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Abstract

This paper studies large sample properties of the matrix exponential spatial specification (MESS). We find
that the quasi-maximum likelihood estimator (QMLE) for the MESS is consistent under heteroskedasticity,
a property not shared by the QMLE of the SAR model. For the general model that has MESS in both
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consider the generalized method of moments estimator (GMME). In the homoskedastic case, we derive a
best GMME that is as efficient as the maximum likelihood estimator under normality and can be asymptot-
ically more efficient than the QMLE under non-normality. In the heteroskedastic case, an optimal GMME
can be more efficient than the QMLE asymptotically. The QML approach for the MESS model has the
computational advantage over that of a SAR model. The computational simplicity carries over to MESS
models with any finite order of spatial matrices. No parameter range needs to be imposed in order for
the model to be stable. Results of Monte Carlo experiments for finite sample properties of the estimators
are reported. Finally, the MESS(1,1) is applied to Belgium’s outward FDI data and we observe that the
dominant motivation of Belgium’s outward FDI lies in finding cheaper factor inputs.
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1. Introduction

The Matrix Exponential Spatial Specification (MESS) has been initially proposed by LeSage and Pace
(2007) as a substitute to the well-known spatial autoregressive (SAR) specification. The difference between
the two rests on the type of decay which characterizes the influence of space. The MESS uses an exponential
decay while the SAR specification is based on a geometrical decay. The motivation of these authors to use
the MESS is its computational simplicity. Indeed, in contrast to the SAR, the quasi-maximum likelihood
(QML) function of the MESS does not involve any Jacobian of the transformation and thus reduces to a
nonlinear regression estimation. This is so even for its extension to models with a finite number of spatial
weights matrices. A second advantage of the MESS is the absence of constraints on the parameter space of the
coefficient that captures interactions between observations since the reduced form of the MESS always exists
(see Chiu et al., 1996). Furthermore, no positivity constraint on the Jacobian of the transformation needs
to be imposed as it does not appear in the quasi log-likelihood function. In Section 2, we nevertheless show
that MESS and SAR models cannot be seen as perfect substitutes since neither a one-to-one correspondence
between the parameters capturing interactions nor between impacts (except in some specific cases) can be
derived. Furthermore, a MESS model is always a stable spatial process, but a SAR model with strong
spatial interaction might be unstable.?

A third advantage of the MESS, proved in this paper, is that the quasi-maximum likelihood estimator
(QMLE) is consistent even in the presence of unknown heteroskedasticity, a feature not shared by the SAR
model (see Lin and Lee, 2010, p. 36). These two authors have however shown in this SAR context that a
Generalized Method of Moments Estimator (GMME) with properly modified quadratic moment conditions
could still be consistent in presence of unknown heteroskedasticity.?> Using quadratic moment conditions
similar to those in Lin and Lee (2010), we derive an optimal GMME consistent in presence of unknown
heteroskedasticity and also generally more efficient with respect to the QMLE (with either normal or non-
normal disturbances). The relative efficiency of the optimal GMME results from the optimal weighting of the
GMM estimation method which uses the same moments that the QMLE integrates. In the homoskedastic
case, we derive a best (optimal) GMME that is as efficient as the MLE under normality and can be more

efficient than the QMLE under non-normality.* The best GMME takes a much simpler form than that for

2From this view, we may argue that the MESS would be useful only when observed outcomes do not show unstable
phenomena.

3Kelejian and Prucha (2010) also develop a GMME robust to the presence of heteroskedasticity but their main focus is on
spatial autocorrelation in the error terms.

4Lee (2007) derives the best optimal GMME for the SAR model with normal i.i.d. disturbances, which is as efficient as
the QMLE. Liu et al. (2010) consider the best optimal GMME for the SAR model with SAR disturbances that can be more
efficient than the QMLE under non-normality, which is extended to high order SAR models in Lee and Liu (2010).

1



the SAR model and the optimal orthogonal conditions do not involve any estimated parameters®.

Even though LeSage and Pace (2007) present the maximum likelihood and Bayesian estimators of the
MESS, no asymptotic theory has been derived for this specification. In this paper, we focus our attention on
the general model where a MESS is present in both the dependent variable and in the error terms (MESS(1,1)
for short), and develop large sample properties for QML and GMM methods under both homoskedastic and
heteroskedastic cases.® In the homoskedastic case, the best GMME for models with normal disturbances
or commutative spatial weights matrices in the MESS(1,1) is as efficient as the QMLE but generally more
efficient than the QMLE for other ones. In the (unknown) heteroskedastic case, the QMLE for the MESS(1,1)
can be consistent only when the spatial weights matrices for the MESS in the dependent variable and in
disturbances are commutative, but it is less efficient than an optimal GMME. If different variances in the
heteroskedastic case could be estimated consistently, a best GMME could also be implemented.” We also
perform Monte Carlo experiments to assess the small sample performance of our proposed estimators.

Analysis of significance of determinants’ causal effects on the dependent variable is of interest for
economists. In this paper, we derive a lemma allowing to perform inference on the elements of the ma-
trix of impacts implied by the reduced form of the MESS(1,1). The lemma is based on an adapted version
of the Delta method and can be used to test the significance of (functions of) impacts as long as the number
of constraints is not dependent on the sample size. This lemma is valuable for applied economists since until
now, with the exception of LeSage and Pace (2009) who provide inference for scalar summaries of these
impacts in the SAR model either by simulating the distributions or estimating them via Bayesian methods,®
there does not exist any classical statistical test to assess the significance of (functions of) individual impacts.

The developed estimators are finally applied to a modified gravity equation aimed at explaining Belgium’s
outward FDI. Blonigen et al. (2007) propose four different classifications of FDI which can be distinguished
based on the sign of spatial autocorrelation and market-potential of host countries. In addition to obtain-
ing significant and expected signs for the traditional variables included in the gravity model when spatial
autocorrelation is accounted for, namely GDP, population and bilateral distance, we find a significant neg-
ative spatial autocorrelation and a positive but non-significant market potential effect for hosts countries.

Thus vertical FDI is the dominant type of outward FDI for Belgium. We further compare MESS(1,1) and

5See Lee (2003, 2007) for further details.

6In a supplementary file, we consider the QML estimation of a high order MESS, namely MESS(p,q), with p and ¢ being
the orders of the MESS in the dependent variable and in the errors respectively. While the parameter spaces for high order
SAR models can be hard to find (Lee and Liu, 2010; Elhorst et al., 2012), high order MESS models have the advantage that
the parameter spaces are not restricted.

"For the SAR model under unknown heteroskedasticity, Lin and Lee (2010) have not discussed the possible best GMME.

8See Elhorst (2010) for a step-by-step explanation on how to simulate the distributions.
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SARAR results and show that their economic conclusions in terms of impacts are very similar. However, the
MESS, for several reasons, namely computational, technical and statistical, can be more appealing. Finally,
statistical significance on impacts is analyzed through the application of the derived lemma for inference.
The rest of the paper is organized as follows. Section 2 compares MESS and SAR models in a more
formal way. Section 3 considers the large sample properties the QML and GMM estimators under both
homoskedasticity and unknown heteroskedasticity. It also derives a lemma to perform inference on the
elements of the matrix of impacts of explanatory variables obtained from the reduced form of the MESS(1,1).
Section 4 presents Monte Carlo experiments while Section 5 presents the application of our estimators and
applies the lemma for inference on the determinants of Belgium’s outward FDI. Section 6 concludes. Some

lemmas and proofs are collected in Appendix A.°
2. Comparison of MESS and SAR Specifications

The MESS in LeSage and Pace (2007) is
ey = X B+ €, €n="(€n1, - s €nm), (1)

where n is the sample size, y,, is an n-dimensional vector of observations on the dependent variable, X, is an
n x k matrix of exogenous variables with corresponding coefficient vector 5, W,, is an n x n spatial weights
matrix modeling interactions among observations (with zero diagonal elements), €,;’s are independent with
mean zero, and « is the parameter measuring the intensity of interactions between observations. For any
n x n square matrix A,, let A% be the n x n identity matrix I,,. The matrix exponential e*», defined as
en =52 %, is always invertible, with the inverse being e=*4~ (Chiu et al., 1996). As a result, the
variance-covariance (VC) matrix of y,, which equals to e=®Wn E (e, ¢/,) e=*Wn with ag being the true value
of a, is always positive definite. No restriction on the parameter space of a needs to be imposed.

In this paper, we consider a general model that has MESS in both the dependent variable and the
disturbances that we label MESS(1,1) (which should be viewed as an analog of the SAR model with SAR

disturbances, i.e., SARAR model):!°

€aw"yn = X8+ up, eTMnun = €n, €En = (enla ) efm)/a (2)

9Except the proof of Proposition 8 which is presented in Appendix A, proofs of remaining propositions are similar to those
in Lee (2004) and Lee (2007). Those proofs are provided in a supplementary file, which is available upon request.

10As pointed out by an anonymous referee, on the r.h.s. of the main equation of (2), to reflect local spatial dependence as in
a spatial Durbin model, we may include an additional term W, X,,, or Wy, X1, if W, is row-normalized and X, contains an
intercept term so that X, = [ln, X1,]. However, as W, X,, or W, X1, has the same properties as Xy, the asymptotic analyses
below will be similar. Thus, the additional term is not included for simplicity.



where W,, and M,, are n X n spatial weights matrices. The M,, may or may not be different from W,,. For
purposes of comparison and later reference, we put down the SARAR model with the same W,,, M,,, X,
Yn and €,:

(In - )\Wn)yn = Xnﬂ + up, (In - pMn)un = €n. (3)

The parameter spaces of A and p should be restricted so that the VC matrix of y,,, namely (I,, —AW,,)~(I,, —
pM,)"LE (en€l) (I, — pM!)~(L, — AW)) ™! exists. For the QMLE of the SARAR model with a normalized
W,, matrix, the parameter space for \ is typically considered to be (—1,1).11

The quasi log likelihood function of the MESS(1,1) presented in (2), as if the €,;’s were i.i.d. normal, is

n !
L,(0) = 5 In(270?) + In || + In |e™Mn| — (eWny, — X, 0) e™Mne™Mn(eoWny, — X, B),

1
202
aWy,

— e tr(Wh,)

where 6 = (v/,0%) with v = (o, 7, 8")". Let 6y be the true parameter vector. Since |e and

‘GTM” — T tr (M,

), as long as W,, and M,, have zero diagonals, the Jacobian of the transformation disappears

and the quasi log likelihood function is simplified to

1

557 (€ "y = XnB) €T Mn T (W gy — X, B). (4)

Ln(0) = —g In(2702) —

By contrast, the quasi log likelihood function of the SARAR model shown in (3) involves the log determinant
of the Jacobian In|(l,, — A\W,,)(I,, — pM,,)| = In|I,, — AW, | + In|I,, — pM,|, which may make the QMLE
computationally intensive for large sample sizes.

Another difference between these two specifications is that one does not need to normalize the interaction
matrices in the MESS. In the SARAR model, the purpose of normalizing the interaction matrices is to
standardize the parameter spaces for A and p so that they correspond to (—1,1), which facilitates the
interpretation of these parameters. However, in the MESS, since no parameter constraint is involved, the
normalization of the interaction matrices may not play a special role.

LeSage and Pace (2007) present the MESS as a computationally simpler substitute for the SAR model.!?
Using a row-normalized interaction matrix W,,, they propose the approximated relation A = 1 — e®. They

argue that this approximation is derived by equating the length of ||e®W= ||, and ||, — AW, ||so, With ||.||co

being the maximum row sum matrix norm. However, this approximation is not always right since the matrix

HSee Kelejian and Prucha (2010) for a detailed discussion about the parameter space for A. For high order SARAR models,
finding the parameter spaces can be hard. Elhorst et al. (2012) have outlined a procedure for finding the stationary region, but
the parameter spaces can be complicated even for a SAR model with two spatial weights matrices for the dependent variable.
By contrast, parameters in high order MESS models, labeled MESS(p,q), where p and ¢ are the orders of the MESS in the
dependent variable and disturbances respectively, do not need to be restricted and the effort to find the parameter spaces is
saved. The supplementary file considers the QML estimation of these high order MESS models.

2Han and Lee (2012) consider the J-test procedure to choose between MESS and SAR models.
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norm should be taken over the absolute value of matrix elements. By contrast, if one turns to the impact
analysis, an equivalence between the two specifications can be traced back at least in some specific cases.

Before presenting this correspondence, it is important to discuss the features of impact analysis in spatial
autoregressive (SAR or MESS) regressions. Impact analysis, which is one of the main focuses for economists,
is based on the reduced form of the estimated econometric specification. For the MESS(1,1) case, the reduced
form is y, = e *Wn(X,8 + e "Mn¢,). One then computes the matrix of impact for each regressor X,
k =1,---  k, by calculating the partial derivative of y, with respect to the concerned regressor. For a
continuous regressor X, this matrix is

. _ 9Bl Xn) -
X = axr, e . (5)

The diagonal elements of this matrix contain the direct effects including own-spillover effects, which are
inherently heterogeneous in presence of spatial autocorrelation due to differentiated friction terms in the
interaction matrix. This is what Debarsy and Ertur (2010) call interactive heterogeneity. Off-diagonal
elements of this matrix represent indirect effects, meaning the impact of a change in explanatory variable for
individual j on the dependent variable for individual i. These direct and indirect effects are, respectively,
%ﬁ = (Egg‘nk)“ and %‘fj’m = (Eg&k)w . For the SARAR model, its associated reduced form is
Yn = (In — \W,) "X, 8 + (In — pM,,) " te,], and the implied impact matrix for regressor X, is

—y OE(yn| Xy _
:'3@;”9 = g(’k ) = Bp(In — AW,) L (6)

To summarize the information conveyed by these matrices of impacts, LeSage and Pace (2009) propose
extracting several scalar measures, as the average direct effect (mean of the diagonal elements), average
total effect (average of the row or column sums) and average indirect effect (average of the column or row
sums excluding the diagonal element).

Consider a row-normalized interaction matrix W,, in the MESS(1,1) model. Suppose that a shock of the
same magnitude Az is applied on the kth explanatory variable X, to all spatial units. The new explanatory
variable is now X, + [,,Ax, with [,, being the n-dimensional vector of ones. For the MESS(1,1), from its
reduced form, one calculates a total impact of Ay, = e *"rl,AzB;. The average total effect is thus
equal to 11/ Ay, = e *Azf3;.1? Correspondingly, the average total impact of X,,;, in the SARAR model

n

Ly
is 21,

Ay, = ﬁAwﬁk. Equating the two gives the relation « = In(1 — \) or A = 1 — e®. Thus, there
is a negative relation between A and a. A = 0 if and only if « = 0. When 0 < A < 1, « will take on

negative values and vice-versa. When the normalization used for W,, differs from the row-normalization,

13As W,, is row-normalized, Wffln = Wpln =1ln, k € N.



such a relation does not exist.

Even though a relation between A and « can be found for a row-normalized W,,, we nevertheless cannot
consider these two models as substitutes of each other. The underlying reason lies in the comparison of
parameter spaces. As mentioned above, for the SARAR model with normalized W,,, A is usually restricted
to the range (—1,1). However, in the MESS(1,1), o € (—o0, 00). So, while A < —1 is not allowed for a
SARAR model, a can be greater than In(2), meaning that parameter spaces of @ and A do not correspond.
So, for high negative spatial autocorrelation, we could observe substantial difference between these two
models.'* Furthermore, in a SAR model, if A > 1, it would be an unstable model, while unstability does

not occur for the MESS with any finite value of «.
3. Estimations of the MESS(1,1) Model

We consider the QML estimation as well as the GMM estimation of the MESS(1,1) in this section. From

(4), it is apparent that the QMLE of « is the minimizer of the function
Qn(7) = (eaW" Yn — Xn/B)leTM:” emMn (eaW" Yn — XnB3). (7)

The derivatives of @Q,,(7y) with respect to «, 7 and § at 7o are, respectively,

0Q,, / 0Q,, 0Q,, /
an(z%*) = 2(X 0 + e 0Mre,) W My, 4%?0*) = 2€, My én, 4623;%) = —2Xe™ e, (8)
When ¢,;’s are i.i.d. with mean zero and variance 03, as E(e, Mye,) = tr[M, E(en€))] = o tr(M,) = 0

and E(e, e ™MW/ e™oMue, ) = o2 tr(W/e™Mne= M) = g2 tr(W/) = 0, the expected value of ‘{)Qg’iyo) is

zero, which verifies that the minimizer of EQ, () can be v9. When €,;’s are independent with mean zero

2

but different variances o_,’s, E(el, Mpe,) = tr(M,%,) = 0 since the diagonal elements of M,, are all zero,

2
nn

and %,, = Diag(02,,...,0

1 ) is a diagonal matrix containing the different variances as diagonal elements.

In addition, E(e,e ™MW’ e™Mne, ) = tr(e"™Ma W/ e™Mn3,)), which may not be zero in general. But if
WnM,, = M,W,, then W/e™Mn = ¢M. ! and B(e,,e™MaW!e™Mne,) = tr(W!%,) = 0. Therefore,
when the matrix W, in the spatial lag process can be commutative with the matrix M, in the spatial error
process, the QMLE for -+, derived from the minimization of @, (7), can be consistent even under unknown
heteroskedasticity. This includes the special cases that there is no MESS process in the disturbances or that
M,, = W, This robustness of the QMLE for the MESS(1,0) and MESS(1,1) to unknown heteroskedasticity
is a nice feature not shared by the QMLE for the SARAR model.

MFor a non-negative and row-normalized symmetric interaction matrix Wy, the parameter space for A may be taken as

the interval (umiln — 1) with pimin,n being the minimal real eigenvalue of Wy. However, it does not change the conclusions

regarding the difference between parameter spaces for A and a.
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The function @, () may be written as Q, () = (yn — e~ *Wn X,,8) (e~ *Wne TMne=TMyo=aWi)=1(y,
e~ *Wn X, B). Using the reduced form of the MESS(1,1), namely y, = e~ %Wn(X, By + e 7Mn¢,), and
assuming that E(e,¢,,) = 021, the VC matrix of y,, is o2e=*Wne=m0Mne=10M, o=a0W; anq the QMLE can
be seen as a continuously updating version of the generalized nonlinear least squares (GNLS). The similarity
between the QML and GNLS is due to the special structure of the matrix exponential specification. By
contrast, there is no such a similarity for the SARAR model (3).%

In addition to the QML estimation, we may also consider the GMM estimation of the MESS(1,1) using
both linear and quadratic moments, as for the SARAR model. The linear moments would be of the form
Flen(v) = 0, where €,(7) = e™n (e2Wny,, — X,,8) and F, is an n x k; matrix of instruments constructed
as functions of W,, and X, as in the two-stage least squares (2SLS) approach. The quadratic moments
have the form €], (v)Ppien(y) = 0; ¢ = 1,--- , kp, where P,; has trace zero when €,,’s are ii.d., implying
that E[€/,(Y0) Prien(70)] = 02 tr(P,;) = 0. On the other hand, if the diagonal elements of P,; are all zero
when €,;’s are independently distributed with possibly different variances, we get E[e] (70)Pri€n(70)] =
tr(PpiS,) = 0.

The basic regularity conditions for estimation are assumed below. The specific sets of hypotheses required

for both methods will be given subsequently.

Assumption 1. Matrices {W,} and {M,} are bounded in both row and column sum norms. The diagonal

elements of W,, and M, are zero.

Assumption 2. FElements of X,, are uniformly bounded constants, X, has full column rank, and besides,

lim,, 00 X, X, /0 exists and is nonsingular.
Assumptions 1 and 2 follow from the literature, see, e.g., Kelejian and Prucha (1998) and Lee (2004).

3.1. QMLE

For the QMLE from (4), we may just investigate the minimizers of the functions {Q,(vy)}. For a fixed
¢ = (a,7)’, minimizing Q,, (7) yields B, (¢) = (X! e™ne™n X, =1 X! e™MpemMneaWny, - Substituting 5, (¢)

into @, (), we obtain a function of only ¢:

Qn(¢) _ y;eaW; eTM;,’ Hn(T)e‘rMneaWn Yns (9)

15 A function for the SARAR model with a structure similar to Qn () is Q% (¥) = [(In — AWn)yn — XnB) (In — pM})(In —
PM)[(In — AWa)yn — XnfB] with § = (\,p,B)'. At v, B(2250) = —202 tx[W, (In — AoWn)~] and B(2%5(00)) =
—208 tr[Mp (I, — poMp) 1], where tr[Wp (I, — AoWy )71 # 0 and tr[My, (I, — po M)~ 1] # 0 in general. Thus the minimizer
of Q7 (1) is not expected to be a consistent estimator of ¢ in the SARAR model (3).



where H, (1) = I, —e™n X, (X! e™Mnem™n X, ) =1 X! ¢™Mu is a projection matrix. The function @, (¢) can be
used for the analysis of the consistency of the QMLE. Although we may not need to restrict the parameter

space of ¢ in practice, ¢ should be bounded in analysis so that e*"» and e™™~ would be bounded in both row

and column sum norms, since ||e*Vn|| = || 3272 alZV:L 1<, w = elellWnll which is bounded if
a is bounded, and so is ||e™™»|| if 7 is bounded, where || - || denotes either the row or column sum matrix

norm.

Assumption 3. There exists a constant 6 > 0 such that |a] < 9§, |7] < § and the true ¢g is in the interior

of the parameter space ® = [—6,0] x [—6,4].

For consistency of the QMLE, we need to show that the difference between Q,(¢)/n and some non-
stochastic function Qn((b) /n converges to zero uniformly over the parameter space .16 The Qn(@ will have
different forms in the homoskedastic and heteroskedastic cases. By Assumptions 2 and 3, %X;LeTMﬁl eMn X,
is bounded. The @, (¢) is a well-defined function for large enough n if the limit of %X;LeTM:1 e™Mn X, exists
and is nonsingular. In addition, we require that the sequence of the smallest eigenvalues of e™Mne™Mn e
bounded away from zero uniformly in 7, so that H,(7) is bounded in both row and column sum norms

TM‘:Le

uniformly in 7. As e M i positive definite, its smallest eigenvalue is positive. The condition further

limits all the eigenvalues to be strictly positive uniformly over the parameter space for all n.

Assumption 4. The limit lim,, %X;LGTM; e™Mn X, exists and is nonsingular for any T € [—6, 6], and the

TM,

sequence of the smallest eigenvalues of e™Mem™n s bounded away from zero uniformly in T € [—4,].

3.1.1. QMLE: Homoskedastic Case
In this part, we establish consistency and asymptotic normality of the QMLE for the MESS(1,1) with

i.i.d. disturbances.

Assumption 5. The €,;’s are i.i.d. with mean zero and variance 08 and the moment E \em-|4+" for some

n > 0 exists.

Define Q,,(¢) = ming E Q,,(7), then
Qu(d) = (Xnfo) e @0 WneT™ My (7)emMnelo—a0)Wn x g

’ ! ’ (10)
+ O'g tr(ef'roMne(ozfao)Wn eTMn eTMne(a*OéO)WnB*TOMn).

The identification of ¢y can be based on the minimum values of {Q,(¢)/n}. To ensure the identification

uniqueness, the following condition is assumed.

16The main purpose for Assumption 3 is to guarantee that uniform convergence of relevant objects is possible on a compact
parameter space.



Assumption 6. FEither (i) lim, n_l(Xnﬁo)’e(“_o‘o)wr/beTM;Hn(T)eTM"e(a_“O)W”XnBO %+ 0 for any T
and o # ag, and lim,, oo n ! tr(e(T_TO)M;Le(T_TO)M") > 1 for any T # 19, or

(ii) lim, oo n™! tr(e’T“M;e(O‘*”‘”)Wv/LeTM;eTM"e(a’““)WnefT"M") > 1 for any ¢ # ¢o.

The identification of ag can come from the first term on the r.h.s. of (10). As H,(7)e™" X, = 0,
the first term at «q is zero for any 7. Thus the first term is not sufficient to identify 75. Given the
identification of ag, 79 can be identified from the second term. As lim,_ oo n_lX;eTMT/LeTM"Xn is non-
singular, by the partition matrix formula, lim,, . n_l(Xnﬁo)'e(a_ao)meTleLHn(T)eTM”e(O‘_O‘O)W“XnBO
is non-zero if and only if lim,, o n ™1 (X, ela—a)Wn Xnﬁo)’eTMé e Mn (X, ela—a0)Wn X, Po) is nonsingular.
Thus, the first part of (i) in Assumption 6 relates to asymptotic non-multicollinearity of e(®=0)Wn X, 3
with X,,. In the proof of Proposition 1, it is shown by the inequality of arithmetic and geometric means that
n~ L tr(e(m=T0) M o(T=10)Mn) > 1 holds for any 7. The second part of (i) further requires n = tr(e(7=70) M g(T=70)Mn)
to be strictly greater than 1 in the limit when 7 # 7y. For a finite n, the arithmetic and geomet-
ric means are equal if and only if all the eigenvalues of e(T=T0)M;, o(T=T0)Mn gre equal to each other,
which implies that e(T=T0)M;, o(T—T0) M jg proportional to I,. This assumption rules out this possibil-
ity in the limit whenever 7 # 73. The identification of ¢g can come only from the second term on the

r.h.s. of (10), which is given in (ii) of Assumption 6. This relates to the uniqueness of the VC matrix

*O‘()Wne*"'OMne*TOMT,,,e*O‘OWL (efToM;’e(afozg)W;/ e‘rMy'L ETM" e(ozfao)WnefroMn) —

of y,, namely o2e , since tr

M

tr[efaoWnengMnef'roM; 70(0W7’7/ (efaW ne~

ne~ TM;,efaW;)fl}'

e

It is obvious that Assumption 6 (i) fails to hold when By = 0. In this case, the identification will rely
solely on (ii). Another case of the failure of (i) even if 8y # 0 occurs is when X,, contains only an intercept
term, i.e., X,, = l,, and W,, is row-normalized. In this case, H,(7)e™™=l, = 0. Other cases might be
due to very special structures on W,, or M,,. For example, elements of W,, and M, except the diagonal
ones are all equal to a constant and X,, contains an intercept term. Let W,, = M,, = (n — 1)"1(1,,l!, — I,,)
for instance. Then H, (7)e™™WF = (=1)k(n — 1)"*H,, (1)e™r. By the expansion form of e(®=@0)Wn,
H,(t)e™Mnelomao)Wnx — — eglao—a)/(n=Dp (r)e™™n X, = 0. Thus the first part in (i) does not hold.

1

Furthermore, since the eigenvalues of M, are (1—n)~%, ..., (1—n)~! and 1, it follows that M} has eigenvalues



(1—n)"% ..., (1 —n)~F 1. Hence, with this symmetric M,

1 / 1 1o~ 257 — o) tr(M})
s (t=70)M,, (T—T0)Mpny _ — t 2(r—T0)Mny _ 0 n
r(e e ) n r(e ) n Z

n !
k=0
1 i 2k(r — 1)kl + (n — 1)(1 —n)7K]
o k!
k=0
_ Loty Pt ey

n

which is equal to 1 in the limit. Then the second part in (i) does not hold either. In this case, lim, o ~Qn(¢)
is equal to o for any ¢. Looking into Q,(¢) directly, we have Q,(¢) = e’ga/(”*l)y;eTMLHn(T)eTM"yn,
which is monotonically decreasing in a. Then the QMLE of « will diverge to positive infinity, which is not
7

equal to ag.!

In general, (ii) in Assumption 6 would not hold as long as W,, and M,, are equal. When M,, = W,

tr(e—TOM;e(a—ag)W;L eTMTIL eTMne(Oé—ao)Wne—ToMn) _ tr(e(a-‘rT—Ozo—T())W;Le(Oé+T—(X0—To)Wn).

As long as a + 7 = ag + 7o, %tr(e‘T‘)M?’Le("‘_a‘))wﬁeTMw/leTM"e(a_“‘O)W"e_T‘)M") = 1. So for the case that
M,, = W,, the parameter identification depends crucially on Assumption 6 (i). This situation is apparent
as the model becomes y, = e~ *Wn X, By + e~ (@0+70)Wne  Thus, when there are no exogenous variables
and W,, = M,, in the MESS(1,1), ap and 79 cannot be identified.

With the identification uniqueness and uniform convergence of [Q,,(#) — Q,,(¢)]/n to zero on the param-

eter space ®, consistency of the QMLE follows.

Proposition 1. Under Assumptions 1-6, the QMLE 4,, of the MESS(1,1) is consistent.

The asymptotic distribution of 4,, can be derived from applying the mean value theorem to the first-order

N 2 - _
condition LQEE/%) = 0 at the true 7o, which yields /n(¥, — ) = —(%76 gy%(;*,")) 1ﬁ76Q5§7°)7 where 7, is

between 4, and vy. Let W,, = e™Mn ¥, e=0Mn and A% = A + A’ for any square matrix A. Under some

2 ~
regularity conditions, %%5(,7,") =C,, + op(1), where

C, = E(l 82@71(70))

n  0yoy
o tr(WsWs) + 2(Wye™Mr X, By)' (W, e™Mr X, By) * *
1
= o tr(Ws M3) o3 tr(MSM?S) *
—2(e™Mn X, )W,e™Mn X, B, 0 2(e™Mn X)) (eT0Mn X,

17See Smith (2009) for a discussion of this special case in the SAR model.
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As tr(AB) = vec'(A’) vec(B) for two conformable matrices A and B, where vec(-) denotes the vectorization

of a matrix, C,, may be written as C), = %C{nCln, where

oo vec(W;, oo vec(M, 0
Co — o vec(W5) o vec(My) . a1
\@WneTOM"XnﬂO 0 *\/ﬁeToMan

Thus C,, is positive semi-definite. The following assumption guarantees that C,, is nonsingular in the limit.

Assumption 7. lim,_, %<(WneTOMan60)/Hn(TO)(WneToMn nBo)+
02 (W5M)) ) # 0 and im0 & tr(MM;) 0.

op s s s s

2tr

As M2 M? in the above assumption is positive semi-definite but not a zero matrix, tr(M3:M:) > 0. Note that
(W,e™Mn X, B0) Hy, (10) (W,e™Mn X, B9) > 0, and tr(Ws W) tr(M3M32) — tr2(W2 M32) > 0 by the Cauchy-
Schwarz inequality. By (8), the first-order derivatives of @,(7) at 7o have mean zero and are linear and
quadratic functions of €,. Thus the central limit theorem for linear-quadratic forms in Kelejian and Prucha
(2001) is applicable. Let u3 = E€2,, us = E€};, and vecp(A) be a vector containing the diagonal elements

ni’
of the square matrix A. The VC matrix €2,, of ﬁ%ﬁm is

(pa — 303) veep’ (W) veep (W) + dug(W,e™Mn X, By) veep (WE)

Q= 205C,+Q1,, with Qp,, = % 0 0
—2u3(e™Mn X ) vecp (W) 00

When €,;’s are normal, pus = pg — 303 = 0; when 79 = 0 or W,, and M,, are commutative, vecp(W?) =
vecp(W2) = 0 as W, has a zero diagonal. These cases imply that ©;,, = 0 and ,, simplifies to QUSCn. As
Q,, is a VC matrix, it is positive semi-definite. We may also directly show that €, is positive semi-definite.

Note that E(e2, —03)*E€2; > (E[(e2, — ag)em-])z, ie. (ug—od)od > p3, by the Cauchy-Schwarz inequality.

In addition, tr(Diag(W?) Diag(W?$)) = vecp’ (W) vecp (W), and tr(Diag(W:)M?) = 0 as M, has a zero
diagonal, where Diag(A) for a square matrix A denotes a diagonal matrix whose diagonal is equal to that

of A. Then ,, can be written as ,, = %Q’MQQ”, where

0 V202 vec(W5 — Diag(W5) 4 /222015 Diag(W3))  v/203 vec(My) 0
2n = 0
200W,,e™Mn X, By + £2 veep (Wy,) 0 —20peTMn X,

Thus €2, is positive semi-definite.

Proposition 2. Under Assumptions 1-7, \/n(%, — Yo) 4, N(0,lim,, 0o C;1Q,,CY). If €, ~ N(0,021,);
70 = 0; or W,, and M, are commutative, then \/n(¥, — o) 4, N (0,202 lim,, 00 C,; 1).

11



When the disturbances €,;’s are normal, the generalized information matrix equality holds, thus the
limiting distribution of the MLE 4, does not depend on moments of the disturbances higher than the
second order. Even when the disturbances €,;’s are not normally distributed, if there is no MESS process
in the disturbances or the spatial weights matrices M,, and W,, are commutative, the limiting distribution

of the QMLE does not involve moments of the disturbances higher than the second order.

3.1.2. QMLE: Heteroskedastic Case when W,, and M, are Commutative
When the disturbances €,;’s are independent but may have different variances, the following assumption

is made about the disturbances.

Assumption 8. The €,;’s are independent (0,02,) and the moments E|e,;|*™" for some n > 0 ezist and

)Y ne

are uniformly bounded for all n and i.

As argued earlier, when W,, and M,, can commute, or 79 = 0, the minimization of the function @, ()
may yield a consistent estimator 4,, of v under unknown heteroskedasticity, since the first-order derivatives
of @, (7) at vy have zero expectation. In practice for some situations, one may use a single spatial weights

matrix W, for both the main equation and the disturbance process, which implies the commutative property.

Assumption 9. W,, and M,, are commutative or 19 = 0.

Define Q,,(¢) = ming E Q,, (7). The identification of ¢ can be based on minimizers of {Q,,(¢)}. Using As-
sumption 9, we have Qr, () = Q1 (¢)+Q2n (), where Q1 (¢) = (X, 50) e @20 Wae™Mu 1, (7)™ Mn (om0 Wn X, 5,
and Qg (¢) = tr(el@= @) Wn (T=10)M,, o(T=70) Mn g(a—c0)Wn 33 ) Tt is obvious that Q1,(¢) > 0 and Q1,(¢o) =
0. As W,, and M,, have zero diagonals and ¥,, is a diagonal matrix, w = tr[(W) + W,,)E,] =0
and % = tr[(M} + M,)%,] = 0. Thus ¢ is a stationary point of Qq,(¢) and also Q,(¢). Using
the commutative property of W, and M,,, we have % = tr[Ey/ %ele—00 Wi (r=mo) M, (72 4 W2 4
QW) Wy, )e(T=70) M glo—a0) Wa 531/2)

)~
0 %27’;((;5) _ tr[zi/Qe(afao)W;le(‘rfTo)MT'L(M;Q M2y QMT/LMH)G(PTO)M,Le(afao)wnz}l/z]
T

and % = tr{E}l/Qe(a_o‘O)Wv/be(T_TO)M"/L (W + W) M, + MW, + W/, M!]e(T=70)Mnela—ao)Wn 271/2}. If
WIW,, = W,W/ then W/2+W2+2W'W, = (W, +W,)?; if M} M,, = M, M/,, then M/?+ M2 +2M/ M, =
(M, + M,)?; if MW, = W, M, then (W/, + W,)M, + M. W, + W/ M/, = (W, + W,)(M/, + M,). Thus,
under the conditions that W) W,, = W,,W/, M| M,, = M, M/, and M W,, = W, M/, by the Cauchy-Schwarz

2 A 2 A 2 A 2 A —
inequality, 9 %Z’;w) 9 %f_’;(d’) > (6 g;g£¢))2. In this case, %{5’;},@ is positive semi-definite and Qa2,(¢) is a

12



concave function. It follows that ¢y is a global minimizer of Q2,(¢) and Q,(¢). Hence, with some extra
conditions on W,, and M,,, it is possible that ¢ uniquely minimizes @Q,,(¢)/n in the limit.

It is also possible that ¢g is only a local minimizer of Q,(¢). For example, in the case that W, = M,,,

9°Q2n(¢0) _ 92 Q2n (¢0)

o S0 = P Qan(d0) _ tr[(W/2 + W2 + 2W! W,,)E,,], which is positive if elements of W,, are

a0t

2 A —
non-negative. Then %&(f“) is positive semi-definite and Q2,(¢) is concave at ¢o. Hence, ¢q is a local

minimizer of Qa,(¢) and Q,,(¢). These considerations motivate the following identification condition.

Assumption 10. lim, . 2[Qn(¢) — tr(,)] > 0 for any ¢ # .

Proposition 3. Under Assumptions 1-4 and 8-10, the QMLE #,, is consistent for 7.

Let D, = L E(Z2200) and A, = L E(22500) 99u00)) e
tr(WEW,,) + (Wye™Mn X, Bq) (W,e™Mn X, By) * *
D, = % tr(M;W,E,) tr(M3M,%,,) * )
—(e™Mn X, YW, e™Mn X, By 0 (e™Mn X)) (e0Mn X))
and
tr(S, WS, We) + 2(Wye™Mn X, B0)' S, (Wye™Mn X, By) * *
A, = % tr(X, M3, We) tr(2, M3%, M?) *
—2(e™Mn X V%, We™Mn X, B 0 2(emoMn X, V'35, (eT0Mn X )

Note that A,,, being the VC matrix of a vector of linear-quadratic forms of disturbances, does not involve
higher than the second moments of disturbances, because W,, and M,, in the quadratic forms €, W2, and

e, M3e, have zero diagonals (see Lee, 2007). We may write A, as A, = 2A} Ay, where

A V2vee(SPWERY?) V2vee(SH MDY ?) 0
in = ’
25/ 2 W e Mn X, By 0 —ox,/ P X,

thus A,, is positive semi-definite. To make sure that D, is invertible for large enough n, we need the
following assumption.

Assumption 11. lim,,_, %tr(MﬁMnEn) # 0 and lim,, o %((WneTUM"XnBO)'Hn(TO)(WneTUM"Xnﬁo) +

tr(WEW,2,) tr(M2 M, %,,)—tr? (MW, 3,,) ) £0
tr(M: M, %) :

When elements of W,, and M,, are non-negative, tr(M;5M,%,) > 0, tr(M:W,%,) > 0and tr(W: W, %,,) >
0, because M,, and W,, are not zero matrices and the diagonal elements of 3, are positive in general.
Proposition 4. Under Assumptions 1-4 and 8-11, v/n(3n — Yo0) 4 N(0,limy, oo D, 1A, D).

13



With the requirement of 79 = 0 or commutativeness of W,, and M,,, in addition to the consistency, the
QMLE under unknown heteroskedasticity has an asymptotic distribution that does not involve higher than
the second moments of the disturbances, whether the disturbances are normal or not.

To make asymptotically valid inference using the QMLE 4, under unknown heteroskedasticity, we
need a consistent estimator for DA, D 1. As in White (1980), we may have a consistent estimator
of D;YA, D;t without being able to consistently estimate Y,,, which has n unknown parameters. Let
3., = Diag(é2,,...,é2,), where é, = (éu1,...,énn)" is the residual vector from the QML estimation. Con-
sistent estimators for D, and A, can be, respectively, D,, and An, which are the matrices derived from
replacing ¥, in D,, and §2,, by f)n, and replacing o by a consistent estimator 4,,. The D,, and A, can be

consistent because D,, and A,, with fixed dimensions are estimated as whole terms.

Proposition 5. Under Assumptions 1-4 and 810, D, = D,, + op(1) and A,, = A,, + 0p(1).

3.2. GMME

We now consider the GMM estimation of the MESS(1,1). Let the moment vector be

9n(7) = = (€ (N Prren(¥),- -, €n (V) Py en(7)s € (1) F) (12)

1
n
where €, (7) = e™Mn(e*Wny, — X,,3), the n-dimensional square matrices P,;’s for the quadratic moments
have zero traces when ¢,;’s are i.i.d. and have zero diagonals when ¢,,;’s are independent but with different
variances, and the n x ky instrumental variable matrix F;, used in the 2SLS approach can consist of the
independent columns of X,,, W, X,,, My, X,,, W2X,,, M2X,, and so on.'® The GMM objective function with

the weighting matrix anal, is g/, (v)ana, g, (y), where the full column rank (k, + ky) X k, matrix a,, with

ko > k 4 2 converges to a full rank matrix ag by design.
3.2.1. GMME: Homoskedastic Case
When the disturbances are i.i.d., the GMME can be consistent when the matrices P,;’s have zero traces

but not necessarily zero diagonals. The P,;’s are constructed from W,, and M,,, thus we may assume that

P,;’s are bounded in row and column sum norms.

Assumption 12. The n-dimensional square matrices Pu1, ..., Py, have zero traces and are bounded in

both row and column sum norms. Elements of F,, are uniformly bounded constants.

18For o and 8, we may use only the linear instrument F,, and implement a 2SLS estimation, for which the objective function
~ ! ~
is (W — X B) o (F},Fn) ~ F4 (€2 Wy — X 8) or (2Wn iy — X B e Mo By () F) = e M (e2Wny, — X, 8) when
taking into account the MESS process in the disturbances, where 7, is an initial consistent estimator of 7. This is a nonlinear
2SLS that does not have a closed-form solution. Thus it does not have a computational advantage as the traditional 2SLS and
we do not discuss it separately.
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For any ~,

E[GZ(V)PniEn(’Y)] — (e(a—ao)WanBO . Xﬂﬂ)/e-rMLPm,eTMn (e(a—ao)Wanﬂo — X,.8) "
+ O,g tr(ef'roMibe(afao)WT'L e'rM:L Pnie'rMne(afag)Wn E*ToMn)

7

E[F,en(7)] = Fpem (7 W X, By — X, ). (14)

The identification of vy requires a unique solution of the limiting equations lim, . Eg,(7) = 0 at 7.
When o = a9 and 8 = By, E[Fle,(v)] = 0 whatever 7 is. Thus 7 cannot be identified from the linear
moments E[F e, (7)] = 0, because it only plays a role as weighting. It is possible that agy and Sy may be
identified from E[F)e,(y)] = 0, and 79 be identified from the quadratic moments E[e] (v)Pnien(y)] = 0,
i=1,...,kp. Let F,, = (Fin, Fay) such that lim,,_, %FéneTM“ n 1s nonsingular for any 7 € [—4, §], which
is a part of a rank condition for valid IV’s. The E[Fe,(7)] = 0 is equivalent to F], e™n (el@=20)Wn X 3, —
X,B8) = 0 and Fj e™Mn(ele—20)Wnx 3y — X, 8) = 0. From the equation involving only Fy,, we have
B = (Fy,e™n X, )7 1F) em™Mnele—co)Wn X 3, With substitution, the equation involving Fy, becomes
F, Hy,(T)e™Mnela—co)Wn X 30 = 0, where Hy, (1) = I, — e™Mn X, (Fy e™n X))~ F5 . Furthermore, it
reduces to Fy,Hin(T)e™"X, 80 = 0 when @ = ag. In the case that oy can be identified from the
equation, Fy, Hy,(T)e™nem™nX, By # 0 for any n # 0. When a = «p and 8 = By, (13) becomes
0(2) tr(e(T*TO)M;Pm-e(T’TO)M") = 0. Then the identification of 7y requires some matrix P,; such that
lim,, 0 %tr(e(T*TO)MLPm-e(T’TO)M") # 0 when 7 # 7. It is also possible that ay cannot be identified
from the linear moment (14), then the identification of (ag, 7o) would be from the quadratic moments.'?
Assumption 13. Suppose that F,, may be written as F,, = (Fin, Fay) such that limy, oo F} e™n X, is
nonsingular for any T € [—0,8]. Furthermore, either 1) lim, o =F{, Hip(7)e™re™n X, 8y # 0 for any
n # 0 and for oll T € [=4,0]; and, for any T # 710, lim, %tr(e(T’”’)M;Pm-e(T*TO)M") %0, for some i €
{1, kp}; or, 2) for any (o, T) # (a0, 7o), limp 00 %B()X;Le(o‘_ao)wﬁeTletH{n(T)Pm'Hm(T)CTM”G(O‘_‘XO)W"Xnﬁo—i—

%ﬁ tr(e”ToMnglam o)Wy oTM;, p oM p(a—a0)Wng=moMn) —L () for some i € {1,--- ,kp}.

As usual for nonlinear extremum estimators, we assume the compactness of the parameter space of v
(Amemiya, 1985).
Assumption 14. The parameter space I' of v is compact and the true g is in the interior of .

Proposition 6. Under Assumptions 1, 2, 5 and 12-1/, the GMM estimator 4, from the minimization of

g (Y)anal gn(v) is a consistent estimator of o, and

\/ﬁ(?yn - 70) i> N(07 lim (G;Lana;LGn)_1G;zana;zvnana;LGn(G;ana%Gn)_l)>
n—0o0

19For example, this can occur when F1,, is linearly dependent on Fb,.
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4
g / 1 4 / 1 /
Fwnwn + 3 (s — 300)w) qwnd  5H3W, g

where V, = nE[gn(0)g7,(70)] = 5 and
2u3F’ Wnd o3F!F,
o _plmbo) _ L[ FulveeWs) Gl vee(M;) 0
n 87/ n FT/LWneTOManﬁo 0 _FT/LeTgMan
with wy, = (vec(PSy), ..., vec(Ps, ky )) and wyq = (vecp(Psy), ... ,vecD(Pr‘j’kp)), under the condition that

lim,,, al,G,, exists and has the full rank k + 2.

Within the GMM framework, with moments g, (7), an optimum GMM will use V,~! as the optimum

weighting in place of a,a),. The variance matrix V,, of g, () in the preceding proposition can be put into a

more informative form as a positive semi-definite matrix. Let w? = (VGC(PT?;S), e ,Vec(PZf’é zp)), where Pfis =
li
# #
2 ) 0 w. 0
i s\/Ha — 05 — 53 Dlag(Pji) + \/52”" [P:; — Diag(Ps;)], then V,, = 1 " n
2ch73 Wnd UOFn 2ch73 Wnd Uan

Thus V,, is positive semi-definite. We require the non-singularity of V,, to formulate the feasible optimal

GMM, which is guaranteed by the following assumption.

B3

2
Assumption 15. The limits of F'F, and (w Wy, — ’dwnd)Jr ('“47‘7(2)773) ! iWnd+ 1235w HE, W

4na’

exist and are nonsingular, where Hp, = I,, — F,,(F' F,) " F".

Note that w],wy, —w!, ;wnd = (vec(Pfis—Diag(P,ﬁs)) vec(P —D1ag(P# )))/(Vec(Pfls—Diag(P,ﬁs)),

. ,Vec(Pj;p - Diag(Ppr))) > 0. When lim,, o +F},F,, is nonsingular, the above assumption is satisfied
as long as one of the terms lim, . %(w;wn — W Wnd), My, e %w;dwnd, and lim,,_, o %gw;dHannd is
nonsingular. A consistent estimator V, for V,, may be obtained from replacing the o3, uz and p4 in V,, by

their consistent estimators.

Proposition 7. Under Assumptions 1, 2, 5 and 12-15, the feasible optimal GMME #,, , from the minimiza-
tion of g\, (7)Vr tgn(7) is a consistent estimator of 4, and V1 (Fn.0 — Y0) LN N (0,1limp 00 (G} V,y PGn) 7).

As the possible selections of linear and quadratic moments via F),, and P,;’s are numerous, there is an
issue regarding the best design for those matrices. For that purpose, we follow Breusch et al. (1999) to show
that additional linear and quadratic moments are redundant given properly selected ones.?’ If oM~ X,
contains an intercept term due to the presence of an intercept term in X, let X;* be the submatrix of X,

with the intercept term deleted, so that ™M X, = [e™0Mn X* ¢(79)l,], where ¢(7p) is a scalar function of

20This pursuit is motivated by that in Liu et al. (2010).
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79.21 Otherwise, X = X,, and e™M» X* = ¢™Mn X, . Suppose that there are k* columns in X. Let X7,
be the ith column of X}, n3 = ugaa?’ and 1y = M4054 be the skewness and kurtosis of the disturbances.
Furthermore, let Ag) = A, — I, tr(4,)/n for any n x n matrix A,, which is the matrix A, with its trace
subtracted out from its diagonal. Thus Agf ) has zero trace. The following proposition gives the moment
conditions for the GMME that generate the smallest variance within the class of all GMM estimators with

linear and quadratic moments, when disturbances are homoskedastic.

Proposition 8. Suppose that Assumptions 1, 2, 5, and 12-15 hold. Let g () = %(P;‘;le(’y), oy P g€(),
(t

FXYe(w), where Pfy = W, PY, = Diag(W,), Pt = Diag(e™M»W, X,,80) ), ¥y = My, P:;l+4 =

Diag(e™Mn X*\®) forl =1,... . k*, and Ff = (F

s iy B,y ) with By = e™Me X Frey = ™Mo W, X0, B,
F*y =1, and F*, = vecp(W,,). Denote V;* = nE[g*(70)g" (y0)]. Then 4 = min., GE (VL gk () is the
best GMME within the class of GMMEs with linear and quadratic moments, and 4, has the asymptotic

distribution that /n(3; — v0) % N (0,limy, o0 A5Y), where A}, = G5 Vi Gy with G, = B 225000,

The detailed proof of this proposition is in Appendix A. From the proof, A} has the following expression

tr(PrsW,,) + oy 2(e™Mn W, X, 80) F,, * *
1
N=1 r(PEW,) (P M,) : )
—0g 2 (emM X)) Fr,, 0 oy 2 (€M X, ) F,,
* * _3 — ‘2 * ot * * * * * *
where P%, = Pf — HPM — G Prsy Py = My, Phy = Pogy for = 1, k", F}, =
-1 * 77'2 x (1 ToM,, 2 *
(774@1)*773 Pz — (774*13)*7@ F"?’(ﬁl;’e W Xoflo) — (77452)711792, Fras
* N4 — 1 * 7)?2, * 1 / M, *
) - - - —l, eV X
Bn (774 — 1) — ng nl (774 — 1) — ng nS(n n n)
if e™oMn X, does not contain an intercept term; otherwise
ng—1 ng—1 / 3 1, oM
F;, = ——— S F* (I, 0~ + ———————c(r) ey, — —————=Ff (=1 e™Y X
Bn (774_1)_77% nl( ) ><1) (774_1)_77?% ( 0) n3%kk (774_1)_77% n3(n n n)?

where ey; is the jth unit vector in RF. From the proof, the best moments in Proposition 8 are equivalent

to the use of the following moments 1 (P, €,(7), Pren(7), Poaen() s Pheen (), FS an)'ﬁn(V)' The

an?
above vector relates the moments to the skewness and kurtosis.
In the case of normal disturbances, as n3 = n4 —3 = 0, the best moments can be simplified and are equiv-

alent to L (W€, (7), Mpen(v), Proaen(y) s Phoeen(7), e My X, Bo, eToMan)’en(’y). Furthermore, the

o 1

211f M,, is row-normalized and X,, contains an intercept term, e™oMn{, = Zj:o 7

Tg M}, = €701, In this case, c(1p) = e70.

Otherwise e™0Mn X, generally does not contain an intercept term.
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moments (P§n1€n )..., Pk €n (7))/571(7) can be shown to be redundant given
1 - . /
9 (1) = — (Wnen(7), Muen(7), €™M Wo X o, €™M0 X ) en(7), (16)

by an argument similar to the proof of Proposition 8. This result can also be shown by using the generalized
Cauchy-Schwarz inequality, as in subsequent section.

The G,, in Proposition 7 can be written as G,, = #G’Q,LGM, where
0

202 202 202
V29 vec(Ws) V204 vec(M?) 0 V2% 0 0
2 n 2 n 5
Gy = and Gg,, =
O’()WneTOM"Xnﬂo 0 —JoeTOM"Xn 0 ooFy,
When €,;’s are normal, uz = uyg — 305 = 0. Furthermore, even under non-normal disturbances, if

Pu1, ..., Py g, are chosen to have zero diagonal, then wy,q = 0. For those cases, V,, in Proposition 7 reduces
toV,, = % tnGan. Thus for those cases, G V.-G, < A, by the generalized Cauchy-Schwarz inequality,
where A,, = Tig 'wGin. As W,, and M, both have zero traces, when the moment vector is g (7) in (16),
G'V.=1G, = A,. Thus the best moment vector is g7 () in (16) when ¢,;’s are normal. When W,, and M,,

can commute, the best moment vector, with the restriction that P,;’s have zero diagonals, is??

1 T T
g#’d(ry) = ﬁ (Wnen(rY)a Mnen(’}/)v € OM"Wanﬁo, € OMan)/en(’}/)' (17)

Since Gy, = ‘/52‘70 C1n, where Cy, is given in (11), the asymptotic VC matrix A;l for the best GMME in

the case of normal disturbances is the same as that for the MLE of «. It is of interest to note that for
the case with non-normal disturbances, when W,, and M,, can commute the QMLE of v happens to be
asymptotically efficient within the class of GMMEs with linear and quadratic moments where the quadratic

matrices P,;’s have zero diagonals.
Corollary 1. Suppose that Assumptions 1, 2, 5 and 12-15 hold.

(i) When the disturbances €,;’s are normal, for the class of GMMEs with linear and quadratic moments
where the quadratic matrices P,;’s have zero traces, the best GMME is the optimal GMME with the

moment vector gif () in (16);

(is) When W,, and M, can commute, for the class of GMMEs with linear and quadratic moments where the
quadratic matrices P,;’s have zero diagonals, the best GMME is the optimal GMME with the moment
vector g#d(v) in (17).

The best moments in the case of normal disturbances are of interest to be compared with those for the

SARAR model. For the latter model, the best instruments are R,[X,, W, S, 1X,50] and the matrices for

22When W,, = M,,, the moment %e% (7)Mnen () should not be considered.
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the best quadratic moments are R, W, S, R — I, tr(W,S;1)/n and M, R;! — I, tr(M, R,;})/n, where
R, =1, — poM, and S,, = I,, — A\gW,,. Thus, in addition to X,, and W, X,,, higher order spatially lagged
X, ie, W2X,, W2X,, etc., will provide additional information. For the quadratic moments, spatial
weights matrices of higher order, namely, W2, W2, etc., from which the average of their diagonal elements is
subtracted from each diagonal element, can be used as additional orthogonal conditions. On the other hand,
the best instruments and quadratic moments for the MESS(1,1) rely simply on spatial weights matrices W/,
and M,,. Note also that when there is no MESS process in the disturbances, the moment vector for the best
GMME in the case of normal disturbances can be simply taken as L [e/ (v)Wyen(7), €l (7) (WnXn, X0)1n],
where (W, X,,, X,,)rn denotes the independent columns of (W, X,,, X,,).2* Thus it has a simple form which
does not involve any unknown parameter. By contrast, the moment vector for the best optimal GMME of
the SAR model can be taken as L[el, (v)(W,, St — I tr(W,, S, 1) /n)en (7)), €0 (7) (Wn Sy ' X, X,)1n]’, which
involves the unknown parameter )\ in the matrix inverse S, .

There exists a link between the MLE (or QMLE) and moment conditions. The first order conditions for

the MLE using the function @, () can be written as

8%;57) = 20" Wy X B) en(7) + 26, (1) WoeT ™M (7), (18)
oQn, / 9Qn o !
QaT(V) = 26,(7)Mpen(y) and %/3(7) = —2(e™" X)) en (7). (19)

Thus the underlying moments integrated by the MLE are also the linear moments with instruments from
e™oMn X and e, X,,, and the quadratic moments with the matrices W,, and M,,. The matrix e™Mn
in front of X,, and W, X,, is a transformation for the MESS disturbances. When the likelihood function
is correctly specified under the normal disturbances, the combinations of linear and quadratic moments in
(18)—(19) are the efficient ones. But they might not be so when the likelihood function is only a quasi one.
The optimal GMME employs an optimal weighting matrix when using the moments g7 (y), but the QMLE
might not. Thus a best GMME within the class of linear and quadratic moments can be more efficient
asymptotically than the QMLE when the disturbances are non-normal or W,, and M,, cannot commute.

This can be shown analytically. Let

(GTOMHWHXHBO)/%('V)+5%(7)Wn6n(7) 1 01 0

2 .
ha(y) = e (V) Mpen(v) = Ag#(y), withA=2|0 1 0 o
_(eTOMan)/en('}/) 0 0 0 —I

23If W, is row normalized and X,, contains an intercept, as Wyl = ln, only one of the two intercepts should be included in
(WnXn, Xn).
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The h,(v) and %%’;’Y) have a similar structure: replacing 7o in the components e™ ™~ W, X,, By and e~ X,

in hy,(y) by 7 yields %%y. It is obvious that Eahgiyo) = %E(%) and E(nhy(y0)h,(v0)) =

%E(%};’“)%’y")) Thus, by Proposition 4, the asymptotic VC matrix for the QMLE of ~ is equal to

limy, o (E 222090) ™V B (nhy, (0) hl (70) ) (B 2258990) ™ Therefore,

=
9, (70)

(E M)_lE[hn('YO)h;z(VO)](E oy

5 )™ = [GF G0 [AB(g G0l (10) 4] AGE o))

B (20)
> |G (0) [B(gf (0)g ()] "G (0]

E 3932&(70) .

By The last term above is the

by the generalized Cauchy-Schwarz inequality, where G7(vy) =
asymptotic VC matrix of the feasible optimal GMME with the moment vector g (). The inequality in
(20) becomes an equality if there is a matrix Ay, such that G¥#(vy9) = E(g#(fyo)g#/ (70)) A’ Agp,. From

Proposition 6, we have

o2 tr(WsW,) o2 tr(Ws M,,) 0
1
G (v0) = i o2 tr(M:W,,) ol tr(MgM,) 0
(eTOManXnBOa eTOMan)/eTOManXnBO 0 _(eTDM" Wanﬂm eTOMan)/eTDM"Xn

and
# # ’ 2‘73 #
E(g7 (70)97 (70))A" = TGn—’_
(14 = 305) veen'(Wy,) veen (W) + g veep/ (W, )™M W, X, 60 0 —pg veep' (W, )e™Mn X,
2 0 0 0
ps(e™MnW, X, By, e™Mnr X ) veep (W,,) 0 0

When 79 = 0; W,, and M,, can commute; or uz = p14 — 30 = 0, we have Agp = ;TLSI;CJFQ. Except for those
cases, Ay, may not exist. As g () in (16) is only a special case of linear and quadratic moments, the best
GMME in Proposition 8 can be more efficient asymptotically than the QMLE.

The best moment vector g*(v) and the optimal weighting matrix V,*~! involve unknown parameters.
In practice, g;:(y) and V,;*~1 can be estimated using initial consistent estimates and a feasible best GMME
can be derived. Such a feasible best GMME has the same asymptotic distribution as the best GMME in

Proposition 8.

Proposition 9. Suppose that Assumptions 1, 2, 5 and 12-15 hold. Let 4y, 62, i3, and fis, be, Tespec-

tively, \/n-consistent estimators of Yo, o5, u3 and pg. The P;l, e If’*,k*+4, F;’;, Ff‘n, ..., Fryoand

n

320 . . . * * * * *
V. denote the matrices derived when the unknown parameters in Pyy, ..., Py 4, Fy, Fi,, ..., Fy

and V¥ are replaced by the corresponding consistent estimators. Then the feasible best GMME Yof =
min,, 3 (7)V* 1% (v), where g% (y) = %(13,’{16(7), e ,P;?k*+4e('y),ﬁ,’{)’e(’y), has the same asymptotic distri-
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bution as 7}, = min, 95 (NVi g ().

3.2.2. GMME: Heteroskedastic Case
When the disturbances are independent but may have different variances, the GMME can be consistent
when the matrices P,;’s have zero diagonals.?*

Assumption 16. The n-dimensional square matrices Py, .. ., Pk, have zero diagonals and are bounded

in both row and column sum norms. Elements of F,, are uniformly bounded constants.

By taking into account variances of disturbances, the identification condition is similarly derived as that

in the homoskedastic case.

Assumption 17. Suppose that F,, may be written as F,, = (F1,, Fa,) such that lim,,_, o %Fz’neTM"Xn 18
nonsingular for any v € [—0,8]. Furthermore, either 1) lim, o ~F{, Hi,(7)e™re"™n X, By # 0 for any
1 # 0 and for all T € [=4,9]; and, for any T # To, limy 00 %tr(e(T_TO)M;LPme(T_T")M"Zn) #0, for some i €
{1,--- ,kp}; or, 2) for any (o, T) # (w0, 7o), limy, 00 %,BéX;Le(afo‘(’)Wv;eTM;/H{n(T)PmHln(T)eTM"e(afo“’)W"XnﬂowL

’ ’ ’ .
Lir(emmoMnelaman)W, emMy, pemMnela=a0)Wne=moMny ) o 0, for some i € {1, ky}.

Proposition 10. Under Assumptions 1, 2, 8, 14, 16 and 17, the GMM estimator %, from the minimization

of gh(V)anal,gn(7y) is a consistent estimator of v, and

V(A — Y0) 4, N (0, lim (G’nana'nGn)*IG;ana;Vnana;Gn(G;Lana;Gn)fl),
n— o0

, L %w;wn 0
where Vi, = nE[gn(70)g,(10)] = 5 , and
0 F'S,.F,
o _ oo _ 1 Lot vee(SH (S IW,) 5?)  Swl vee(SK (S5 M,,) 5 %) 0
n oy n F!'W,e™Mn X, 3, 0 —FlemoMnx,
with w,, = (vec(E}LﬂPrle}/Q), . ,vec(E}LmPs,ka?l/z)), under the condition that lim,,_, . a, Gy, exists and

has the full rank k + 2.

The V,, does not involve the third and fourth moments of the disturbances, as the matrices in the

quadratic forms of disturbances in g, (7p) have zero diagonals. An optimal GMME can also be formulated.

Assumption 18. The limits of %w;wn and %FT’LEnFn erist and are nonsingular.

A consistent estimator for V;, is the matrix V;, derived by replacing the ¥,, in V,, by ,, = Diag(¢é2,,...,é2, ),

nls ytnn

where €,;’s are the residuals from an initial GMM estimation. Under Assumption 18, the limiting inverse

of V,, exists. Then the objective function for the feasible optimal GMME is ¢/, (7)V ' gn (7).

24P, i = Wa; Py = My, or Py = (WT% — Diag(Wﬁ)) constitute three examples of matrices that could be used.
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Proposition 11. Under Assumptions 1, 2, 8, 14 and 16-18, the feasible optimal GMME 4, , from the mini-
mization of g, (7)V,; Ygn(7) is a consistent estimator of vo, and V1 (An,0—70) 4, N(0,1imy, 00 (G V7 1 GR) 7).

Note that tr(2, P53, (5, 'W,,)*) = tr(2, P53, (S, 1 (W, — Diag(Wn)))S) as P? has a zero diagonal

n
!/

V2, 0
and Y, is a diagonal matrix, then G,, may be written as G,, = L= G1n, where
n 1/2
0 ¥ °F,
G Y2 vee(£/? (871 (W, — Diag(W,,))) Sh/%) 2 vee(Sy/ (5,1 M,)*5r/?) 0
1n —
S AW, e M X, By 0 —%, e X,

Thus G V,7'G,, < A, by the generalized Cauchy-Schwarz inequality, where A, = %G'lnGln. When the
moment vector g, (7) is equal to g5 (v) = L [e)(v) 55 (Wy, — Diag(Wa))en (1), €4 (1) Maen(7), () F ]

n n ’rtn
with Ff = X YW, e™Mn X, By e™Mr X, )|, G/ V.7 1G,, = A,,. Therefore, if the variances o2,’s can be con-
sistently estimated, e.g., when we have a parametric model for the variances, then we may have a feasible
best optimal GMME, for which the moment vector is obtained from replacing the 7o in g (v) by an initial
consistent estimator.?®
If the elements of 3,, cannot be consistently estimated, we do not have a feasible best GMME, e.g., for

the unknown heteroskedastic case, ¥, with n parameters cannot be consistently estimated. However, we

may use the moment vector
- 1 ; c o (TR AP A M,
oty = ~1en(7) (W, — Diag(Wn))en (1), €1,(v) Mnen(7), €, () [Wae™ 1 X 8, ™ M X, ] (21)

and implement a feasible optimal GMM estimation. A special case of interest is when W, and M, can

commute. In that case, gf 4(7) reduces to

g:ﬁd(’}/) = %[6; (’Y)ann (’Y)a éfn (’Y)Mnen(’y)v 6;1(7) [Wne‘?nManBna ef-nMan]]/' (22)

It can be shown, as for the proof of Proposition 9, that the optimal GMME using the moment vector
gjjf 4(7) has the same asymptotic distribution as that using the moment vector gi 4(7) in (17). As shown in
(18)—(19), the QMLE also integrates those moments in gﬁd('y). But because of the optimal weighting, the
optimal GMME using the moment vector gi 4(7) is at least as efficient as the QMLE and generally more

efficient than the QMLE asymptotically, according to (20) and arguments similar to those after (20).

25For the SARAR model with heteroskedasticity, we have also found that the best instruments are E;an [Xn, Wh S;anBO}
and the matrices for the quadratic moments are X' [RansglRﬁl - Diag(RanS;lRﬁl)] and Xt [MnR,fl -
Diag(Mn, Rn1)]. For the SAR model with heteroskedasticity, Lin and Lee (2010) have not discussed the possible best GMME
by the generalized Cauchy-Schwarz inequality as above.
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3.3. On the Inference of Elements in Impact Matrices

Assessing the statistical significance of the effect of a change in a regressor on the dependent variable
is one of the main objectives of applied economists. In spatial regressions, as shown in Section 2, one
first has to compute the reduced form of the specification and calculate the matrix of partial derivatives of
the dependent variable with respect to the concerned regressor in order to figure out the matrix of impacts.
Inference regarding causal effects should then be based on this matrix, which, for regressor X,,;, is presented
in (5). All the elements of this impact matrix are possibly different from each other and performing inference
on them would be of value.

For the SAR model, LeSage and Pace (2009) propose a Bayesian Markov chain Monte Carlo approach to
produce inference on the scalar summary of effects, namely the average direct, indirect and total impacts. In
this paper, we take the classical approach based on the Delta method to perform inference on those elements
of the impact matrix. Statistical significance on differences of impacts can also be assessed. For instance,
one could be interested in testing if the effect of the kth regressor for observation i on y,; will be the same
as of the Ith regressor (with [ possibly different from k) for individual j on y,;, with j possibly different
from 1.

Let 4, be a y/n-consistent estimator of v, and e,; be the ith column of I,,. The impact of Znjp (pth

w,

regressor for individual j) on y,, is estimated to be e ;e= """ e,;0,p, and the effect of z, g On Yp, is

w,

estimated to be e/,.e~%" "enanq. Then, by the mean value theorem,

\/ﬁ[(e;ieia"wﬂ enjBnp - e;weidnwn enanq) - (ezu'eiaown enjBOP - 641r€7aow7l enSﬁOq)]
= Aln\/ﬁ(&n — @, Bnp - 601)7 Bnq - /BOq)/ + OP(l) (23)
d .
— N(O, lim AlnBln /171),
n—oo

_ I —agW, I —aoW, I —aoW, /
where Ay, = [—el,e” """ W, en;Bop + €60 " WyensBog, €nie 0 men;, —€

i e Woe 1 and By, is the

asymptotic VC matrix of /n(&, — ay, Bnp — Bop, Bnq — Bog)’. To test whether the two impacts are equal, we

may use the asymptotically standard normal statistic v/n(e/,;e =V e, Bnp—€hre " Wn e o Brg) / (Arn Bin A7, )1/

under the null hypothesis, where flln and Bln are, respectively, consistent estimates of Ay, and By,. An-

Gn Whn )

other example is in testing whether the average direct effect %tr(e Bnp is significantly different from

zero. It can be shown that

1 —& ~
—=tr(e= W) B, —

\/ﬁ tr(e_aown)ﬁop = A2n\/ﬁ[dn — Qp, Bnp - ﬁ(]p]/ + OP(]-)

Si-

(24)
d .
— N(O, nl;rgo AgntnA’zn),

where Az, = [—Ltr(em W W,)Bop, L tr(e=*"W")] and Bs, is the asymptotic VC matrix of v/n[d, —
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g, Bnp — Bop|’- Let Agn and Bgn be, respectively, consistent estimates of As, and Boy,.

. N . X _ _ oA A _1/2 d
Lemma 1. /n[(e;e aanenjﬁnp_dLW anwylensﬂnq)_(elme aowylenjﬁop_e%re aoWnensﬁoq”(AlnBlnA/ln) 12 5

N(0,1) and —=[tr(e=4"n) By, — tr(e™20Wn) By ] (Aan Ban Ab,) 7112 4 N0, 1).

Several applications of this lemma will be presented in Section 5 which is dedicated to the application
of the MESS to figure out the dominant type of outward FDI for Belgium. However, before turning to the
empirical application, we first present Monte Carlo experiments which assess the finite sample performance

of the MLEs, QMLEs and GMMEs.
4. Monte Carlo Simulations

We consider a MESS(1,1) model with two regressors: e“Wry,, = 81 X1 + B2 X2 + up, e™Mru, = ¢,. The
interaction matrix W, is defined as the 5 nearest neighbors, while we considered two different definitions for
M,. Firstly, M,, = W,, which makes the QMLE consistent even in the presence of unknown heteroskedas-
ticity. Secondly, M,, is defined as a 15 nearest neighbors. In this case, W, and M,, do not commute and
the QMLE will not be consistent in the presence of unknown heteroskedasticity.2® The elements of X,,; and
X2 are independently drawn from, respectively, the uniform distribution U(0, 10) and the standard normal
distribution. For each repetition, the regressors are randomly redrawn.

Three different specifications for the error term are considered. In the first case, the disturbances are
ii.d. normal; in the second case, the disturbances are i.i.d. with a standardized I'(2,1) distribution; in the
third case, the disturbances are heteroskedastic, where the heteroskedasticity is defined as the multiplication
of a standardized I'(2,1) distribution by the value of the first regressor. In the homoskedastic cases (the
first two cases), the variance o of disturbances is set to keep the signal-to-noise ratio constant. This ratio is
defined as the variance of 51 X1 + f2 X2 over the sum of variances of $1 X1 + f2 X2 and €, (see Liu et al.,
2010). In these Monte Carlo experiments, the signal-to-noise ratio is set to 0.5. In the absence of spatial
autocorrelation, this ratio would represent a R? = 0.5. In the heteroskedastic case, the average variances of
the disturbances is set to be equal to 2.

Two sample sizes, 100 and 254, are considered, corresponding respectively to the number of counties in
North Carolina and in Texas. The values of a and 7 vary from —2 to 2 by increment of 1 while 5, and S,
are set to 1. All the experiments were replicated 1000 times. For these simulations, the GMM estimator is

a two step feasible optimal GMME with the first step weighting matrix being an identity matrix. The best

26Interaction matrices have been normalized by the spectral radius.
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moments are used for the homoskedastic case,?” while the moment vector for the heteroskedastic case is
(21). When there are unknown parameters in the moment conditions, the initial consistent estimator used
is the GMME with the moment vector [€], (7)Wye€n, €, (V) Mnen (), €5, (V) (WnXn, Xn)]'-

Tables 1-3 summarize the results for the homoskedastic cases with the sample size n = 100.2® We report
the bias, standard errors (in italics) and root mean squared error (RMSE) (in bold) for both QML and
GMM estimates. When the disturbances are normal, the results for the QML and GMM estimates are very
similar in most cases. While the biases for a, 81 and S are all smaller than 0.1, the bias for 7 can be close
to 0.3. Relatively large standard error is also observed for 7 in some cases. When the disturbances are
non-normal, for f; and fs in all cases and « in most cases, the GMM estimator has smaller standard error
than the QML estimator; for 7, the GMM estimator has a smaller standard error only when W,, = M,,.

Table 4 reports the estimates of a and 7 in the heteroskedastic case. When W,, = M,,, the biases of the
QML and GMM estimators are very small and their variances have similar magnitudes. When W,, # M,
we observe that it is mainly the estimation of 7 which is affected by the difference in interaction matrices.
Indeed, for both QML and GMM estimation procedures, estimators of «, $; and (2 have similarly small
biases and RMSE. For positives values of 7, GMME behaves better than its QMLE counterpart while for
negative and null values of 7 both estimators behaves similarly. Even though the QMLE is inconsistent
theoretically when W,, # M,, and 7 # 0, the largest bias for the QMLE of 7 in simulations does not exceed
0.3. For n = 254, we do not observe any difference in the behavior of QMLE and GMME.

5. Application to Belgium’s outward FDI

To the best of our knowledge, with the recent exceptions of Coughlin and Segev (2000); Blonigen et al.
(2007); Baltagi et al. (2007, 2008) and Garretsen and Peeters (2009), the literature on FDI has overlooked
the third country effect as a determinant of bilateral FDI. Coughlin and Segev (2000) consider inward
FDI for 29 Chinese provinces and find positive and significant spatially autocorrelated error terms (SEM
specification). Blonigen et al. (2007) distinguish 4 different types of FDI that multinational enterprises
(MNEs) can undertake, summarized in Table 5 (corresponding to Table 1 in Blonigen et al., 2007) and
can be identified based on the sign of the spatial lag parameter and of the surrounding-market potential

variable.2?

27The moment vector (16) for normal disturbances, and g} (y) in Proposition 8 for non-normal disturbances.

28The results for n = 254 are similar. We observe that bias, standard errors and thus RMSE are lower when the sample size
becomes larger. These results are reported in the supplementary file. Besides, estimates for 51 and (2 are only reported for
the QML estimator in the homoskedastic case and others are in the supplementary file.

29Since the data we have do concern countries and not MNEs, we can only observe the dominant type of MNE behavior in
terms of FDI, as the data may contain a mixture of the different motivations for FDI.
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Table 5: Expected signs for spatial lag and surrounding-market potential variables
FDI Motivation Sign of spatial lag  Sign of surrounding-market
potential variable

Pure horizontal 0
Export-platform —
Pure vertical —
Vertical specialization +
Source: Blonigen et al. (2007).

oo+ o

MNEs can firstly embark in FDI for market access reasons and avoidance of high trade or tariff costs
in a host country. This is horizontal FDI. If trade barriers between the parent country (where the MNE
is located) and host country (where the MNE would like to make its products available) are too high, the
MNE could decide to build a plant in the latter country to avoid export costs but at the expense of building
a new production plant. Blonigen et al. (2007) note that no spatial autocorrelation between FDI should be
observed since MNEs make independent decisions about serving a market either through exports or affiliate
sales. Besides, for this basic form of FDI, we do not expect any market potential effect of host country since
the MNE looks for access to the considered market only.

A second motivation for FDI occurs if trade barriers between a set of destination markets are lower
than trade frictions between these destination markets and the parent country. In that setup, a MNE could
decide to build a plant in a host country, export to other markets and facing lower trade costs only. This
type of FDI is called export-platform. As the MNE will not build a production plant in each host country,
we expect a negative spatial autocorrelation between neighboring FDI locations. However, we anticipate a
positive effect of the surrounding-market potential variable since the MNE will locate its new plant in the
host country which has access to the largest surrounding market.

MNEs will make vertical FDI if they want to access to cheaper factor inputs for their products. In its
simplest form, namely pure vertical, host countries are in competition in terms of input factor prices to
receive FDI. Hence, we expect a negative spatial autocorrelation between FDI. However, since the product
is shipped back to the parent country to be further processed, no effect from surrounding-market potential
is foreseen. A more complex form of vertical FDI has been developed by Davies (2005) and Baltagi et al.
(2007). Within that framework, named vertical specialization, the MNE decides to split its vertical chain of
production among possibly several host countries, to benefit from the comparative advantage of the hosts.
In such a framework, according to Blonigen et al. (2007), we should observe positive spatial autocorrelation
due to possible agglomeration forces such as the presence of immobile resources, since the suppliers’ presence

in neighboring host countries is likely to increase FDI to a particular market. However, for the same reason
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as in pure vertical FDI, we do not predict any surrounding-market effect.

Blonigen et al. (2007) use outbound US FDI to 35 countries over the period 1983 to 1998 to test the
dominant type of FDI which characterizes US MNEs. Even though they found a positive and significant
spatial dependence effect, the authors acknowledge the fragility of their results with respect to the countries
considered. Besides, significance of the surrounding market effect variable is affected by the presence of
individual effects in the regression. Garretsen and Peeters (2009) also test the dominant motivation for FDI
using outward Dutch FDI to 19 countries from 1984 to 2004. When analyzing their complete sample, they
find a positive and significant market potential effect but also positive and significant spatial autocorrelation
among FDI.

Our contribution to this literature is threefold. Firstly, we analyze the dominant pattern of Belgium’s
outward FDI using a modified gravity equation which, in addition to traditional determinants found in
the literature, also captures effects of spatial interactions and market potential. We secondly compare
results using a MESS(1,1) and a SARAR specification and highlight the similarities in terms of economic
interpretations of these two models. We finally apply the lemma concerning inference to assess statistical

significance of elements of impact matrices of FDI’s determinants.

5.1. Data and empirical specification

This application concerns Belgium’s outward FDI into 35 countries in 2009. These 35 host countries

belong either to OECD or European Union and represent 94% of Belgium’s total outward FDI.3°
The modified gravity to be estimated is presented in (25).

LFDI; = By + B2 LGDP; + Bs LPOP; + B4 OECD; + B85 LDIS; + 8¢ TARIFFS; + Bz MP; +¢;.  (25)

LFDI; is the stock of outward FDI (in logs) from Belgium to host country i. FDI stocks were extracted
from the OECD International Direct Investment Statistics. The set of regressors includes host GDP in
logs (LGDP), host population in logs (LPOP), an OECD dummy which captures an OECD effect, the
bilateral distance between Belgium and country ¢ expressed in logs (LDIS) and a measure of trade costs
which corresponds to the weighted mean of applied tariffs on all products, as defined by the World bank
WDI database and labeled as TARIFF'S. The last exogenous regressor is the surrounding-market potential

variable, M P. We follow a similar approach to Blonigen et al. (2007) in the definition of this variable. For

30The countries considered are: Australia, Austria, Bulgaria, Canada, Cyprus, Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Ireland, Italy, Japan, South Korea, Latvia, Lithuania, Luxembourg, Mexico, Netherlands,
New Zealand, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom
and United States of America.
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host country 4, we define the market potential as the sum of inverse-distance weighted log-GDPs of all other
k # i countries in the world for which we could obtain GDP data (this amounts to 183 countries). The only
difference from Blonigen et al. (2007) is that these authors use the log of the inverse-distance weighted GDP
to measure surrounding market potential.®! LGDP, LPOP and TARIFFS all come from the World Bank
WDI database while bilateral distances and distances used to construct the M P variable come from CEPII’s
databases. Finally, all the concerned variables are expressed in constant USD of 2000. Some descriptive

statistics of the data are presented in Table 6.

Table 6: Descriptive statistics for the data

Mean  Std dev Min Max

LFDI 8.394 1.997 4.410 11.851

LGDP 25.973 1.775 22.782  30.048

LPOP 16.390 1.450 13.118 19.542
OECD 0.857 0.355 0 1

LDIS 7.337 1.157 5.154 9.853

TARIFFS 1.877 1.369 0.990 8.930

MP 1.364 0.491 0.356 2.257

Accounting for spatial autocorrelation in FDI requires the setup of an interaction scheme, modeled
through the interaction (spatial weights) matrix W,,. In this application, we follow Blonigen et al. (2007)
and use an inverse arc-distance between capitals to model interactions between host countries. However,
we do not multiply the weights by the shortest distance between capitals as done in Blonigen et al. (2007)
since we do not row-normalize our weight matrix but instead use the spectral radius to standardize the
matrix.*? This approach is advocated by Baltagi et al. (2008) who argue that row-normalizing a distance
based interaction matrix converts absolute distance-based interactions to relative distance-based and thus
changes the information content of the interaction scheme.?® In addition, we control for the presence of
residual spatial autocorrelation in the error terms. We consider the same interaction matrix for both MESS
processes. As shown in Section 3, the QMLE can be consistent in presence of unknown heteroskedasticity.

Table 7 summarizes the results of different econometric specifications which extend (25). Columns 2-7
present estimation results respectively for homoskedastic SARAR (by QML), homoskedastic MESS(1,1) (by

QML), homoskedastic MESS(1,1) (by optimal GMM with the moment vector gj# v) in Proposition 9),
n,d

31This difference in the position of the logarithm is motivated by the fact that as the host GDP enters equation (25) in
logarithms, we believe the surrounding market variable should also be based on logged GDP. Also,Garretsen and Peeters
(2009) construct their surrounding-market potential variable in a different way since they only consider the GDP of all host
countries in the sample.

32 As each weight will be multiplied by a common factor, the spectral radius will also be multiplied by this factor, implying
that the normalized matrix will be the same, no matter if the interaction matrix is initially rescaled or not.

33For further information concerning matrix normalizations, interested readers may consult Kelejian and Prucha (2010).
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heteroskedastic SARAR, (by optimal GMM?3?), heteroskedastic MESS(1,1) (by QML) and heteroskedastic
MESS(1,1) (by optimal GMM with the moment vector gid('y) in (22)).

Let us first note that the quasi maximum likelihood and GMM estimation of the MESS(1,1) with ho-
moskedastic and heteroskedastic disturbances provide similar results for both estimated values and standard
errors. The second result we would like to pinpoint relates to the sign of the parameter capturing interac-
tions between observations. We observe a negative A for both SARAR specifications (homoskedastic and
heteroskedastic) while the MESS(1,1) provides a positive value for . Thus, a negative A translates in a
positive a.?® Finally, there is no significant spatial autocorrelation left in the error terms.3¢

The computation of matrices of impacts of changes in determinants on FDI is required to be able to
give conclusions regarding the dominant type of FDI characterizing Belgium. Indeed, as MESS(1,1) and
SARAR are estimated under implicit form (see (2) and (3)), we need to compute their associated reduced
form and then calculate the matrix of partial derivatives with respect to each explanatory variable to get
impact matrices. For the MESS(1,1), this impact matrix for regressor X, is shown in (5).

To compare MESS(1,1) and SARAR results, we report in Table 8 the average direct effect and the average
total effect for each of the explanatory variables for heteroskedastic SARAR and MESS(1,1), estimated both
by QML and GMM. The average direct effect is computed as the average of diagonal elements of the impact
matrix while the average total effect is defined as the mean of the row-sum of its elements (+1/,E%" 1,,). In
terms of impacts on the dependent variable, the main focus for economists, we observe a strong similarity
of impacts produced by the two specifications even though parameters capturing spatial dependence are
completely different from each other.

The lemma derived in Section 3 allows performing inference on elements of the impact matrices of the
MESS(1,1). Table 9 summarizes inference results performed on different (functions of) elements of these
impact matrices, based on the heteroskedastic MESS(1,1) estimated by GMM. The first row analyzes the
significance of average direct effects. The results indicate a non-significant elasticity of surrounding-market
potential on FDI. This result, combined with a negative spatial autocorrelation, points to the dominance of
pure vertical type of FDI. To the best of our knowledge, this application is the first to indicate such a clear

cut result. One possible explanation of this result lies in the production costs faced by Belgian multinationals

341n the moment vector, the instruments for the linear moments are I:Zn [Xn, Wy S;anﬁn] and the matrices for the quadratic
moments are R, W, Sy 1 Ry! — Diag(RnWnSn 'Ry ') and M, Ry, ' — Diag(M, Ry, '), where Ry, = I, — pnMp, Sn = In — A Wh
and (An, pn,B.) is an initial GMME.

35This difference comes from the definitions of these two models, as shown in Section 2.

36In the supplement file, we report the estimation results of the MESS(1,0). All results are qualitatively the same.
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Table 7: Estimation results for different specifications

(1) (2) (3) (4) (5) (6)
Cons. —2.438  —3.021 —5367 —1.266 —3.023 —2.819
(4.582)  (4.660)  (4.564)  (3.899)  (4.288) (4.274)
LGDP 1.106™"  1.114™*  1.325™  1.089"  1.113"" 1.110™"

(0.243)  (0.246)  (0.237)  (0.220)  (0.241)  (0.240)

LPOP —0.584""  —0.585"" —0.803""" —0.591"" —0.584""  —0.586""
(0.243)  (0.246)  (0.237)  (0.235)  (0.254) (0.252)

OECD 1.064" 1.037" 0.912" 1.023" 1.037" 1.029"
(0.548)  (0.551)  (0.534 (0.605)  (0.611) (0.613)
LDIS —1.245"" —1.199"" —1.177""" —1.293"" —1.199"" —1.206™""
(0.223)  (0.220)  (0.220)  (0.209)  (0.200) (0.200)

TARIFFS 0.107 0.106 0.151 0.108 0.106 0.106
(0.112)  (0.113)  (0.110)  (0.084)  (0.084) (0.083)

MP 1.275 1.212 1.534 1.156 1.212 1.183

(1.079)  (1.105)  (1.095)  (1.147)  (1.186) (1.185)
Spat auto | —0.331"° 02657  0.284"" —0.335""  0.265" 0.264™"

in y (0.153)  (0.109)  (0.107)  (0.173)  (0.121)  (0.121)
Spat auto 0.015  —0.004 —0.136 0.282  —0.004  —0.024
in errors (0.530)  (0.516)  (0.527)  (0.598)  (0.419)  (0.418)
n 35 35 35 35 35 35

Standard errors between brackets; (1) is homoskedastic SARAR, (2) is homo.
MESS(1,1) by QML, (3) is homo. MESS(1,1) by GMM, (4) is heteroskedastic
SARAR, (5) is hetero. MESS(1,1) by QML and (6) is hetero. MESS(1,1) by
GMM; *, ** and *** correspond to significance at the 10%, 5% and 1% respectively.

Table 8: Comparison of average direct effects and average total effects

Average direct effects Average total effects
SARAR MESS(1,1) MESS(1,1) | SARAR MESS(1,1) MESS(1,1)

QML GMM QML GMM

LGDP 1.094 1.116 1.113 0.884 0.921 0.919
LPOP —0.595 —0.586 —0.587 —0.480 —0.484 —0.485
OECD 1.029 1.039 1.031 0.831 0.858 0.855
LDIS —1.300 —1.202 —1.209 —1.050 —0.992 —0.998
TARIFFS | 0.109 0.107 0.106 0.088 0.088 0.088
M_PO 1.163 1.214 1.185 0.939 1.001 0.979

Effects are computed from estimation results of heteroskedastic SARAR and
MESS(1,1) (estimated by QML and GMM).

in Belgium. Indeed, labor costs in Belgium are amongst the highest in Europe.?” Besides, determinants of
the traditional gravity equation have the expected sign. We observe a positive and significant elasticity of
GDP, which captures the wealth effect, while elasticities of population and bilateral distance are found to
be negative. The OECD dummy is found to be significant at the 10% level. Finally, the tariffs variable is

found to be non-significant which can be explained by the homogeneity of the sample.

37See Eurostat database on labor costs.
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The second row presents inference on the indirect effect of Austria on Slovakia, (Eg{nk )svi,aur- In other
words, we analyze if a shock on a regressor in Austria will affect outward FDI from Belgium to Slovakia. We
observe a significant effect for the host GDP variable and bilateral distance but the effect is non-significant
for the four other regressors. For instance, increasing the GDP of Austria by 1% will reduce outward FDI
from Belgium to Slovakia by 0.147%. Finally, the last row of Table 9 studies significance of the difference
between the indirect effect of Mexico on the United-States and the indirect effect of Canada on United-
States 7<E§(nnk)US AMEX — (Egg‘nk)US A,cAN. We observe significant difference between those indirect effects
for GDP and bilateral distance. In other words, the effect of a variation of Mexican GDP on outward FDI
from Belgium to the United States will be statistically different from the effect of the same variation of

Canadian GDP on outward FDI from Belgium to the United States.

Table 9: Inference on elements of impact matrices

LGDP LPOP OECD LDIS TARIFF  MP

Lip(EY ) 111377 —0.586"  1.039° —1.202"  0.106 1.213

n AT X (0.242) (0.255) (0.613) (0.200)  (0.083)  (1.190)

(=t ) —0.147"  0.078 —0.137  0.160" —0.014  —0.157

=X/ SVEAUT (0.084)  (0.058) (0.120) (0.075)  (0.013)  (0.226)

= ) @) 0.009° —0.005  0.008 —0.010""  0.001 0.010
X/ USAMEX = A=X, JUSACAN | (9 005)  (0.004)  (0.008) (0.005)  (0.001)  (0.016)

Standard errors are between brackets; AUT stands for Austria, CAN for Canada, MEX for
Mexico, SVK for Slovakia and USA for the United States; %tr(E‘g(”nk) is the average direct
effect, (Eg’("nk)gv;(, auT is the indirect effect between Austria and Slovakia; (Eg&k)Ug AMEX —
(Eg(”nk)US A,can is the difference between the indirect effect of a change in = in Mexico on outward
FDI in the United States and the indirect effect of a change in x in Canada on outward FDI in
the United States; *, ** and *** correspond to significance at the 10%, 5% and 1% respectively.

6. Conclusions

This paper firstly develops the asymptotic theory of the matrix exponential spatial specification (MESS)
in both the dependent variable and error terms. We show that the GMME is consistent and asymptotically
normal even in the presence of unknown heteroskedasticity as long as the interaction matrix has zero
diagonal elements. Besides we show that if the interaction matrices for the dependent variable and the error
terms commute, the QMLE may also be consistent and asymptotically normal in the presence of unknown
heteroskedasticity. In the homoskedastic case, we develop a best optimal GMME which is much simpler than
the best optimal GMME for the SAR specification since moment conditions do not depend on estimated
parameters. In case of non-normality, the homoskedastic best optimal GMME is shown to be more efficient

than the QMLE. In the heteroskedastic case, a best optimal GMME cannot be derived except if we know the
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structure of heteroskedasticity. We thus develop an optimal GMME which is shown to be more efficient than
the QMLE. We also derive a lemma to perform inference on the elements, or functions of them, of the impact
matrices implied by the reduced form of the MESS, which is very important for applied economists. Monte
Carlo experiments are conducted and show the good small sample properties of the proposed estimators.
Finally, we apply our estimators to show that outward FDI from Belgium are mainly characterized by the
vertical type. We also compare SARAR and MESS(1,1) impacts and note that they are very similar, which
pleads for the use of the latter. When the spatial process is stable, the MESS has many advantages over the
SAR model.

Appendix A.

For the best GMME in the homoskedastic case, we show that adding any other moments to the selected
ones cannot improve the asymptotic efficiency using the redundancy conditions in Breusch et al. (1999).
Suppose that we have a set of moment conditions E[gZ(v)] = 0 with the corresponding optimal GMME
being 4. Adding some additional moment conditions E[g,(v)] = 0 to E[g}(y)] = 0, we have an optimal
GMME 4, using both sets of moment conditions. Then the moment conditions E[g, (7)] = 0 are redundant
given E[gX(v)] = 0 if the asymptotic variances of 4% and 4, are the same. Let V;* = nE[g*(v0)gX (10)],
Vo1 = nE[gn(70)g2 (10)], G = E %ﬂ(ﬁm) and G, = E 8957,570). The following two lemmas from Breusch

et al. (1999) give conditions for moment redundancy.

Lemma 2. The following statements are equivalent: (a) E[gn()] = 0 is redundant given Elg}(v)] = 0; (b)
Gy = Va1 Vi 1GE; and (c) there exists a matriz T such that G = VT and G,, = V,, 1 T.

Lemma 3. Let the set of moment conditions to be considered be Elgn(7)] = E[91,,(7), 95, (7), 95,(7)] = 0,
or simply g = (91,95, 95)" . Then (g4, g5)" is redundant given g1 if and only if g2 is redundant given g1 and
gs s redundant given g .

Proof of Proposition 8. To show that 4 is the best GMME within the class of GMMEs with linear
and quadratic moments, we prove that the moment condition E[g, (7)] = 0, where g, (v) is a set of arbitrary
linear and quadratic moments in (12), is redundant given the moment conditions E[g*(v)] = 0. By Lemmas

2 and 3, it is sufficient to show that there exists a matrix T such that G, = Eaggifﬁm) = Vp,21T and

1 4,7, % 4 * / *
, soqwhw  psw, F o [Wow 0
Gy, = ViT, where V;, 21 = nE(gn(70)g5 (70)) = = 270 l" " nd=mn w nd~nd . with
psk,wt, o3F.F 0 0
wp, = (vec(Pgy),. .. 7Vec(PTf_’kp)), wk = (vec(Px), ... 7V€C(P:;;sk*+4))7 Wng = (vecp(Pp1), ..., vecp(Pp,)) and
wna = (veep(Py1), .-, veep (P p«44)), by Lemma A.2 in the supplementary file.

36



-1
Let P*, = Pr, — MP;Q OB pr P = M, Pi, = Pr ., forl=1,...,k* and F}, =

(na—1) (na—1)—n3 "~ "3
2
(mn 17)1 By — (n4j713)7n§ Frg (21 e™Mn W, X, B0) — 2”+;73UF*4 If e™Mn X, does not contain an intercept
—1 * 2 * T n Y * o * —1 *
term, let £ = (774731)7775 Fr — (nrnf%n Fra(ln,e™Mn X r); otherwise, let F, = (njjT?ﬁF"l (Ijx, Oe 1)+

ﬁc(m)ﬂ%e;k WF;?)( Il e™Mn X)) where ey; is the jth unit vector in R¥. Then

(N (Prnen(7), Prnen () Piien (V) -+, Phppeen (7)) = €, (N(Prien(), -+ Py e 1an (7)) AP,

where
_(m=3)-n3 oi'ms
U —Go— “wn-m 0 0
Ap=10 0 0 10
0 0 0 0 I
If ¢"oMn X, does not contain an intercept term, (Fy,, Fj5,,) = (Fyiy, Fyig, Fris, Friy) Ap1, where
na—1 _ 3 1y oToMs, ___200m3 _
Al = 0 (n4—41)—n§ (n4—13)—17§ (ln €™ WX fo) (n4—§))in§
;3 Ly roMn v ’
774 1 m 7Lk 0 _(nrls)*n%(ﬁl;le X5 0
otherwise, (Fyy,,, F3,) = (Fy1, Fras Frgy Fy) Ara, where
_ma—l My (1p gmoM, ___200m3 _
fg = 0 (?74—41)—173 (na— 13) n3 ( L™ W X5 o) (m—i))in%
1747211__1”% (Ik.*70k.*><1) 0 ﬁc(’ro)ekk — erﬁ(ﬁl{neﬂ)Man)/ 0
Ap 0 . . ] Ap 0
Let Aprp = if emMn X,  does not contain an intercept term and App =
0 AFl 0 AFQ

otherwise. Then g% (Y)Apr = €,(V)(Pinen(V): Prnn(V): Biurn(V), - s Bhpeen(7)s (Fis Fj,))- Let

09 0’ 0 0 (0627 0)
Ar=10 o052 0 (0,0) :
0 0 b (0,—0y%0)

-3
where b' = (b},...,b.) with b; = %e;l. Define T'= AppAp. We shall show that G,, =V, 21T and
3

Gy, = V)T for this T.
Let J,, = I,,— %lnl; and P, be any nxn matrix with trace zero. The following identities are useful to show

the desired results: (a) vecp(P,) = > vecp (W,,) — %J e™Mn W, X, 80; (b) veep(Pj,;) =

2
(na—1)—n3 (na—1)

JpeToMn X (c) Zf,l VeCD(PEnl)e%l = Jpe™Mu X, (d) 03F%, + psveep(Pr,) = oge™MiW, X, Bo; (e)
Fg, — WZz Ly veep (Phy)ely = €M Xy () veep! (Pa)Fj, = Gy veen! (Po)e™ M Xo; (g)
ps veen' (Pp) Y, + oatr(PSP:) + (ua — 308) veep/ (Py) veep (Pr,,) = og tr(PSW,,).

n- an
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Since g3 (1)Apr = ey(7) (Panen(7): Prnen(r): Pinrn (Vs - -+ P (7). Fins F,) a5 shown above and

Pg,,’s are diagonal matrices, we have

4,1 * 4, .7 * 4,7 * / * *
1 OoWn VeC(Pan) OoWn VeC(PTn) OOwndswndﬁ :u3wnd(Fom’ Fﬁn)

Va21Apr = Elgn(70) (95, (v0)APr)] = -~
psFy veep(Py,) psFyveen(Pr,)  psFhwhys o (Fay, F5,)

™

. (pa — 30§) [ wnaveen(Pan)  wpgveen(Pr,)  wygwrigs 0 7
" 0 0 0 0

where wy 5 = (vecp(Pj,), ..., vecp(Pj,;+)) and wnas = (vecp(Pyy),...,vecp(Fy ;). The V01T =
(Va21App)Ar is a 2 x 3 block matrix. By (g), the (1,1)th block of V;, 21T is +08w/, vec(W,); the (1,2)th
block is L 08w/, vec(M,); by (c) and (f), the (1, 3)th block is 0; by (d), the (2, 1)th block is 1 ) e™Mn W, X, Bo;
the (2,2)th block is 0; by (e), the (2,3)th block is =L F/e™M» X, Thus V,, 21T = G,,.

Furthermore, as g*(v) is a special case of g,(y), G* = V*T. Then A* = GX*V*1G* = G¥'T =
(G;';IAPF)AT =E %WAT, which has the explicit expression in (15) by some computation. The

asymptotic distribution of 4;; follows by Proposition 6. O
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