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Abstract. EnergeTIC is a recent industrial research project carried out in Greno-
ble on optimising energy consumption in data centres. We study the problem
formulation proposed by EnergeTIC. The problem focuses on the allocation of
virtual machines to servers with time-variable resource demands in data centres
in order to minimise energy costs while ensuring service quality. We present a
scalable constraint programming-based large neighbourhood search (CP-LNS)
method to solving this challenging problem. We present empirical results that
demonstrate that the industrial benchmarks can be solved to near optimality us-
ing our approach. Our CP-LNS method provides a fast and practical approach for
finding high quality solutions for lowering electricity costs in data centres.

1 Introduction

Data centres are a critical and ubiquitous resource for providing infrastructure for bank-
ing, Internet and electronic commerce. They use enormous amounts of electricity, and
this demand is expected to increase in the future. For example, a report by the EU
Stand-by Initiative stated that in 2007 Western European data centres consumed 56
Tera-Watt Hours (TWh) of power, which is expected to almost double to 104 TWh per
year by 2020.3 Nevertheless, as reported by the consulting firm McKinsey, only 6-12%
of electricity used by data centres can be attributed to the performance of productive
computation [7]. Therefore, one of the optimisation challenges in the domain of data
centres is to keep servers well utilised so that energy costs can be reduced.

Many data centres have the infrastructure in place for load migration. There are
several reasons for migrating the load of one or more virtual applications from their
current servers to different ones. For example, if the load on a server is very high,
or if the server is about to shut down, then one might want to move some or all the
virtual machines from that server to others. Also, if there is a server where the energy
cost per unit of computation is cheaper, then one might want to reassign some virtual
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applications to that server so that the overall cost of energy consumption is reduced. In
general, the challenge is to consolidate machine workload intelligently to ensure that
servers are well utilised so that energy costs can be reduced.

In this paper we describe a constraint optimisation model for energy-cost aware
data centre assignment systems which allocates virtual machines with time-variable de-
mands to servers where the energy cost per unit of computation can vary between differ-
ent locations. The problem we consider is defined by a set of servers and a set of virtual
applications to be run on those servers over a given operating horizon. Each server is
associated with a set of available resources, e.g. CPU, RAM, DISK etc. Each virtual
application is associated with an optional initial server on which it is running, and a set
of required resource values, which might be different over different time slots in our
operating horizon. The solution of the problem is an assignment of virtual machines to
servers at each time-period which respects a set of hard constraints. The objective is
to take advantage of differences in energy costs across the servers, the requirements of
virtual applications, the transition costs of switching the states of servers from ON to
STANDBY and vice-versa, and by reassigning virtual applications to servers within a
given data centre.

The remainder of the paper is organised as follows. First we describe the overall
project and in particular energy and demand models to give the context of our work on
solving the optimisation problem addressed in this paper. We then describe the formal
definition of the problem before presenting a constraint optimisation formulation of it.
The size of the instances of this problem can be prohibitively large for standard optimi-
sation techniques, but needs to be solved quickly. Therefore, the challenge is to search
for a good quality solution of a very large problem instance in a very limited timeframe.
We present a constraint programming-based large neighbourhood search (CP-LNS) for
solving this problem which scales significantly beyond commercial optimisation tools
such as CPLEX.4 The key idea behind CP-LNS is to repeatedly consider a sub-problem
of the overall problem and re-optimise it using constraint programming. We present
a systematic empirical evaluation of our CP-LNS approach. Empirical results obtained
on real benchmarks demonstrate the scalability of our CP-LNS approach, and show that
it provides a practical basis for solving this very important and challenging real-world
problem.

2 Related Work

A variety of studies on allocating data and workload amongst multiple servers have been
reported [9,5]. A mixed integer programming approach to dynamically configuring the
consolidation of multiple services or applications in a virtualised server cluster has been
proposed [11]. That work both focuses on power efficiency, and considers the costs of
turning on/off the servers. However, it is assuming homogeneous workloads, e.g. web
searches, where there is little uncertainty around the duration of tasks or the current cost
of energy.

Constraint programming based approaches have also been used previously to solve
some related problems [6,3,8]. In [3] a data centre is viewed as a dynamic bin packing

4 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/



system where servers host applications with varying resource requirements and varying
relative placement constraints. However, their work can be seen as a reactive approach
where the servers are reconfigured when the current configuration is no longer viable.
Therefore, their objective is to minimise the transition time for migrations of virtual
machines, whereas we are concerned with minimising the energy consumption, and we
plan the migrations for virtual machines in advance so that the configuration always
remain viable.

A high-availability property for a virtual machine is defined in [8]. When a vir-
tual machine is marked as k-resilient, as long as there are up to k server failures, it is
guaranteed that it can be relocated to a non-failed host without relocating other virtual
machines. The property of k-resiliency relies on static resource requirements of virtual
machines whereas we are focusing on time variable resource demands.

Although in [6] an energy-aware framework is proposed for the reallocation of vir-
tual machines in a data centre to reduce the power consumption, the goal is to find the
best possible placement of virtual machines for a given time-period subject to service
level agreements.

3 Energy and Demand Models

The problem studied in this paper comes from the EnergeTIC project which is accred-
ited by the French government (FUI) [2].5 EnergeTIC brought together four companies
(Bull, Business & Decision Eolas, Schneider Electric, UXP) and several academic part-
ners (G2Elab, G-SCOP, LIG). Its main objective is to control the energy consumption
of a data centre and ensure that it is consistent with application needs, economic con-
straints and service level agreements. It focused on how to reduce energy cost by taking
into account variable cpu requirements of the clients’ applications, the wide range of IT
equipment and virtualisation techniques. A tool was implemented and deployed in prac-
tice in a data centre designed by Eolas. The system developed by EnergeTIC is based
on a model of the energy consumption of the various components in a data centre, a
prediction system to forecast the demand and an optimisation component computing
the placement of virtual machines onto servers. In the following we describe the energy
and demand models of the system and in the remaining part of the paper we focus on
the optimisation part.

3.1 Energy Model

Green data centres appeared as early as 2000 and focused on limiting the amount of
energy that was not used for running the client’s applications. The Power Usage Effec-
tiveness (PUE) is a key indicator introduced by the Green Grid consortium [1] which
measures the ratio between the total energy entering the data centre and the energy used
by its IT systems (servers, networks, etc.). The power consumed by support equipment
and infrastructure is regarded as an overhead according to this metric. A PUE value of 1

5 Minalogic EnergeTIC is a global competitive cluster located in Grenoble France and fosters
research-led innovation in intelligent miniaturised products and solutions for industry.
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Fig. 1. Energy cost (Wh) vs CPU Usage (GHz) for 3 servers.

is a perfect efficiency. This indicator has been used to measure progress over the years.
A value of 2.5 was common a few years ago whereas the current average in industry is
around 1.7 with the most efficient data centres reaching 1.2 to 1.4.

The need to refine such metrics arose quickly, especially when considering that not
all electrical power delivered by the IT equipment is transformed into value-adding
computation. The Green Grid proposed a very fine-grained indicator called DCP (Data
Center Productivity) for that purpose [1]. This metric, although very accurate, is not
used in practice because of its complexity. The EnergeTIC project introduced two sim-
ple indicators related to usage efficiency. The first aims at checking the productive use
of active resources while the second focuses on the energy consumed. This last en-
ergy indicator is defined as the ratio between the total energy consumed and the energy
specifically used to run clients applications.

Fig. 2. Linear model of energy (courtesy to [2]).

The energy indicator relies on a model of the energy consumption of each piece of
equipment, e.g. ventilation units, power supplies, heating/cooling systems, etc., as well
as a wide range of IT equipment such as servers, storage, etc. The characterisation of
the energy consumption of each piece of IT equipment was performed on a cooled rack
provided by Bull which was instrumented with sensors. The rack contained a dozen of
heterogeneous servers based on three types of processors: quadri, bi and mono. Dif-
ferent energy behaviour were used in various scenarios to perform the measurements.
As an example, the energy cost of the power consumption of three different servers at
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Fig. 3. Variable demands – Example 1.
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Fig. 4. Variable demands – Example 2.

different cpu loads taken from one of the problem instances is shown in Figure 1. Re-
ality is often quite complex as performance also depends on other parameters such as
the room temperature or the shared resources where contention can occur. However, a
linear model was found accurate enough to model energy consumption of the servers.
The model was computed by linear regression over the measures (see Figure 2). The
measure of the cpu requirements of an application is more complex as it would need
to be done on each possible server type. Therefore, in practice, a single measure was
performed on a reference server [2].

3.2 Demand Model

The demands, i.e. the resource requirements, of the virtual machines in the benchmarks
used in the experimental section originate from the Green Data Centre of Business &
Decision Eolas located in Grenoble which started in 2011. It was used to study and
validate the system operationally. It is a Tier IV centre instrumented with thousands of
sensors spread over the site to monitor its energy consumption (IT, Security, monitoring,
inverters, power supplies, etc.) and claims a PUE between 1.28 and 1.34. It deals with
an heterogeneous demand: web applications, e-commerce, e-business, e-administration,
etc. The data sets used to make an offline evaluation of the optimiser are obtained from
historical data from this data centre. Two examples showing variable requirements of
CPU usage (GHz) over 12 and 24 time-periods for multiple virtual machines taken from
two problem instances is shown in Figures 3 and 4. An online evaluation of the opti-
miser was also performed in practice on a “sandbox” platform that reproduces the real
environment with only three servers. Real applications were copied from the produc-
tion environment to this restricted environment where the decisions proposed by the
optimiser were implemented and evaluated.

4 Problem Description

We now describe the optimisation problem provided by EnergeTIC. The problem is to
place a set of virtual machines on a set of servers over multiple time-periods in order



to minimise the energy cost of the data centre. The cpu usage of a virtual machine
changes over time. At each time-period, we must ensure that the virtual machines have
enough resources (cpu and memory). Let V = {v1, . . . , vn} be the set of virtual machines,
S = {s1, . . . , sm} be the set of servers and T = {p1, . . . , ph} be the set of time-periods.

Virtual Machines. A virtual machine vi is characterised by a memory consumption Mi

independent of the time-period, a set Ai ⊆ S of allowed servers where it can be hosted,
and a potential initial server (for time-period p0) denoted by Iservi (which might be
unknown). A virtual machine vi has a cpu consumption Uit at time-period t.

Servers. A server s j can be in two different states: ON=1 or STBY=0 (stand-by). It
is characterised by: a cpu capacity Umax j; a memory capacity Mmax j; a fixed cost of
usage Emin j (in Watt) when the server is ON; a unit cost τ j per unit of cpu usage; a basic
cpu consumption Ca j when it is ON to run the operating system and other permanent
tasks; an energy consumption Esby j when it is in state STBY; an energy consumption
Esta j to change the state of the server from STBY to ON; an energy consumption Esto j

to change the state of the server from ON to STBY; a maximum number Nmax j of
virtual machines that can be allocated to it at any time-period; a set of periods P j ⊆ T
during which s j is forced to be ON; and a potential initial state Istate j ∈ {0, 1}.

If a server is ON, its minimum cost is Emin j + τ jCa j. Therefore, for the sake of
simplicity, to compute the fixed energy cost of an active server we include the basic
consumption Ca j in Emin j and denote that by Emin

′

j = Emin j + τ jCa j. We also shift
the cpu capacity of a server and denote that by Umax

′

j = Umax j −Ca j.

Migrations. The maximum number of changes of servers among all virtual machines
from one time-period to the next is denoted by N and the cost of a migration by Cmig.

This problem can be seen as a series of packing problems (one per time-period) in
two dimensions (cpu and memory) that are coupled by the migration constraints and the
cost for changing the state of a server. Figure 5 gives an overview of the problem. This
example has four servers, each shown by a rectangle whose dimensions are representing
the cpu and memory capacities of that server. A virtual machine is a small rectangle
whose height (its cpu) varies from one period to the next. Therefore, the sum of the
heights (cpu) must fit within the capacity (height of the rectangle), and similarly for
the sum of the widths (memory) must fit within the available capacity (width of the
rectangle). In this scenario, the cpu needs of some virtual machines decreases allowing
us to find better packings and turn off two servers at t + 1.

5 Problem Formulation: Constraint Optimisation Model

We present the constraint optimisation model of the problem.

5.1 Variables

– Let xit ∈ Ai be the main integer decision variables that denote the server on which
virtual machine vi is running at time-period t. The constraint that a virtual machine



Fig. 5. A solution over three time-periods. Virtual machines migrate to turn off two servers at
t + 1.

has to be on a server at any time and the forbidden servers for each machine are
trivially enforced through the assignment of x to a value from its domain.

– Let cpu jt ∈ [0,Umax
′

j] be the non-negative continuous variable that measures the
cpu consumption of server s j at period t.

– Let mem jt ∈ [0,Mmax j] be the non-negative continuous variable that measures the
memory consumption of server s j at period t.

– Let nvm jt ∈ [0,Nmax j] be an integer variable that denotes the number of virtual
machines running on server s j at time t.

– Let cst ∈ [0,N] be an integer variable that denotes the number of virtual machines
that change servers from time-period t − 1 to time-period t.

– Let o jt ∈ {0, 1} be a Boolean variable that is set to 1 if s j is ON at time t, 0 otherwise.

The initial state is denoted by t = 0. For each server s j ∈ S and virtual machine vi ∈ V
variables o j0 and xio are also created.

5.2 Constraints

Capacity Constraint. The following constraints link the cpu and memory loads of a
server to the virtual machines assigned to it.

∀s j∈S∀pt∈T : cpu jt =
∑

vi∈V∧xit= j

Uit (1)

∀s j∈S∀pt∈T : mem jt =
∑

vi∈V∧xit= j

Mi (2)

The constraint on the usage for cpu and memory on a server in any time-period must not
exceed their capacities is trivially enforced through the upper bounds of the domains of
cpu jt and mem jt, respectively.

Cardinality Constraint. The maximum number of virtual machines that can run on a
server in any time-period is constrained:

∀s j∈S∀pt∈T : nvm jt = |{vi|vi ∈ V ∧ xit = j}| (3)



Migration Constraint. The number of server changes over all virtual machines in any
time-period is constrained:

∀pt∈T : cst = |{vi|vi ∈ V ∧ xit−1 , xit}| (4)

ON Constraint. A server is ON if it is hosting at least one virtual machine:

∀vi∈V∀pt∈T : xit = j =⇒ o j = 1 (5)

The following states the time-periods where a server has to be ON:

∀s j∈S∀pt∈P j : o jt = 1 (6)

When a server s j is ON at two time-periods say ta and tc (where tc > ta + 1) it is better
to leave it ON in between when it would cost more to switch it to STBY. The cost of
putting s j in ON state would be (tc− ta)×Emin

′

j and the cost of putting s j in STBY state

would be (tc−ta)×Esby j+Esta j+Esto j. Thus, if tc−ta < D where D =

⌈
Esta j+Esto j

(Emin′j−Esby j)

⌉
then

it is better to set o jtb = 1 for all tb such that tc < tb < ta. In other words in an optimal
solution, any sequence of 0 values in the vector of variables [o j1, . . . , o jh] should be
of length at least D. If not the cost can be improved by turning ON the corresponding
server in the corresponding time-periods. This dominance rule can be encoded using
the following set of constraints:

∀ta∈T∀ta+1<tc∈T<ta+D∀ta<tb<tc : o jta = 1 ∧ o jtc = 1 =⇒ o jtb = 1 (7)

Similarly, for each server s j we need to consider two special cases: the first time-period
when the server s j is ON and the last time-period when the server s j is ON. If tb is the
first time-period when a server s j is ON (where tb > 1) it is better to leave it ON in all

the time-periods before tb if tb < D f where D f = 1 +

⌈
Esta j

(Emin′j−Esby j)

⌉
.

∀1<tb∈T<D f∀1≤ta<tb : o jtb = 1 =⇒ o jta = 1 (8)

If ta is the last time-period when a server s j is ON (where ta < h) it is better to leave it

ON in all the time-periods after ta if ta > Dl where Dl = h −
⌈

Esto j

(Emin′j−Esby j)

⌉
.

∀Dl<ta∈T<h∀ta≤tb≤h : o jta = 1 =⇒ o jtb = 1 (9)

Initial State. If the initial configuration is given then the constraints o j0 = Istate j and
xi,0 = Iservi are enforced for each s j ∈ S and vi ∈ V respectively. Otherwise, the
constraints o j0 = o j1 and xi0 = xi1 are enforced.

5.3 Objective Function

The objective is to minimise the sum of the following costs:



Migration Cost. The total migration cost is the total number of server changes over all
virtual machines over all time-periods multiplied by the cost of migration:

Cmig

∑
t∈T

cst


Transition Cost. The total transition cost is the sum of all the transitions of all servers
from STBY state at time-period t − 1 to ON state at time-period t, and vice-versa over
all time-periods: ∑

s j∈S

 ∑
t∈T∧ o jt−1<o jt

Esta j +
∑

t∈T∧ o jt−1>o jt

Esto j


CPU Usage Cost. The total CPU usage cost is the sum of all CPU costs incurred over
all time-periods for all servers:

∑
s j∈S

 ∑
pt∈T∧ o jt=0

Esby j +
∑

pt∈T∧ o jt=1

τ jcpu jt + Emin
′

j


6 Solution Method: Large Neighbourhood Search

An instance of the energy minimisation problem of data centre as described in the pre-
vious section can be very large. As it is an online problem, the challenge is to solve a
very large instance in a very limited time. Constraint-based systematic search [12] has
shown strong performance, but it does not scale well in terms of time and space for
very large instances. Local Search (LS) and Large Neighbourhood Search (LNS) meth-
ods have shown remarkable performance on very large instances. A LS method moves
from a solution to another by performing a small number of changes (and therefore
small improvement) at each iteration, while a LNS method can allow a large number of
changes (and possibly large improvement) at each iteration. A meta-heuristic is gener-
ally used with LS to escape from local minima, but it is generally unnecessary for LNS.
LNS attempts to combine the power of systematic search with the scalability of local
search.

In this section we describe a LNS approach for solving the problem formulated in
the previous section. The overall solution method is shown in Figure 6. We first find
the initial assignment of virtual machines to servers for all time-periods. We maintain
a current assignment, which is initialised with the initial solution. At each iteration,
we select a subset of the pairs of virtual machines and time-periods to be reassigned
and, accordingly, create the sub-problem. We solve the resulting sub-problem with a
threshold on the number of failures, and keep the best solution found as our new current
assignment. The search stops when the total elapsed time is greater than the given time
threshold. Notice that the decision variables can be restricted to the x variables as once
an assignment of the virtual machines to the servers is known at all time-periods, the
rest of the variables are assigned by propagation and the cost function is fully known.
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Create Subproblem
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Fig. 6. Principle of the LNS approach.

6.1 Finding Initial Feasible Solution

The pseudo-code for finding an initial feasible solution is depicted in Algorithm 1.
The algorithm requires problem P as input which is composed of Constraints (1)–(9)
without any objective function as the task is to find any feasible solution. In the first
phase (Lines 3–10) it iterates over a set of unassigned decision variables, denoted by
uvars, and tries to extend the current partial solution denoted by sol. If it succeeds
then the current partial solution is updated, otherwise the set of variables, denoted by
f vars, that failed to find any assignment is updated. In the second phase (Lines 10–21)
it first resets the set of unassigned variables to the set of failed variables. For each failed
virtual machine a server is selected and, until the assignment of the selected server to the
selected virtual machine is consistent, it finds a constraint C that has failed, relaxes the
current partial solution by removing a decision variable involved in the failed constraint,
and updates the set of unassigned decision variables. The algorithm terminates when all
the virtual machines over all time-periods are assigned servers, otherwise it repeatedly
executes the first phase followed by the second phase.

6.2 Subproblem Selection

A key observation was that selecting a set of virtual machines from only some servers
for reassignment works better than selecting them from many servers. Therefore, we
first select a time-period tb, and then select a number of servers, denoted by ks, and then
from each selected server we select a number of virtual machines that are assigned to
them for the time-period tb. The number of virtual machines that we want to reassign
from each selected server is bounded by an integer parameter km. Each selected virtual
machine that we want to reassign in time-period tb is also selected from its servers for
the time-periods ranging between ta and tc such that ta ≤ tb ≤ tc and tc − ta is bounded
by an integer parameter kt. Notice that a virtual machine may not be necessarily running
on the same server for all the time-periods between ta and tc inclusive. Initially ks is set
to 1, it is incremented as search progresses, and it is re-initialised to 1 when it exceeds
10. Similarly kt is initially set to 1, it is incremented as search progresses, and it is re-
initialised to 1 when it exceeds the maximum number of time-periods h. Depending on



Algorithm 1 findInitialFeasibleSolution(P)
1: uvars← {xit |vi ∈ V ∧ pt ∈ T }; sol← ∅; f vars← ∅;
2: while uvars , ∅ do
3: while uvars , ∅ do
4: select & remove any xit from uvars;
5: if ∃s j ∈ Ai s.t. P ∧ sol ∧ (xit = j) is satisfiable then
6: sol← sol ∪ {(xit = j)}
7: else
8: f vars← f vars ∪ {xit}

9: end if
10: end while
11: uvars← f vars
12: while f vars , ∅ do
13: select & remove any xit from f vars;
14: select any s j from Ai

15: while P ∧ sol ∧ (xit = j) is not satisfaible do
16: determine any constraint C ∈ P that is not satisfiable
17: select any xi′t′ involved in C such that xi′t′ ∈ sol
18: sol← sol − {(xi′t′ = j′)}
19: uvars← uvars ∪ {xi′t′ }

20: end while
21: end while
22: end while

the value of ks and kt a fixed value of km is used. The total number of decision variables
selected for reassignment for a sub-problem is bound by ks × km × kt.

6.3 Create and Re-optimise Subproblem

The conventional approach for creating a sub-problem would be to reset all the domains
of the variables, reassign the servers to the virtual machines (for the appropriate time-
periods) which are not chosen for reassignment, and perform constraint propagation
before searching the resulting sub-problem. The reason for doing this is that existing
solvers are typically designed for systematic backtracking search. However, in LNS
one moves from one partial assignment to another in a non-systematic way and unfor-
tunately no support is provided for updating the state of the problem domains incre-
mentally. This way of creating a sub-problem can be a bottleneck for solving very large
problems in a very limited time especially if the size of the sub-problem is considerably
smaller than the size of the full problem. The reason is that the number of iterations
that one would like to perform will increase as the size of the problem increases in
which case the time spent in creating the subproblems will also increase. We therefore
use the technique described in [10] for replenishing the domains via incremental re-
computation. When a set of decisions are undone, the constraints are used explicitly to
determine which removed values can be added back to the current domains. The ad-
vantage is that it is independent on the order in which the assignments are undone and,
therefore, it can be very efficient for creating subproblems.



We use systematic branch and bound search with a threshold on the number of
failures for solving a given sub-problem. At each node of the search tree constraint
propagation is performed to reduce the search space. We use a random variable ordering
heuristic for selecting decision variables. The value ordering heuristic for selecting a
server for a given pair of virtual machine and time-period is based on the minimum
increment in the objective cost, while ties are broken randomly.

7 Empirical Results

In this section we present empirical results to demonstrate the effectiveness of our large
neighbourhood search approach for the constraint optimisation problem as described in
Sections 4 and 5.

Approaches. We compare three approaches: the MIP formulation of the problem, the
Temporal Greedy approach (TG), and large neighbourhood search (LNS) for the COP
model. The detailed presentation of the Mixed Integer linear Programming (MIP) for-
mulation is omitted due to lack of space. The Temporal Greedy (TG) is the currently
employed approach in the platform of the industrial partners. It proceeds by decompos-
ing time and is, therefore, more scalable than the MIP approach. It greedily solves the
problem period by period using the MIP model restricted to one period (enforcing the
known assignment of the previous period). Each time-period is used as a starting period
as long as there is time left and, therefore, if required the assignment is extended in both
directions towards the beginning and towards the end. In order to compare different up-
per bounds, we also computed lower bounds (LB) based on column generation with a 2
hour time-limit. The details of the lower bound computation is presented in [4].

Benchmarks. The industry partners provided 74 problem instances, where the max-
imum number of virtual machines, servers, and time-periods are 242, 20 and 287 re-
spectively. All the instances are available online.6 We observed on this benchmark that
the cpu constraint is the tight one, as opposed to the memory constraint which is al-
ways satisfiable. Based on the original instances we also generated larger instances by
just duplicating each virtual machine and each server. Out of 74 original instances, 2
instances then became unsatisfiable because of the migration constraints that restrict
the movement of virtual machines to different servers over different time-periods. The
result is that the increase in the total cpu requirements of the virtual machines running
on a server for one or more time-periods exceeds the maximum capacity of the server,
and hence the problem becomes unsatisfiable.

Evaluation. The time-limit is 600 seconds unless otherwise stated. If an approach fails
to solve an instance within the time-limit then 600 is recorded as its solution time.
All experiments were carried out on a Dual Quad Core Xeon CPU, running Linux
2.6.25 x64, with 11.76 GB of RAM, and 2.66 GHz processor speed. The MIP solver
used is CPLEX 12.5 with default parameters. For the LNS approach we extended the

6 http://www.4c.ucc.ie/˜dm6/energetic.tar.gz



solver used for the machine reassignment problem of ROADEF.7 All algorithms were
implemented in C.

For each problem instance LNS was allowed to run for 600 seconds. Therefore,
we report the cpu time (denoted cpu) for only MIP and TG as in some cases they
were terminated before the time-limit. For each approach we also report the number
of instances (denoted by #nu) for which an approach failed to find a feasible solution.
The gaps for upper bounds reported by different approaches are computed as 100×(ub−lb)

lb
respectively. To compute mean/median/max values of gaps or time of a given approach,
we exclude the instances where it fails to return any feasible solution.

Table 1. Summary of results obtained using MIP, LNS and TG approaches with 600 seconds
time-limit over 74 original instances.

LNS MIP TG
gap gap cpu gap cpu

Mean 0.50 0.03 191.92 7.00 42.50
Median 0 0 2.67 0.05 1.45

Max 4.57 0.72 600 119.35 600
#nu 0 3 1

Original Instances. Table 1 gives an overview of the results by reporting over the
original 74 instances the average/median/max values of the gap to the best known lower
bound, the cpu time, and the number of instances, #nu, where an approach fails to return
any results within the time-limit. Out of 74 instances, MIP is able to find solutions for
71 instances within the time-limit out of which 54 are proved optimal. It thus failed
for 3 instances where the space requirement for CPLEX exceeded 11GB. Notice that
the largest instance in the original set has 1,389,080 decision variables. Clearly, MIP-
based systematic search cannot scale in terms of time and memory. TG is able to find
solutions for 73 instances (so it failed on one instance), out of which 26 are optimal.
Its quality deteriorates severely when one should anticipate expensive peaks in demand
by appropriately placing virtual machines several time-periods before the peak. This
can be seen in Table 2 where the maximum gap is 119.35%. LNS succeeds in finding
feasible solutions for all instances within 2 seconds, on average, but it was terminated
after 600 seconds and for 41 instances it found optimal solutions. Its average gap to the
best known lower bound is less than 0.5% showing that LNS scales very well both in
quality and problem size. Table 2 also gives the results for a few hard original instances.

Larger Instances. For larger instances MIP failed to find solutions for 7 instances
while TG failed to find solutions for 3 instances out of 72 satisfiable instances as shown
in Table 3. The increase in the size of the instances has significantly deteriorated the
performances of MIP and TG in terms of time and gap when compared to the original set
of instances. LNS is the only approach that managed to find solutions for all instances.

7 http://www.sourceforge.net/projects/machinereassign/



Table 2. Comparison of upper bounds of the various approaches with 600 seconds time-limit on
a few specific instances. The first part corresponds to the original instances while the second part
corresponds to the generated instances.

LB LNS MIP TG
n m h lb cpu ub ub cpu ub cpu

32 3 96 25404.7 14.8 25586.7 25575.7 600 36049.7 112.3
36 3 287 126730.1 248.0 127018.6 127654.4 600 127036.6 600

242 20 24 38614.2 600 40362.5 - 600 43027.6 14.2
242 20 287 431703.9 600 439926.2 - 600 - 600
242 20 24 36890.8 56.1 37701.6 - 600 36897.4 600

90 7 8 12656.82 0.1 11728.2 11435.3 600 11435.5 1.5
64 6 15 7695.6 64.9 8703.6 9657.6 600 10233.6 5.74
64 6 96 48169.3 470.3 53917.3 - 600 66407.4 84.24

484 40 24 74098.1 600 86748.8 - 600 92006.2 63.5
484 40 287 848619.4 1200 893463.6 - 600 - 600
136 10 16 15529.3 74.72 15519.3 - 600 15272.3 70.52
484 40 24 73781.5 241.32 76240.9 - 600 73791.44 600

60 6 15 9857.76 104.82 11302 - 600 13407.7 4.18
72 6 287 232222.9 1200 240679 565145 600 250104.1 600

108 14 8 9094.86 164.33 9555.49 9720.67 600 - 600
72 10 16 18337.4 223.4 18416.5 35911.7 600 18556.21 2.57
60 12 24 25484.5 8.29 25535.3 62520.2 600 25524.59 5.85
66 6 1 30558.94 0.1 49013.31 30558.94 0.1 30558.94 0.1

180 14 8 22864.6 364.42 26427.47 - 600 22971.3 32.47

The maximum gap for LNS is for an instance for which both MIP and TG are able to
solve it optimally. This instance has only one time-period but the packing part of the
problem is harder because of the migration constraints. We note that when the number
of time-periods is 1 both MIP and TG are equivalent. As we use a random variable
selection heuristic for LNS, it could not perform as well as the systematic and complete
search of MIP/TG on that particular instance. Table 2 also gives the results for a few
larger instances.

Table 3. Summary of results obtained using MIP, LNS and TG approaches with 600 second time-
limit over 72 instances which are generated by duplicating each virtual machine and each server
of each original instance.

LNS MIP TG
gap gap cpu gap cpu

Mean 2.86 10.95 499 9.71 48.15
Median 0.20 0.08 600 0.18 5.59

Max 60.38 145.32 600 120.45 169.16
#nu 0 7 3



Any-time Behavior. Having seen the good performance of LNS we also investigated the
impact of different time-limits on LNS. The time-out limit of 600 seconds was defined
by our industrial partners. We also solved all the 146 instances with 300 and 150 second
time-outs. The results are summarised in Table 4. These results suggest that LNS has a
very good any-time behaviour and it can find high quality solutions very quickly. When
the time-limit is 150 seconds, it failed to find a solution for only 1 instance which has
5,556,320 decision variables. For this instance it requires at least 200 seconds to find
an initial feasible solution and the majority of that effort is spent in the first phase of
Algorithm 1, where it tries each choice at least once.

Table 4. Comparison of LNS over 146 instances for 600, 300 and 150 second time-limits.

600s 300s 150s
Mean Gap 1.669 1.725 1.711

Median Gap 0.089 0.093 0.095
#nu 0 0 1

8 Conclusion

We presented a constraint optimisation formulation of the energy minimisation prob-
lem for data centres. We developed a tool that uses constraint programming and large
neighbourhood search for solving large problem instances in very limited time. Empir-
ical results on real benchmarks assert that our LNS approach is scalable, thus suited for
solving large instances. The presented approach has good anytime behaviour which is
important when solutions must be reported subject to a time limit. Currently, we are not
taking advantage of multi-cores capabilities that might be available while solving the
problem. We plan to explore this opportunty in the future.
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