-α0)W ′ n e τ M ′ n P ni e τ Mn e (α-α0)Wn e -τ0Mn Σ n ) = 0, for some i ∈ {1, • • • , k p }.
Proposition 10. Under Assumptions 1, 2, 8, 14, 16 and 17, the GMM estimator γn from the minimization of g ′ n (γ)a n a ′ n g n (γ) is a consistent estimator of γ 0 , and

√ n(γ n -γ 0 ) d -→ N 0, lim n→∞ (G ′ n a n a ′ n G n ) -1 G ′ n a n a ′ n V n a n a ′ n G n (G ′ n a n a ′ n G n ) -1 ,
where

V n = n E[g n (γ 0 )g ′ n (γ 0 )] = 1 n   1 2 ω ′ n ω n 0 0 F ′ n Σ n F n  
, and

G n = E ∂g n (γ 0 ) ∂γ ′ = 1 n   1 2 ω ′ n vec(Σ 1/2 n (Σ -1 n W n ) s Σ 1/2 n ) 1 2 ω ′ n vec(Σ 1/2 n (Σ -1 n M n ) s Σ 1/2 n ) 0 F ′ n W n e τ0Mn X n β 0 0 -F ′ n e τ0Mn X n   with ω n = vec(Σ 1/2 n P s n1 Σ 1/2 n ), . . . , vec(Σ 1/2 n P s n,kp Σ 1/2 n )
, under the condition that lim n→∞ a ′ n G n exists and has the full rank + 2. The V n does not involve the third and fourth moments of the disturbances, as the matrices in the quadratic forms of disturbances in g n (γ 0 ) have zero diagonals. An optimal GMME can also be formulated.

Assumption 18. The limits of 1 n ω ′ n ω n and 1 n F ′ n Σ n F n exist and are nonsingular.

A consistent estimator for V n is the matrix Vn derived by replacing the Σ n in V n by Σn = Diag(ǫ 2 n1 , . . . , ǫ2 nn ), where ǫni 's are the residuals from an initial GMM estimation. Under Assumption 18, the limiting inverse of V n exists. Then the objective function for the feasible optimal GMME is g ′ n (γ) V -1 n g n (γ).

Proposition 11. Under Assumptions 1, 2, 8, 14 and 16-18, the feasible optimal GMME γn,o from the mini-

mization of g ′ n (γ) V -1 n g n (γ) is a consistent estimator of γ 0 , and √ n(γ n,o -γ 0 ) d -→ N 0, lim n→∞ (G ′ n V -1 n G n ) -1 . Note that tr Σ n P s ni Σ n (Σ -1 n W n ) s = tr Σ n P s ni Σ n Σ -1 n (W n -Diag(W n ))
s as P s ni has a zero diagonal and Σ n is a diagonal matrix, then G n may be written as

G n = 1 n    √ 2 2 ω n 0 0 Σ 1/2 n F n    ′ G 1n
, where

G 1n =    √ 2 2 vec Σ 1/2 n Σ -1 n (W n -Diag(W n )) s Σ 1/2 n √ 2 2 vec(Σ 1/2 n (Σ -1 n M n ) s Σ 1/2 n ) 0 Σ -1/2 n W n e τ0Mn X n β 0 0 -Σ -1/2 n e τ0Mn X n    . Thus G ′ n V -1 n G n ≤ Λ n by the generalized Cauchy-Schwarz inequality, where Λ n = 1 n G ′ 1n G 1n . When the moment vector g n (γ) is equal to g * n (γ) = 1 n ǫ ′ n (γ)Σ -1 n (W n -Diag(W n ))ǫ n (γ), ǫ ′ n (γ)Σ -1 n M n ǫ n (γ), ǫ ′ n (γ)F * n ′ with F * n = Σ -1 n [W n e τ0Mn X n β 0 , e τ0Mn X n ], G ′ n V -1 n G n = Λ n .
Therefore, if the variances σ 2 ni 's can be consistently estimated, e.g., when we have a parametric model for the variances, then we may have a feasible best optimal GMME, for which the moment vector is obtained from replacing the γ 0 in g * n (γ) by an initial consistent estimator. 25

If the elements of Σ n cannot be consistently estimated, we do not have a feasible best GMME, e.g., for the unknown heteroskedastic case, Σ n with n parameters cannot be consistently estimated. However, we may use the moment vector

ĝ# n,d (γ) = 1 n [ǫ ′ n (γ)( Ŵn -Diag( Ŵn ))ǫ n (γ), ǫ ′ n (γ)M n ǫ n (γ), ǫ ′ n (γ)[ Ŵn e τnMn X n β, e τnMn X n ]] ′ , (21) 
and implement a feasible optimal GMM estimation. A special case of interest is when W n and M n can commute. In that case, ĝ# n,d (γ) reduces to

ĝ# n,d (γ) = 1 n [ǫ ′ n (γ)W n ǫ n (γ), ǫ ′ n (γ)M n ǫ n (γ), ǫ ′ n (γ)[W n e τnMn X n βn , e τnMn X n ]] ′ . ( 22 
)
It can be shown, as for the proof of Proposition 9, that the optimal GMME using the moment vector ĝ# n,d (γ) has the same asymptotic distribution as that using the moment vector g # n,d (γ) in ( 17). As shown in ( 18)-( 19), the QMLE also integrates those moments in g # n,d (γ). But because of the optimal weighting, the optimal GMME using the moment vector g # n,d (γ) is at least as efficient as the QMLE and generally more efficient than the QMLE asymptotically, according to (20) and arguments similar to those after (20).

25 For the SARAR model with heteroskedasticity, we have also found that the best instruments are Σ -1

n Rn[Xn, WnS -1 n Xnβ 0 ] and the matrices for the quadratic moments are Σ

-1 n [RnWnS -1 n R -1 n -Diag(RnWnS -1 n R -1 n )] and Σ -1 n [MnR -1 n - Diag(MnR -1 n )].
For the SAR model with heteroskedasticity, [START_REF] Lin | GMM estimation of spatial autoregressive models with unknown heteroskedasticity[END_REF] have not discussed the possible best GMME by the generalized Cauchy-Schwarz inequality as above.

On the Inference of Elements in Impact Matrices

Assessing the statistical significance of the effect of a change in a regressor on the dependent variable is one of the main objectives of applied economists. In spatial regressions, as shown in Section 2, one first has to compute the reduced form of the specification and calculate the matrix of partial derivatives of the dependent variable with respect to the concerned regressor in order to figure out the matrix of impacts.

Inference regarding causal effects should then be based on this matrix, which, for regressor X nk , is presented in (5). All the elements of this impact matrix are possibly different from each other and performing inference on them would be of value.

For the SAR model, [START_REF] Lesage | Introduction to spatial econometrics[END_REF] propose a Bayesian Markov chain Monte Carlo approach to produce inference on the scalar summary of effects, namely the average direct, indirect and total impacts. In this paper, we take the classical approach based on the Delta method to perform inference on those elements of the impact matrix. Statistical significance on differences of impacts can also be assessed. For instance, one could be interested in testing if the effect of the kth regressor for observation i on y ni will be the same as of the lth regressor (with l possibly different from k) for individual j on y nj , with j possibly different from i.

Let γn be a

√ n-consistent estimator of γ, and e ni be the ith column of I n . The impact of x n,jp (pth regressor for individual j) on y ni is estimated to be e ′ ni e -αnWn e nj βnp , and the effect of x n,sq on y nr is estimated to be e ′ nr e -αnWn e ns βnq . Then, by the mean value theorem, √ n[(e ′ ni e -αnWn e nj βnp -e ′ nr e -αnWn e ns βnq ) -(e ′ ni e -α0Wn e nj β 0p -e ′ nr e -α0Wn e ns β 0q )]

= A 1n √ n(α n -α 0 , βnp -β 0p , βnq -β 0q ) ′ + o P (1) d -→ N (0, lim n→∞ A 1n B 1n A ′ 1n ), (23) 
where 

A 1n = [-e ′ ni e -
= A 2n √ n[α n -α 0 , βnp -β 0p ] ′ + o P (1) d -→ N 0, lim n→∞ A 2n B 2n A ′ 2n , (24) 
where N (0, 1) and 1 √ n [tr(e -αnWn ) βnp -tr(e -α0Wn )β 0p ]( Â2n B2n Â′ 2n ) -1/2 d -→ N (0, 1).

A 2n = [-1 n tr(e -α0Wn W n )β 0p , 1 n tr(e -α0Wn
Several applications of this lemma will be presented in Section 5 which is dedicated to the application of the MESS to figure out the dominant type of outward FDI for Belgium. However, before turning to the empirical application, we first present Monte Carlo experiments which assess the finite sample performance of the MLEs, QMLEs and GMMEs.

Monte Carlo Simulations

We consider a MESS(1,1) model with two regressors: e αWn y n = β 1 X n1 + β 2 X n2 + u n , e τ Mn u n = ǫ n . The interaction matrix W n is defined as the 5 nearest neighbors, while we considered two different definitions for M n . Firstly, M n = W n which makes the QMLE consistent even in the presence of unknown heteroskedasticity. Secondly, M n is defined as a 15 nearest neighbors. In this case, W n and M n do not commute and the QMLE will not be consistent in the presence of unknown heteroskedasticity. 26 The elements of X n1 and X n2 are independently drawn from, respectively, the uniform distribution U (0, 10) and the standard normal distribution. For each repetition, the regressors are randomly redrawn.

Three different specifications for the error term are considered. In the first case, the disturbances are i.i.d. normal; in the second case, the disturbances are i.i.d. with a standardized Γ(2, 1) distribution; in the third case, the disturbances are heteroskedastic, where the heteroskedasticity is defined as the multiplication of a standardized Γ(2, 1) distribution by the value of the first regressor. In the homoskedastic cases (the first two cases), the variance σ 2 of disturbances is set to keep the signal-to-noise ratio constant. This ratio is defined as the variance of β 1 X n1 + β 2 X n2 over the sum of variances of β 1 X n1 + β 2 X n2 and ǫ n (see [START_REF] Liu | An efficient GMM estimator of spatial autoregressive models[END_REF]. In these Monte Carlo experiments, the signal-to-noise ratio is set to 0.5. In the absence of spatial autocorrelation, this ratio would represent a R 2 = 0.5. In the heteroskedastic case, the average variances of the disturbances is set to be equal to σ 2 .

Two sample sizes, 100 and 254, are considered, corresponding respectively to the number of counties in North Carolina and in Texas. The values of α and τ vary from -2 to 2 by increment of 1 while β 1 and β 2 are set to 1. All the experiments were replicated 1000 times. For these simulations, the GMM estimator is a two step feasible optimal GMME with the first step weighting matrix being an identity matrix. The best moments are used for the homoskedastic case,27 while the moment vector for the heteroskedastic case is (21). When there are unknown parameters in the moment conditions, the initial consistent estimator used is the GMME with the moment vector

[ǫ ′ n (γ)W n ǫ n , ǫ ′ n (γ n )M n ǫ n (γ), ǫ ′ n (γ)(W n X n , X n )] ′ .
Tables 1-3 summarize the results for the homoskedastic cases with the sample size n = 100. 28 We report the bias, standard errors (in italics) and root mean squared error (RMSE) (in bold) for both QML and GMM estimates. When the disturbances are normal, the results for the QML and GMM estimates are very similar in most cases. While the biases for α, β 1 and β 2 are all smaller than 0.1, the bias for τ can be close to 0.3. Relatively large standard error is also observed for τ in some cases. When the disturbances are non-normal, for β 1 and β 2 in all cases and α in most cases, the GMM estimator has smaller standard error than the QML estimator; for τ , the GMM estimator has a smaller standard error only when

W n = M n .
Table 4 reports the estimates of α and τ in the heteroskedastic case. When W n = M n , the biases of the QML and GMM estimators are very small and their variances have similar magnitudes. When

W n = M n ,
we observe that it is mainly the estimation of τ which is affected by the difference in interaction matrices.

Indeed, for both QML and GMM estimation procedures, estimators of α, β 1 and β 2 have similarly small biases and RMSE. For positives values of τ , GMME behaves better than its QMLE counterpart while for negative and null values of τ both estimators behaves similarly. Even though the QMLE is inconsistent theoretically when W n = M n and τ = 0, the largest bias for the QMLE of τ in simulations does not exceed 0.3. For n = 254, we do not observe any difference in the behavior of QMLE and GMME.

Application to Belgium's outward FDI

To the best of our knowledge, with the recent exceptions of [START_REF] Coughlin | Foreign direct investment in China: A spatial econometric study[END_REF]; [START_REF] Blonigen | FDI in space: Spatial autoregressive relationships in foreign direct investment[END_REF]; [START_REF] Baltagi | Estimating models of complex FDI: Are there third-country effects[END_REF][START_REF] Baltagi | Estimating regional trade agreement effects on FDI in an interdependent world[END_REF] and [START_REF] Garretsen | FDI and the relevance of spatial linkages: do third country effects matter for Dutch FDI?[END_REF], the literature on FDI has overlooked the third country effect as a determinant of bilateral FDI. [START_REF] Coughlin | Foreign direct investment in China: A spatial econometric study[END_REF] consider inward FDI for 29 Chinese provinces and find positive and significant spatially autocorrelated error terms (SEM specification). [START_REF] Blonigen | FDI in space: Spatial autoregressive relationships in foreign direct investment[END_REF] distinguish 4 different types of FDI that multinational enterprises (MNEs) can undertake, summarized in Table 5 (corresponding to Table 1 in [START_REF] Blonigen | FDI in space: Spatial autoregressive relationships in foreign direct investment[END_REF] and can be identified based on the sign of the spatial lag parameter and of the surrounding-market potential variable.29 

Table 1: QML estimation results for α and τ for the homoskedastic case with n=100

Results for the α estimator Results for W n = M n Results for W n = M n Normally distributed error terms Non-normally distributed error terms Normally distributed error terms Non-normally distributed error terms any layout are the biases. We observe that for W n = M n , non-normal disturbances and τ = -2, the standard errors corresponding to α = 0, -1 and 2 are significantly larger than those for α = -2 and 1. These are caused by outliers. We have computed a robust measure of the standard deviation, the mean absolute deviation, and find that the values have similar magnitudes for different values of α when τ = -2. as in pure vertical FDI, we do not predict any surrounding-market effect. [START_REF] Blonigen | FDI in space: Spatial autoregressive relationships in foreign direct investment[END_REF] use outbound US FDI to 35 countries over the period 1983 to 1998 to test the dominant type of FDI which characterizes US MNEs. Even though they found a positive and significant spatial dependence effect, the authors acknowledge the fragility of their results with respect to the countries considered. Besides, significance of the surrounding market effect variable is affected by the presence of individual effects in the regression. [START_REF] Garretsen | FDI and the relevance of spatial linkages: do third country effects matter for Dutch FDI?[END_REF] also test the dominant motivation for FDI using outward Dutch FDI to 19 countries from 1984 to 2004. When analyzing their complete sample, they find a positive and significant market potential effect but also positive and significant spatial autocorrelation among FDI.

α α α α -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 τ = -2 0.
α α α -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 τ = -2 0.
= M n Heteroskedastic with W n = M n Heteroskedastic with W n = M n Heteroskedastic with W n = M n α α α α -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 τ = -2 0 
= M n α α α α -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 τ = -2 0 
Our contribution to this literature is threefold. Firstly, we analyze the dominant pattern of Belgium's outward FDI using a modified gravity equation which, in addition to traditional determinants found in the literature, also captures effects of spatial interactions and market potential. We secondly compare results using a MESS(1,1) and a SARAR specification and highlight the similarities in terms of economic interpretations of these two models. We finally apply the lemma concerning inference to assess statistical significance of elements of impact matrices of FDI's determinants.

Data and empirical specification

This application concerns Belgium's outward FDI into 35 countries in 2009. These 35 host countries belong either to OECD or European Union and represent 94% of Belgium's total outward FDI. 30The modified gravity to be estimated is presented in (25).

LF DIi = β1 + β2 LGDPi + β3 LP OPi + β4 OECDi + β5 LDISi + β6 T ARIF F Si + β7 M Pi + ǫi. (25) 
LF DI i is the stock of outward FDI (in logs) from Belgium to host country i. FDI stocks were extracted from the OECD International Direct Investment Statistics. The set of regressors includes host GDP in logs (LGDP ), host population in logs (LP OP ), an OECD dummy which captures an OECD effect, the bilateral distance between Belgium and country i expressed in logs (LDIS) and a measure of trade costs which corresponds to the weighted mean of applied tariffs on all products, as defined by the World bank WDI database and labeled as T ARIF F S. The last exogenous regressor is the surrounding-market potential variable, M P . We follow a similar approach to [START_REF] Blonigen | FDI in space: Spatial autoregressive relationships in foreign direct investment[END_REF] in the definition of this variable. For host country i, we define the market potential as the sum of inverse-distance weighted log-GDPs of all other k = i countries in the world for which we could obtain GDP data (this amounts to 183 countries). The only difference from [START_REF] Blonigen | FDI in space: Spatial autoregressive relationships in foreign direct investment[END_REF] is that these authors use the log of the inverse-distance weighted GDP to measure surrounding market potential. 31 LGDP , LP OP and T ARIF F S all come from the World Bank WDI database while bilateral distances and distances used to construct the M P variable come from CEPII's databases. Finally, all the concerned variables are expressed in constant USD of 2000. Some descriptive statistics of the data are presented in Table 6. Accounting for spatial autocorrelation in FDI requires the setup of an interaction scheme, modeled through the interaction (spatial weights) matrix W n . In this application, we follow [START_REF] Blonigen | FDI in space: Spatial autoregressive relationships in foreign direct investment[END_REF] and use an inverse arc-distance between capitals to model interactions between host countries. However, we do not multiply the weights by the shortest distance between capitals as done in [START_REF] Blonigen | FDI in space: Spatial autoregressive relationships in foreign direct investment[END_REF] since we do not row-normalize our weight matrix but instead use the spectral radius to standardize the matrix.32 This approach is advocated by [START_REF] Baltagi | Estimating regional trade agreement effects on FDI in an interdependent world[END_REF] who argue that row-normalizing a distance based interaction matrix converts absolute distance-based interactions to relative distance-based and thus changes the information content of the interaction scheme.33 In addition, we control for the presence of residual spatial autocorrelation in the error terms. We consider the same interaction matrix for both MESS processes. As shown in Section 3, the QMLE can be consistent in presence of unknown heteroskedasticity.

Table 7 summarizes the results of different econometric specifications which extend (25). Columns 2-7 present estimation results respectively for homoskedastic SARAR (by QML), homoskedastic MESS(1,1) (by QML), homoskedastic MESS(1,1) (by optimal GMM with the moment vector ĝ# n,d (γ) in Proposition 9), 4) is heteroskedastic SARAR, (5) is hetero. MESS(1,1) by QML and ( 6) is hetero. MESS(1,1) by GMM; * , * * and * * * correspond to significance at the 10%, 5% and 1% respectively. in Belgium. Indeed, labor costs in Belgium are amongst the highest in Europe. 37 Besides, determinants of the traditional gravity equation have the expected sign. We observe a positive and significant elasticity of GDP, which captures the wealth effect, while elasticities of population and bilateral distance are found to be negative. The OECD dummy is found to be significant at the 10% level. Finally, the tariffs variable is found to be non-significant which can be explained by the homogeneity of the sample.

37 See Eurostat database on labor costs.

The second row presents inference on the indirect effect of Austria on Slovakia, (Ξ yn X nk ) SV K,AU T . In other words, we analyze if a shock on a regressor in Austria will affect outward FDI from Belgium to Slovakia. We observe a significant effect for the host GDP variable and bilateral distance but the effect is non-significant for the four other regressors. For instance, increasing the GDP of Austria by 1% will reduce outward FDI from Belgium to Slovakia by 0.147%. Finally, the last row of Table 9 studies significance of the difference between the indirect effect of Mexico on the United-States and the indirect effect of Canada on United-States ,(Ξ yn X nk ) U SA,M EX -(Ξ yn X nk ) U SA,CAN . We observe significant difference between those indirect effects for GDP and bilateral distance. In other words, the effect of a variation of Mexican GDP on outward FDI from Belgium to the United States will be statistically different from the effect of the same variation of Canadian GDP on outward FDI from Belgium to the United States. n tr(Ξ yn X nk ) is the average direct effect, (Ξ yn X nk ) SV K,AU T is the indirect effect between Austria and Slovakia; (Ξ yn X nk ) U SA,M EX -(Ξ yn X nk ) U SA,CAN is the difference between the indirect effect of a change in x in Mexico on outward FDI in the United States and the indirect effect of a change in x in Canada on outward FDI in the United States; * , * * and * * * correspond to significance at the 10%, 5% and 1% respectively.

Conclusions

This paper firstly develops the asymptotic theory of the matrix exponential spatial specification (MESS) in both the dependent variable and error terms. We show that the GMME is consistent and asymptotically normal even in the presence of unknown heteroskedasticity as long as the interaction matrix has zero diagonal elements. Besides we show that if the interaction matrices for the dependent variable and the error terms commute, the QMLE may also be consistent and asymptotically normal in the presence of unknown heteroskedasticity. In the homoskedastic case, we develop a best optimal GMME which is much simpler than the best optimal GMME for the SAR specification since moment conditions do not depend on estimated parameters. In case of non-normality, the homoskedastic best optimal GMME is shown to be more efficient than the QMLE. In the heteroskedastic case, a best optimal GMME cannot be derived except if we know the

  By contrast, the quasi log likelihood function of the SARAR model shown in (3) involves the log determinant of the Jacobian ln |(I n -λW n )(I n -ρM n )| = ln |I n -λW n | + ln |I n -ρM n |, which may make the QMLE computationally intensive for large sample sizes.

Furthermore

  n -I n tr(A n )/n for any n × n matrix A n , which is the matrix A n with its trace subtracted out from its diagonal. Thus A (t) n has zero trace. The following proposition gives the moment conditions for the GMME that generate the smallest variance within the class of all GMM estimators with linear and quadratic moments, when disturbances are homoskedastic.Proposition 8. Suppose that Assumptions 1, 2, 5, and 12-15 hold. Let g * n

  where ǫ n (γ) = e τ Mn (e αWn y n -X n β) and F n is an n × k f matrix of instruments constructed as functions of W n and X n , as in the two-stage least squares (2SLS) approach. The quadratic momentshave the form ǫ ′ n (γ)P ni ǫ n (γ) = 0; i = 1, • • • , k p ,where P ni has trace zero when ǫ ni 's are i.i.d., implying that E[ǫ ′ n (γ 0 )P ni ǫ n (γ 0 )] = σ 2 0 tr(P ni ) = 0. On the other hand, if the diagonal elements of P ni are all zero when ǫ ni 's are independently distributed with possibly different variances, we get E[ǫ ′ n

  Assumption 1. Matrices {W n } and {M n } are bounded in both row and column sum norms. The diagonal elements of W n and M n are zero.

	Assumption 2. Elements of X n are uniformly bounded constants, X n has full column rank, and besides,
	lim n→∞ X ′ n X n /n exists and is nonsingular.

  ||Wn|| , which is bounded if α is bounded, and so is ||e τ Mn || if τ is bounded, where || • || denotes either the row or column sum matrix norm.

	Assumption 3. There exists a constant δ > 0 such that |α| ≤ δ, |τ | ≤ δ and the true φ 0 is in the interior
	of the parameter space

  ), where ǫn = (ǫ n1 , . . . , ǫnn ) ′ is the residual vector from the QML estimation. Consistent estimators for D n and ∆ n can be, respectively, Dn and ∆n , which are the matrices derived from replacing Σ n in D n and Ω n by Σn , and replacing γ 0 by a consistent estimator γn . The Dn and ∆n can be consistent because D n and ∆ n with fixed dimensions are estimated as whole terms.

		, we may have a consistent estimator
	of D -1 n ∆ n D -1 n	without being able to consistently estimate Σ n , which has n unknown parameters. Let
	Σn = Diag(ǫ 2 n1 , . . . , ǫ2

nn Proposition 5. Under Assumptions 1-4 and 8-10, Dn = D n + o P (1) and ∆n = ∆ n + o P (1).

  α0Wn W n e nj β 0p + e ′ nr e -α0Wn W n e ns β 0q , e ′ ni e -α0Wn e nj , -e ′ nr e -α0Wn e ns ] and B 1n is theasymptotic VC matrix of √ n(α n -α 0 , βnp -β 0p , βnq -β 0q ) ′ .To test whether the two impacts are equal, we may use the asymptotically standard normal statistic √ n(e ′ ni e -αnWn e nj βnp -e ′ nr e -αnWn e ns βnq )/( Â1n B1n Â′ 1n ) 1/2 under the null hypothesis, where Â1n and B1n are, respectively, consistent estimates of A 1n and B 1n . An-

	other example is in testing whether the average direct effect 1 n tr(e αnWn ) βnp is significantly different from
	zero. It can be shown that		
	1 √ n	tr(e -αnWn ) βnp -	1 √ n	tr(e -α0Wn )β 0p

  )] and B 2n is the asymptotic VC matrix of √ n[α n -α 0 , βnp -β 0p ] ′ . Let Â2n and B2n be, respectively, consistent estimates of A 2n and B 2n . ′ ni e -αnWn e nj βnp -e ′ nr e -αnWn e ns βnq )-(e ′ ni e -α0Wn e nj β 0p -e ′ nr e -α0Wn e ns β 0q )](

	Lemma 1.	√	n[(e Â1n B1n	Â′ 1n ) -1/2 d -→

  Figures in italics are the standard errors, figures in bold represent RMSE and figures without any layout are the biases.

		016	0.019	0.016	0.016	0.021	0.016	0.020	0.013	0.013	0.023	0.049	0.049	0.050	0.053	0.049	0.075	0.075	0.073	0.075	0.072
		0.325 0.323 0.324 0.325 0.326	0.314	0.313 0.315 0.315 0.313	0.382 0.378 0.384 0.380 0.381	0.381	0.381 0.380 0.382 0.379
		0.326 0.324 0.325 0.326 0.327	0.314 0.314 0.316 0.316 0.313	0.385 0.382 0.387 0.384 0.385	0.389 0.388 0.387 0.389 0.386
		0.026	0.026	0.023	0.026	0.025	0.018	0.014	0.017	0.015	0.018	0.108	0.100	0.102	0.104	0.101	0.121	0.116	0.123	0.120	0.122
	τ = -1	0.234 0.234 0.234 0.234 0.235 0.235 0.236 0.235 0.236 0.237	0.224 0.225 0.224 0.224 0.224 0.225 0.223 0.224 0.223 0.224	0.382 0.382 0.383 0.383 0.380 0.397 0.395 0.396 0.397 0.393	0.383 0.402 0.397 0.405 0.400 0.404 0.379 0.386 0.382 0.385
		0.050	0.053	0.051	0.052	0.048	0.035	0.035	0.036	0.033	0.034	0.153	0.152	0.155	0.154	0.156	0.161	0.167	0.162	0.166	0.161
	τ = 0	0.219 0.221 0.219 0.219 0.219	0.208	0.208 0.210 0.209 0.211	0.364 0.367 0.372 0.368 0.366	0.377	0.377 0.377 0.379 0.377
		0.224 0.227 0.225 0.225 0.224	0.211 0.211 0.213 0.212 0.214	0.395 0.397 0.403 0.399 0.398	0.410 0.412 0.410 0.414 0.409
		0.075	0.075	0.075	0.075	0.076	0.054	0.055	0.053	0.057	0.054	0.209	0.209	0.209	0.210	0.211	0.214	0.206	0.208	0.208	0.205
	τ = 1	0.229 0.229 0.229 0.230 0.229	0.218	0.218 0.219 0.217 0.217	0.398 0.397 0.397 0.397 0.399	0.395	0.394 0.393 0.394 0.395
		0.241 0.241 0.241 0.242 0.241	0.224 0.225 0.225 0.225 0.224	0.449 0.449 0.449 0.449 0.451	0.449 0.444 0.444 0.446 0.445
		0.091	0.092	0.093	0.091	0.092	0.068	0.072	0.069	0.071	0.069	0.283	0.285	0.282	0.280	0.284	0.274	0.281	0.280	0.280	0.281
	τ = 2	0.224 0.225 0.227 0.225 0.226	0.217	0.217 0.217 0.217 0.219	0.427 0.428 0.425 0.424 0.426	0.421	0.421 0.421 0.422 0.424
		0.242 0.243 0.245 0.243 0.244	0.228 0.228 0.228 0.229 0.230	0.513 0.515 0.510 0.509 0.512	0.502 0.507 0.506 0.506 0.509
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										Results for the β1 estimator								
					Results for W n = M n								Results for W n = M n			
		Normally distributed error terms	Non-normally distributed error terms	Normally distributed error terms	Non-normally distributed error terms
				α					α					α					α	
		-2	-1	0	1	2	-2	-1	0	1	2	-2	-1	0	1	2	-2	-1	0	1	2
		0.009	0.011	0.009	0.010	0.009	0.002	0.004	0.002	0.002	0.004	0.005	0.006	0.005	0.004	0.005	0.003	0.002	0.004	0.003	0.002
	τ = -2	0.104 0.104 0.103 0.104 0.104 0.105 0.104 0.104 0.104 0.105	0.101 0.101 0.102 0.101 0.101 0.101 0.102 0.101 0.101 0.101	0.095 0.094 0.094 0.095 0.095 0.095 0.094 0.094 0.095 0.095	0.097 0.097 0.097 0.097 0.097 0.098 0.097 0.097 0.097 0.098
		0.006	0.006	0.006	0.006	0.006	0.002	0.002	0.001	0.001	0.000	0.005	0.005	0.005	0.005	0.005	0.000	0.001	0.001	0.001	0.000
	τ = -1	0.084 0.083 0.083 0.083 0.083 0.084 0.084 0.084 0.083 0.083	0.084 0.084 0.084 0.083 0.084 0.083 0.084 0.083 0.084 0.083	0.093 0.092 0.092 0.093 0.092 0.093 0.092 0.092 0.093 0.092	0.095 0.095 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094
		0.007	0.008	0.006	0.007	0.007	0.001	0.001	0.001	0.000	0.001	0.005	0.005	0.004	0.005	0.005	0.003	0.003	0.003	0.003	0.002
	τ = 0	0.099 0.099 0.098 0.099 0.099	0.098	0.098 0.098 0.099 0.099	0.089 0.089 0.089 0.088 0.089	0.092	0.092 0.091 0.092 0.092
		0.099 0.100 0.099 0.099 0.099	0.098 0.098 0.098 0.099 0.099	0.089 0.089 0.089 0.088 0.089	0.092 0.092 0.091 0.092 0.092
		0.009	0.008	0.009	0.009	0.009	0.001	0.000	0.002	0.000	0.000	0.005	0.005	0.005	0.005	0.005	0.005	0.003	0.003	0.004	0.004
	τ = 1	0.116 0.117 0.117 0.117 0.117	0.115	0.115 0.115 0.115 0.115	0.091 0.090 0.092 0.092 0.092	0.093	0.093 0.093 0.093 0.093
		0.116 0.117 0.117 0.118 0.117	0.115 0.115 0.115 0.115 0.115	0.092 0.091 0.092 0.092 0.092	0.094 0.094 0.093 0.093 0.093
		0.007	0.009	0.009	0.007	0.008	0.004	0.000	0.004	0.003	0.002	0.005	0.005	0.004	0.005	0.004	0.003	0.004	0.003	0.004	0.005
	τ = 2	0.116 0.116 0.116 0.115 0.116	0.115	0.114 0.114 0.115 0.114	0.090 0.090 0.091 0.090 0.090	0.090	0.090 0.090 0.090 0.090
		0.116 0.116 0.116 0.115 0.116	0.115 0.114 0.115 0.115 0.114	0.091 0.091 0.091 0.090 0.090	0.090 0.090 0.090 0.090 0.090
										Results for the β2 estimator								
					Results for W n = M n								Results for W n = M n			
		Normally distributed error terms	Non-normally distributed error terms	Normally distributed error terms	Non-normally distributed error terms
				α					α					α					α	
		-2	-1	0	1	2	-2	-1	0	1	2	-2	-1	0	1	2	-2	-1	0	1	2
		0.011	0.012	0.013	0.011	0.010	0.006	0.006	0.007	0.006	0.004	0.010	0.011	0.011	0.005	0.009	0.006	0.008	0.007	0.007	0.009
	τ = -2	0.220 0.218 0.217 0.219 0.220 0.220 0.218 0.218 0.219 0.220	0.231 0.231 0.231 0.231 0.232 0.232 0.231 0.231 0.232 0.232	0.272 0.271 0.270 0.273 0.271 0.272 0.271 0.271 0.273 0.271	0.287 0.287 0.285 0.287 0.286 0.286 0.285 0.287 0.286 0.286
		0.007	0.005	0.009	0.002	0.006	0.008	0.009	0.007	0.009	0.007	0.008	0.010	0.011	0.011	0.009	0.008	0.009	0.004	0.006	0.006
	τ = -1	0.273 0.273 0.273 0.271 0.274 0.273 0.273 0.274 0.271 0.274	0.287 0.287 0.287 0.288 0.287 0.289 0.287 0.288 0.286 0.289	0.295 0.291 0.290 0.293 0.292 0.295 0.291 0.290 0.294 0.292	0.311 0.311 0.312 0.314 0.313 0.313 0.312 0.314 0.313 0.313
		0.009	0.006	0.010	0.007	0.009	0.002	0.001	0.002	0.008	0.000	0.010	0.012	0.014	0.012	0.009	0.005	0.010	0.005	0.003	0.007
	τ = 0	0.304 0.305 0.300 0.304 0.303	0.328	0.329 0.329 0.326 0.327	0.305 0.307 0.307 0.302 0.306	0.331	0.331 0.331 0.331 0.331
		0.304 0.305 0.301 0.304 0.303	0.328 0.329 0.329 0.326 0.327	0.305 0.307 0.307 0.302 0.306	0.331 0.331 0.331 0.331 0.331
		0.012	0.012	0.014	0.012	0.013	0.003	0.003	0.005	0.007	0.004	0.013	0.013	0.013	0.013	0.012	0.001	0.003	0.004	0.002	0.001
	τ = 1	0.249 0.250 0.248 0.250 0.248	0.273	0.273 0.270 0.273 0.274	0.299 0.297 0.298 0.298 0.300	0.310	0.310 0.310 0.309 0.311
		0.249 0.250 0.249 0.250 0.248	0.273 0.273 0.270 0.273 0.274	0.299 0.297 0.298 0.298 0.300	0.310 0.310 0.310 0.309 0.311
		0.011	0.012	0.012	0.011	0.011	0.001	0.000	0.000	0.001	0.003	0.016	0.014	0.015	0.015	0.014	0.000	0.000	0.002	0.002	0.003
	τ = 2	0.163 0.164 0.163 0.164 0.162	0.174	0.172 0.173 0.173 0.172	0.230 0.228 0.228 0.227 0.228	0.237	0.236 0.237 0.235 0.234
		0.163 0.165 0.163 0.165 0.162	0.174 0.172 0.173 0.173 0.172	0.230 0.228 0.228 0.227 0.229	0.237 0.236 0.237 0.235 0.234
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										Results for the α estimator								
					Results for W n = M n								Results for W n = M n			
		Normally distributed error terms	Non-normally distributed error terms	Normally distributed error terms	Non-normally distributed error terms
				α					α					α					α	
		-2	-1	0	1	2	-2	-1	0	1	2	-2	-1	0	1	2	-2	-1	0	1	2
		0.010	0.014	0.015	0.014	0.016	0.031	0.032	0.043	0.043	0.042	0.004	0.020	0.022	0.022	0.022	0.016	0.014	0.016	0.014	0.015
	τ = -2	0.240 0.246 0.244 0.244 0.244 0.240 0.246 0.244 0.245 0.245	0.213 0.215 0.216 0.417 0.423 0.416 0.214 0.415 0.421 0.414	0.160 0.173 0.175 0.175 0.174 0.160 0.174 0.176 0.176 0.176	0.152 0.153 0.155 0.157 0.154 0.154 0.154 0.156 0.153 0.154
		0.001	0.001	0.002	0.002	0.002	0.021	0.021	0.022	0.021	0.021	0.001	0.015	0.016	0.014	0.015	0.013	0.011	0.011	0.011	0.011
	τ = -1	0.143 0.144 0.143 0.144 0.143 0.143 0.144 0.143 0.144 0.143	0.127 0.129 0.129 0.130 0.129 0.129 0.127 0.128 0.127 0.127	0.132 0.130 0.130 0.131 0.131 0.132 0.131 0.131 0.132 0.132	0.125 0.126 0.127 0.127 0.127 0.127 0.126 0.126 0.126 0.127
		0.009	0.009	0.008	0.008	0.008	0.012	0.013	0.013	0.013	0.013	0.002	0.010	0.011	0.010	0.011	0.010	0.011	0.011	0.011	0.011
	τ = 0	0.111 0.110 0.110 0.111 0.111	0.087	0.088 0.087 0.088 0.088	0.105 0.100 0.100 0.099 0.099	0.088	0.088 0.087 0.088 0.088
		0.112 0.111 0.110 0.111 0.111	0.088 0.089 0.088 0.089 0.089	0.105 0.100 0.100 0.100 0.100	0.088 0.089 0.088 0.089 0.089
		0.001	0.008	0.009	0.009	0.008	0.013	0.008	0.007	0.008	0.008	0.004	0.007	0.008	0.008	0.008	0.008	0.010	0.009	0.009	0.009
	τ = 1	0.121 0.120 0.120 0.120 0.119	0.098	0.090 0.090 0.090 0.090	0.100 0.098 0.096 0.096 0.096	0.080	0.079 0.079 0.079 0.079
		0.121 0.120 0.121 0.121 0.120	0.099 0.090 0.090 0.090 0.090	0.100 0.098 0.097 0.096 0.096	0.081 0.080 0.079 0.079 0.079
		0.003	0.004	0.005	0.006	0.004	0.004	0.004	0.004	0.004	0.004	0.003	0.007	0.006	0.006	0.006	0.009	0.007	0.006	0.007	0.007
	τ = 2	0.117 0.117 0.118 0.118 0.117	0.089	0.089 0.089 0.089 0.088	0.097 0.094 0.094 0.094 0.094	0.077	0.079 0.078 0.078 0.077
		0.117 0.117 0.118 0.118 0.117	0.089 0.089 0.089 0.089 0.088	0.097 0.095 0.094 0.094 0.094	0.077 0.079 0.078 0.078 0.077
										Results for the τ estimator								
					Results for W n = M n								Results for W n = M n			
		Normally distributed error terms	Non-normally distributed error terms	Normally distributed error terms	Non-normally distributed error terms
				α					α					α					α	
		-2	-1	0	1	2	-2	-1	0	1	2	-2	-1	0	1	2	-2	-1	0	1	2
		0.018	0.024	0.024	0.022	0.026	0.037	0.039	0.052	0.050	0.050	0.051	0.092	0.098	0.099	0.102	0.073	0.072	0.074	0.073	0.072
	τ = -2	0.300 0.307 0.305 0.306 0.306 0.301 0.308 0.306 0.307 0.307	0.285 0.288 0.290 0.492 0.499 0.491 0.287 0.489 0.496 0.489	0.397 0.469 0.477 0.478 0.477 0.401 0.478 0.487 0.488 0.488	0.396 0.403 0.404 0.405 0.398 0.403 0.397 0.398 0.391 0.397
		0.026	0.028	0.029	0.028	0.029	0.042	0.042	0.042	0.041	0.041	0.070	0.127	0.131	0.126	0.131	0.092	0.090	0.087	0.088	0.090
	τ = -1	0.236 0.236 0.236 0.237 0.234 0.237 0.238 0.238 0.238 0.236	0.220 0.224 0.224 0.225 0.223 0.224 0.220 0.221 0.220 0.220	0.415 0.442 0.440 0.441 0.442 0.421 0.460 0.459 0.459 0.461	0.404 0.415 0.411 0.415 0.411 0.417 0.401 0.406 0.401 0.407
		0.048	0.047	0.046	0.047	0.048	0.041	0.044	0.044	0.043	0.044	0.086	0.152	0.153	0.152	0.152	0.115	0.113	0.115	0.113	0.117
	τ = 0	0.222 0.222 0.220 0.222 0.220	0.203	0.204 0.204 0.204 0.203	0.442 0.420 0.421 0.421 0.420	0.407	0.404 0.398 0.404 0.401
		0.227 0.227 0.225 0.227 0.225	0.207 0.209 0.209 0.208 0.208	0.451 0.447 0.448 0.447 0.447	0.423 0.419 0.414 0.419 0.418
		0.053	0.065	0.065	0.065	0.065	0.065	0.055	0.053	0.055	0.053	0.093	0.173	0.178	0.183	0.182	0.138	0.135	0.140	0.138	0.136
	τ = 1	0.221 0.231 0.231 0.232 0.230	0.212	0.210 0.209 0.210 0.209	0.483 0.458 0.447 0.436 0.435	0.421	0.416 0.418 0.418 0.416
		0.227 0.240 0.240 0.240 0.239	0.221 0.217 0.216 0.217 0.216	0.492 0.490 0.481 0.473 0.472	0.443 0.438 0.441 0.440 0.437
		0.076	0.079	0.081	0.079	0.077	0.064	0.065	0.065	0.063	0.063	0.134	0.193	0.196	0.196	0.195	0.208	0.183	0.187	0.185	0.192
	τ = 2	0.230 0.230 0.231 0.231 0.231	0.210	0.211 0.210 0.211 0.211	0.524 0.466 0.464 0.452 0.454	0.443	0.440 0.436 0.436 0.435
		0.242 0.244 0.245 0.244 0.243	0.220 0.221 0.220 0.220 0.220	0.541 0.504 0.503 0.492 0.494	0.490 0.477 0.474 0.473 0.475
	Figures in italics are the standard errors, figures in bold represent RMSE and figures without									

Table 4 :

 4 Estimation results for α and τ for the heteroskedastic case with n=100

	Results for the α estimator

  Figures in italics are the standard errors, figures in bold represent RMSE and figures without any layout are the biases.

		.002	0.005	0.008	0.001	0.004	0.079	0.079	0.072	0.077	0.073	0.005	0.002	0.001	0.002	0.001	0.037	0.050	0.055	0.054	0.076
		0.238 0.238 0.237 0.237 0.237	0.365	0.363 0.365 0.365 0.364	0.230 0.234 0.235 0.234 0.235	0.333	0.360 0.363 0.363 0.383
		0.238 0.238 0.237 0.237 0.237	0.373 0.372 0.372 0.373 0.371	0.231 0.234 0.235 0.234 0.235	0.335 0.363 0.367 0.367 0.391
		0.012	0.012	0.015	0.014	0.011	0.121	0.124	0.119	0.124	0.126	0.022	0.021	0.021	0.021	0.023	0.055	0.116	0.120	0.119	0.120
	τ = -1	0.186 0.186 0.186 0.186 0.187 0.187 0.186 0.187 0.187 0.187	0.359 0.379 0.381 0.379 0.380 0.379 0.360 0.360 0.359 0.357	0.187 0.190 0.190 0.190 0.189 0.189 0.191 0.191 0.191 0.190	0.339 0.343 0.369 0.371 0.370 0.371 0.350 0.351 0.351 0.351
		0.029	0.027	0.027	0.023	0.024	0.149	0.154	0.152	0.153	0.153	0.039	0.042	0.042	0.042	0.042	0.023	0.139	0.154	0.154	0.154
	τ = 0	0.182 0.179 0.181 0.179 0.181	0.347	0.349 0.349 0.348 0.346	0.187 0.187 0.187 0.187 0.187	0.367	0.349 0.346 0.343 0.346
		0.184 0.181 0.183 0.181 0.182	0.377 0.381 0.380 0.380 0.378	0.191 0.191 0.191 0.191 0.191	0.368 0.376 0.379 0.376 0.379
		0.045	0.045	0.044	0.043	0.039	0.193	0.192	0.194	0.193	0.193	0.057	0.060	0.060	0.060	0.060	0.030	0.174	0.176	0.179	0.178
	τ = 1	0.188 0.188 0.189 0.187 0.187	0.371	0.371 0.370 0.372 0.372	0.195 0.195 0.195 0.195 0.195	0.424	0.369 0.355 0.350 0.353
		0.194 0.193 0.194 0.192 0.191	0.418 0.417 0.418 0.419 0.419	0.203 0.204 0.204 0.204 0.204	0.425 0.408 0.396 0.393 0.395
		0.062	0.060	0.062	0.061	0.060	0.265	0.262	0.260	0.264	0.263	0.071	0.069	0.075	0.072	0.075	0.091	0.175	0.199	0.210	0.200
	τ = 2	0.189 0.186 0.190 0.190 0.190	0.406	0.406 0.404 0.404 0.402	0.198 0.194 0.197 0.184 0.197	0.453	0.416 0.377 0.376 0.379
		0.199 0.195 0.200 0.200 0.199	0.485 0.484 0.480 0.483 0.481	0.210 0.206 0.210 0.198 0.210	0.462 0.451 0.426 0.430 0.429

Table 6 :

 6 Descriptive statistics for the data

		Mean	Std dev	Min	Max
	LF DI	8.394	1.997	4.410	11.851
	LGDP	25.973	1.775	22.782	30.048
	LP OP	16.390	1.450	13.118	19.542
	OECD	0.857	0.355	0	1
	LDIS	7.337	1.157	5.154	9.853
	T ARIF F S	1.877	1.369	0.990	8.930
	M P	1.364	0.491	0.356	2.257

Table 7 :

 7 Estimation results for different specifications ** -1.199 *** -1.177 *** -1.293 *** -1.199 *** -1.206 *** brackets; (1) is homoskedastic SARAR, (2) is homo. MESS(1,1) by QML, (3) is homo. MESS(1,1) by GMM, (

		(1)	(2)	(3)	(4)	(5)	(6)
	Cons.	-2.438 (4.582 )	-3.021 (4.660 )	-5.367 (4.564 )	-1.266 (3.899 )	-3.023 (4.288 )	-2.819 (4.274 )
	LGDP	1.106 *** 1.114 *** 1.325 *** 1.089 *** 1.113 ***	1.110 ***
		(0.243 )	(0.246 )	(0.237 )	(0.220 )	(0.241 )	(0.240 )
	LP OP	-0.584 ** -0.585 ** -0.803 *** -0.591 ** -0.584 ** (0.243 ) (0.246 ) (0.237 ) (0.235 ) (0.254 )	-0.586 ** (0.252 )
	OECD	1.064 *	1.037 *	0.912 *	1.023 *	1.037 *	1.029 *
		(0.548 )	(0.551 )	(0.534 )	(0.605 )	(0.611 )	(0.613 )
	LDIS	-1.245 (0.223 )	(0.220 )	(0.220 )	(0.209 )	(0.200 )	(0.200 )
	T ARIF F S	0.107	0.106	0.151	0.108	0.106	0.106
		(0.112 )	(0.113 )	(0.110 )	(0.084 )	(0.084 )	(0.083 )
	M P	1.275	1.212	1.534	1.156	1.212	1.183
		(1.079 )	(1.105 )	(1.095 )	(1.147 )	(1.186 )	(1.185 )
	Spat auto in y	-0.331 ** (0.153 )	0.265 ** (0.109 )	0.284 *** -0.335 ** (0.107 ) (0.173 )	0.265 ** (0.121 )	0.264 ** (0.121 )
	Spat auto in errors	0.015 (0.530 )	-0.004 (0.516 )	-0.136 (0.527 )	0.282 (0.598 )	-0.004 (0.419 )	-0.024 (0.418 )
	n	35	35	35	35	35	35
	Standard errors between					

*

Table 8 :

 8 Comparison of average direct effects and average total effects

			Average direct effects		Average total effects
		SARAR MESS(1,1) MESS(1,1) SARAR MESS(1,1) MESS(1,1)
			QML	GMM		QML	GMM
	LGDP	1.094	1.116	1.113	0.884	0.921	0.919
	LP OP OECD	-0.595 1.029	-0.586 1.039	-0.587 1.031	-0.480 0.831	-0.484 0.858	-0.485 0.855
	LDIS T ARIF F S	-1.300 0.109	-1.202 0.107	-1.209 0.106	-1.050 0.088	-0.992 0.088	-0.998 0.088
	M P O	1.163	1.214	1.185	0.939	1.001	0.979
	Effects are computed from estimation results of heteroskedastic SARAR and
	MESS(1,1) (estimated by QML and GMM).			

Table 9 :

 9 Inference on elements of impact matrices Standard errors are between brackets; AUT stands for Austria, CAN for Canada, MEX for Mexico, SVK for Slovakia and USA for the United States; 1

		LGDP LPOP	OECD	LDIS	TARIFF	MP
	1 n tr(Ξ yn X nk )	1.113 *** -0.586 ** 1.039 * -1.202 *** 0.106 (0.242 ) (0.255 ) (0.613 ) (0.200 ) (0.083 )	1.213 (1.190 )
	(Ξ yn X nk ) SV K,AU T	-0.147 * (0.084 ) (0.058 ) (0.120 ) (0.075 ) 0.078 -0.137 0.160 ** -0.014 (0.013 )	-0.157 (0.226 )
	(Ξ yn X nk ) U SA,M EX -(Ξ yn X nk ) U SA,CAN	0.009 * -0.005 (0.005 ) (0.004 ) (0.008 ) (0.005 ) 0.008 -0.010 **	0.001 (0.001 )	0.010 (0.016 )

From this view, we may argue that the MESS would be useful only when observed outcomes do not show unstable phenomena.

[START_REF] Kelejian | Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances[END_REF] also develop a GMME robust to the presence of heteroskedasticity but their main focus is on spatial autocorrelation in the error terms.

[START_REF] Lee | GMM and 2SLS estimation of mixed regressive, spatial autoregressive models[END_REF] derives the best optimal GMME for the SAR model with normal i.i.d. disturbances, which is as efficient as the QMLE.[START_REF] Liu | An efficient GMM estimator of spatial autoregressive models[END_REF] consider the best optimal GMME for the SAR model with SAR disturbances that can be more efficient than the QMLE under non-normality, which is extended to high order SAR models in[START_REF] Lee | Efficient GMM estimation of high order spatial autoregressive models with autoregressive disturbances[END_REF].

As Wn is row-normalized, W k n ln = Wnln = ln, k ∈ N.

For a non-negative and row-normalized symmetric interaction matrix Wn, the parameter space for λ may be taken as the interval ( 1 µ min,n , 1) with µ min,n being the minimal real eigenvalue of Wn. However, it does not change the conclusions regarding the difference between parameter spaces for λ and α.

The main purpose for Assumption 3 is to guarantee that uniform convergence of relevant objects is possible on a compact parameter space.

For α and β, we may use only the linear instrument Fn and implement a 2SLS estimation, for which the objective function is (e αWn yn -Xnβ) ′ Fn(F ′ n Fn) -1 F ′ n (e αWn yn -Xnβ) or (e αWn yn -Xnβ) ′ e τnM ′ n Fn(F ′ n Fn) -1 F ′ n eτnMn (e αWn yn -Xnβ) when taking into account the MESS process in the disturbances, where τn is an initial consistent estimator of τ . This is a nonlinear 2SLS that does not have a closed-form solution. Thus it does not have a computational advantage as the traditional 2SLS and we do not discuss it separately.

For example, this can occur when F 1n is linearly dependent on F 2n .

This pursuit is motivated by that in[START_REF] Liu | An efficient GMM estimator of spatial autoregressive models[END_REF].

When Wn = Mn, the moment 1 n ǫ ′ n (γ)Mnǫn(γ) should not be considered.

If Wn is row normalized and Xn contains an intercept, as Wnln = ln, only one of the two intercepts should be included in (WnXn, Xn).

P ni = Wn; P ni = Mn or P ni = W 2 n -Diag(W 2 n )constitute three examples of matrices that could be used.

Interaction matrices have been normalized by the spectral radius.

The moment vector (16) for normal disturbances, and g * n (γ) in Proposition 8 for non-normal disturbances.

The results for n = 254 are similar. We observe that bias, standard errors and thus RMSE are lower when the sample size becomes larger. These results are reported in the supplementary file. Besides, estimates for β 1 and β 2 are only reported for the QML estimator in the homoskedastic case and others are in the supplementary file.

Since the data we have do concern countries and not MNEs, we can only observe the dominant type of MNE behavior in terms of FDI, as the data may contain a mixture of the different motivations for FDI.

The countries considered are: Australia, Austria, Bulgaria, Canada, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, South Korea, Latvia, Lithuania, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom and United States of America.

This difference in the position of the logarithm is motivated by the fact that as the host GDP enters equation (25) in logarithms, we believe the surrounding market variable should also be based on logged GDP. Also,[START_REF] Garretsen | FDI and the relevance of spatial linkages: do third country effects matter for Dutch FDI?[END_REF] construct their surrounding-market potential variable in a different way since they only consider the GDP of all host countries in the sample.

As each weight will be multiplied by a common factor, the spectral radius will also be multiplied by this factor, implying that the normalized matrix will be the same, no matter if the interaction matrix is initially rescaled or not.

For further information concerning matrix normalizations, interested readers may consult[START_REF] Kelejian | Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances[END_REF].
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 [START_REF] Blonigen | FDI in space: Spatial autoregressive relationships in foreign direct investment[END_REF].

MNEs can firstly embark in FDI for market access reasons and avoidance of high trade or tariff costs in a host country. This is horizontal FDI. If trade barriers between the parent country (where the MNE is located) and host country (where the MNE would like to make its products available) are too high, the MNE could decide to build a plant in the latter country to avoid export costs but at the expense of building a new production plant. [START_REF] Blonigen | FDI in space: Spatial autoregressive relationships in foreign direct investment[END_REF] note that no spatial autocorrelation between FDI should be observed since MNEs make independent decisions about serving a market either through exports or affiliate sales. Besides, for this basic form of FDI, we do not expect any market potential effect of host country since the MNE looks for access to the considered market only.

A second motivation for FDI occurs if trade barriers between a set of destination markets are lower than trade frictions between these destination markets and the parent country. In that setup, a MNE could decide to build a plant in a host country, export to other markets and facing lower trade costs only. This type of FDI is called export-platform. As the MNE will not build a production plant in each host country, we expect a negative spatial autocorrelation between neighboring FDI locations. However, we anticipate a positive effect of the surrounding-market potential variable since the MNE will locate its new plant in the host country which has access to the largest surrounding market.

MNEs will make vertical FDI if they want to access to cheaper factor inputs for their products. In its simplest form, namely pure vertical, host countries are in competition in terms of input factor prices to receive FDI. Hence, we expect a negative spatial autocorrelation between FDI. However, since the product is shipped back to the parent country to be further processed, no effect from surrounding-market potential is foreseen. A more complex form of vertical FDI has been developed by [START_REF] Davies | Fragmentation of headquarter services and FDI[END_REF] and [START_REF] Baltagi | Estimating models of complex FDI: Are there third-country effects[END_REF]. Within that framework, named vertical specialization, the MNE decides to split its vertical chain of production among possibly several host countries, to benefit from the comparative advantage of the hosts.

In such a framework, according to [START_REF] Blonigen | FDI in space: Spatial autoregressive relationships in foreign direct investment[END_REF], we should observe positive spatial autocorrelation due to possible agglomeration forces such as the presence of immobile resources, since the suppliers' presence in neighboring host countries is likely to increase FDI to a particular market. However, for the same reason heteroskedastic SARAR (by optimal GMM 34 ), heteroskedastic MESS(1,1) (by QML) and heteroskedastic MESS(1,1) (by optimal GMM with the moment vector ĝ# n,d (γ) in ( 22)). Let us first note that the quasi maximum likelihood and GMM estimation of the MESS(1,1) with homoskedastic and heteroskedastic disturbances provide similar results for both estimated values and standard errors. The second result we would like to pinpoint relates to the sign of the parameter capturing interactions between observations. We observe a negative λ for both SARAR specifications (homoskedastic and heteroskedastic) while the MESS(1,1) provides a positive value for α. Thus, a negative λ translates in a positive α. 35 Finally, there is no significant spatial autocorrelation left in the error terms. 36 The computation of matrices of impacts of changes in determinants on FDI is required to be able to give conclusions regarding the dominant type of FDI characterizing Belgium. Indeed, as MESS(1,1) and SARAR are estimated under implicit form (see ( 2) and ( 3)), we need to compute their associated reduced form and then calculate the matrix of partial derivatives with respect to each explanatory variable to get impact matrices. For the MESS(1,1), this impact matrix for regressor X nk is shown in (5).

To compare MESS(1,1) and SARAR results, we report in Table 8 the average direct effect and the average total effect for each of the explanatory variables for heteroskedastic SARAR and MESS(1,1), estimated both by QML and GMM. The average direct effect is computed as the average of diagonal elements of the impact matrix while the average total effect is defined as the mean of the row-sum of its elements 1 n l ′ n Ξ yn X nk l n . In terms of impacts on the dependent variable, the main focus for economists, we observe a strong similarity of impacts produced by the two specifications even though parameters capturing spatial dependence are completely different from each other.

The lemma derived in Section 3 allows performing inference on elements of the impact matrices of the MESS(1,1). Table 9 summarizes inference results performed on different (functions of) elements of these impact matrices, based on the heteroskedastic MESS(1,1) estimated by GMM. The first row analyzes the significance of average direct effects. The results indicate a non-significant elasticity of surrounding-market potential on FDI. This result, combined with a negative spatial autocorrelation, points to the dominance of pure vertical type of FDI. To the best of our knowledge, this application is the first to indicate such a clear cut result. One possible explanation of this result lies in the production costs faced by Belgian multinationals 34 In the moment vector, the instruments for the linear moments are Rn[Xn, Wn Ŝ-1 n Xn βn] and the matrices for the quadratic moments are RnWn Ŝ-

, where Rn = In -ρnMn, Ŝn = In -λnWn and ( λn, ρn, β′ n ) ′ is an initial GMME. 35 This difference comes from the definitions of these two models, as shown in Section 2. 36 In the supplement file, we report the estimation results of the MESS(1,0). All results are qualitatively the same. structure of heteroskedasticity. We thus develop an optimal GMME which is shown to be more efficient than the QMLE. We also derive a lemma to perform inference on the elements, or functions of them, of the impact matrices implied by the reduced form of the MESS, which is very important for applied economists. Monte Carlo experiments are conducted and show the good small sample properties of the proposed estimators.

Finally, we apply our estimators to show that outward FDI from Belgium are mainly characterized by the vertical type. We also compare SARAR and MESS(1,1) impacts and note that they are very similar, which pleads for the use of the latter. When the spatial process is stable, the MESS has many advantages over the SAR model.

Appendix A.

For the best GMME in the homoskedastic case, we show that adding any other moments to the selected ones cannot improve the asymptotic efficiency using the redundancy conditions in [START_REF] Breusch | Redundancy of moment conditions[END_REF].

Suppose that we have a set of moment conditions E[g * n (γ)] = 0 with the corresponding optimal GMME being γ * n . Adding some additional moment conditions E[g n (γ)] = 0 to E[g * n (γ)] = 0, we have an optimal GMME γn using both sets of moment conditions. Then the moment conditions E[g n (γ)] = 0 are redundant given E[g * n (γ)] = 0 if the asymptotic variances of γ * n and γn are the same. Let

and G n = E ∂gn(γ0) ∂γ ′ . The following two lemmas from [START_REF] Breusch | Redundancy of moment conditions[END_REF] give conditions for moment redundancy. Lemma 3. Let the set of moment conditions to be considered be E

′ is redundant given g 1 if and only if g 2 is redundant given g 1 and g 3 is redundant given g 1 .

Proof of Proposition 8. To show that γ * n is the best GMME within the class of GMMEs with linear and quadratic moments, we prove that the moment condition E[g n (γ)] = 0, where g n (γ) is a set of arbitrary linear and quadratic moments in ( 12), is redundant given the moment conditions E[g * n (γ)] = 0. By Lemmas 2 and 3, it is sufficient to show that there exists a matrix T such that 

, where e kj is the jth unit vector in R k . Then

where

.

If e η0Mn X n does not contain an intercept term, ( 

,

n and P n be any n×n matrix with trace zero. The following identities are useful to show the desired results: (a) vec ). The V n,21 T = (V n,21 ∆ P F )∆ T is a 2 × 3 block matrix. By (g), the (1, 1)th block of V n,21 T is 1 n σ 2 0 ω ′ n vec(W n ); the (1, 2)th block is 1 n σ 2 0 ω ′ n vec(M n ); by (c) and (f), the (1, 3)th block is 0; by (d), the (2, 1)th block is 1 n F ′ n e τ0Mn W n X n β 0 ; the (2, 2)th block is 0; by (e), the (2, 3)th block is -1 n F ′ n e τ0Mn X n . Thus V n,21 T = G n .

Furthermore, as g * n (γ) is a special case of g n (γ),

∆ T , which has the explicit expression in ( 15) by some computation. The asymptotic distribution of γ * n follows by Proposition 6.