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Abstract

This paper proposes a navigation technique for travel-

ing inside a real-scale 3D model based on human gesture

analysis. In the first step, a simple threshold is used as

a criterion to analyze gestures. In the next step, a com-

plex criterion will be imposed to the analysis to improve

the navigation technique. Walking is a periodic signal and

moving feet up and down is a part which is repeated. A

mother wavelet is allocated to the selected pattern. Then

the position of the pattern is recognized by applying Multi

Resolution Analysis (MRAs). The movement command is

generated and sent to the graphic render (as a movement

command). Analytical results show a very high precision

performance in the presence of noise, scale variation and

superposition of other signals. Practical experiments also

verify the same promising results.

1. Introduction

Designing efficient interaction and navigation for trav-

eling inside a real-scale (scale one) 3D model, so called

Immersive Virtual Environment (IVE), has been a research

topic for nearly three decades. Recent innovations in

the field of digital video technology, new generation of

infrared (IR) sensors and measurement instruments have

changed the orientation of human machine interface (HMI)

researches from simple mechanical [7] to wireless [15] and

touch-less [6] devices. Sensors play an important role

in developing this modern end-user HMI in IVEs, espe-

cially when the aim is to develop an interface (interac-

tion/navigation) for a real-time system.

One long-term attempt in HMI has been to develop and

integrate the “natural” means that humans employ to com-

municate with each other into HMI. Human gesture pro-

vides a way to interact with and navigate in real-scale 3D

systems such as virtual reality systems [8] and IVEs [5].

Head detection using markers [16], hand tracking [2], and

locomotion perception [13] are some of the steps that have

been taken to facilitate this matter. Among different vision

sensors, infrared has a great deal of importance due to its

precision in depth estimation.

Infrared cameras in a multiple view configuration can

send out very high precision details about the depth and

the location of the object by means of traveling wave tech-

niques but it is an expensive solution. Besides, the calibra-

tion and the installation of the system is time consuming.

On the contrary, a single IR camera-projector configura-

tion (such as Kinect) is simple to calibrate and extremely

cheap [11, 12]. However, it can acquire data only for ordi-

nary applications which require fairly low resolution and

precision. For high precision applications, either higher

resolution RGB camera needs to be combined with an IR

camera-projector configuration, or post processing should

be applied to the output signal.

Human skeleton detection [9] by using different joints

or pair joints was one of the common way to use human

gestures in HMI design. For example, consecutive up/down

movement of the right and left ankles can be acquired by IR

camera and interpreted as a real-time walking signal. Then

some features of the signal (max, min, etc.) can be extracted

by signal processing approaches to command a 3D system

to move forward/backward and turn to the left/right [20].

The position of the hand and the configuration of the fingers

can be used to interact with a 3D object in an IVE.

Our contribution is to propose and assess a navigation

method for walking inside a scale-one 3D system based

on gait analysis by feature matching and adapting mother

wavelet from a walking pattern. The scale-one 3D system

refers to a virtual reality HMI in which people walk and

their walking gait is used for navigation in an IVE.

The paper is organized as follows: the principle of depth

measurement and the calculation of the object coordinates

will be explained in section 2. Walking signal extraction

and gait interpretation will be introduced in section 3. Hard-

ware and software requirements of the test bench for the de-

velopment and verification will be described in section 4. In

section 5, the principle of multi-resolution analysis will be

summarized. The last section is dedicated to experimental
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results and the performance analysis.

2. Depth signal and object coordinates calcula-

tion using infrared camera

The relation between the distance of an object k to the

sensor relative to a reference plane and the measured dispar-

ity d are shown in Figure 1. A depth coordinate system with

its origin at the focal point of the infrared camera will be es-

tablished to express the 3D coordinates of the object points.

The Z-axis is orthogonal to the image plane towards the ob-

ject, the X-axis perpendicular to the Z-axis, and the Y-axis

orthogonal to X and Z making a right handed coordinate

system. Assume that an object is located in the reference

plane at a distance Z0 and a point on the object is projected

on the image plane of the infrared camera. If the object is

shifted closer to the camera, the new location of the point

on the image plane will be displaced along the X-direction

(disparity d). Substituting D from D/b = (Z0 − Zk) /Z0

(from the similarity of ∆OCL and ∆OMK triangles) into

d/f = D/Zk (from the similarity of ∆HKC and ∆CGA
triangles) and expressing Zk in terms of other variables

yields Zk = Z0/
(

1 + Z0

fb
d
)

, where Zk denotes the dis-

tance (depth) of point k in the object space, b is the base

length between the camera and the projector, f is the fo-

cal length of the infrared camera, D is the displacement of

point k in object space, and d is the observed disparity on

the image plane. The constant parameters Z0, f , and b can

be determined by the camera calibration. The Z coordinate

of a point together with f defines the imaging scale for that

point. The coordinates of each point on the object can then

be calculated from its image coordinates and the scale [19]:

Xk =
Zk

f
(xk − x0 + δx) (1)

Yk =
Zk

f
(yk − y0 + δy) (2)

Where xk and yk are the image coordinates of the point, x0
and y0 are the coordinates of the principal point, and δx and

δy are corrections for lens distortion.

3. Gesture analysis

3.1. Walking signal definition

The movement of a user is limited to a small area in a

multi-projector real-scale 3D system. Therefore, the user

is not free to walk more than few meters. Throughout the

literature when we are talking about walking, it means the

user will stay in a specific coordinate and will walk in place.

When the user is walking in place, the left and right ankles

are moving up and down one after another. If only the mo-

tion of an attached point to the right ankle is captured by

Figure 1. Schematic representation of the depth-disparity relation.

Figure 2. Example of a human walking signal with a) variable, b)

constant steps and distance from the sensor.

Figure 3. Scale variation (movement in the Z-direction) during

walking in a real-scale 3D model.

an IR-camera and the X, Y, and Z coordinates of the point

calculated by Eqs. (1) and (2), the variation signal along

the Y axis (the Y-axis is in accordance with Figure 1) can

be depicted as in Figure 2.b. The signal is called “walking

with a constant step length”. The difference between two

picks shows the step length in Figure 2.b. The user might

move few centimeters along the Z-axis (forward/backward)

due to involuntary movement of the body. Movement in

the Z-direction changes the amplitude of the signal. When



the user is moving involuntarily along the Z-axis, the scale

of the body in the images changes and it makes the same

movement of the ankle look smaller or bigger. The distance

between ankles and the ground is highlighted for four scales

on Figure 3 by a small white line near the user’s ankle. That

is the reason why the amplitude of the signal is changing by

the movements along the Z-axis (indicated in Figure 2.a).

This can be deducted from Eq. (2) as well.

As involuntary movement of the body is controlled by an

autonomous part of the Central Nervous System (CNS) [1],

it is very hard to control this movement, especially when the

user focuses on a navigation task. The movement along the

X-axis has the same effect. Unlike Figure 2.b, the steps have

different lengths in Figure 2.a. Moreover, when the ankle

comes up more, the amplitude of the signal will be bigger

and the length of the step grows. For instance, in Figure 2.a,

around sample 1000, a longer step has been taken.

3.2. Navigation command generation based on
walking signal analysis

The navigation task is constructed either by for-

ward/backward movements and turning to the left/right, or

by the combination of these movements and the itinerary.

It means, to go from point A to C by the way of point B,

we go from point A to B while using only translational (for-

ward/backward) and rotational (left/right) movements, and

then continue from B to C in the same way. Thus, the very

basic navigation task is to go from point A to B by combin-

ing translational and rotational movements. Different meth-

ods are employed to implement a navigation task. In gen-

eral, it can be classified under two generic methods: 1) with

navigation devices (fly-stick, game-pad, Wii mote, etc.), 2)

based on user’s gestures.

In the first approach, a button is allocated to each subtask

(translation and rotation) and the task is implemented by a

function. By pushing each button the associated function is

activated and the task begins. The function will run until

the termination condition is met either by pressing another

button or by checking a variable status.

In the second approach, the user’s gesture is interpreted

and the result is coded into a value. Then, the different val-

ues of the variable are used to initiate or terminate different

tasks. A simple interpretation of the gesture will be intro-

duced here just to make the methodology clear. More com-

plicated analysis will be presented later (section 5). The cur-

rent interpretation uses the threshold as an evaluation crite-

rion. The analysis applies the criteria to the walking signal

to generate a command pulse. The user’s walking signals

are shown in black line in Figure 4. The dot-line presents

an activation threshold (depicted as “Walking signal”, at the

top of Figure 4). The forward function will be activated

if the position of the ankle reaches the threshold level and

will remain active till the ankle comes below this threshold.

During a short period of time, a pulse will be activated. The

length of the pulse is equal to the step length. The pulse ac-

tivates and deactivates forward/backward movements. The

acceleration of the scene movement is adjusted by the av-

erage value of the acceleration signal during the time pulse

is active. In this interpretation, if the user takes steps with

longer lengths, the scene will move more because the pulse

active time is longer. The forward/backward signal comes

from the orientation of the head. Rotation to the left/right is

activated with the hand movement.

Figure 4. Sequence of navigation using gait interpretation.

4. Implementation and test apparatus

A CAVETM [4] system is used to implement and test the

navigation system. This system consists in four walls, two

projectors per wall (one image per eye, totally two images

per face). An infrared based head tracking system (AR-

tracker [21]) is used to find the user location. A custom

platform called PeTRIV was developed to manage the con-

nection between display projectors, infrared cameras and

the networking. The platform uses OpenSceneGraph on the

top of OpenGL to render the 3D model. Then the model is

projected into the display system by MPI and four NVidia

Quadroplex GPUs.

VRPN (Virtual-Reality Peripheral Network), proposed

and implemented by Russell M. Taylor [18], has been used

to connect an infrared camera-project setup (a Kinect Xbox

360 was the configuration for image grabbing and depth

perception) to the display system and the graphic engine. A

VRPN server developed by [17], widely known as FAAST,

was employed to extract the skeleton and record the walk-

ing signal. This VRPN server provides the coordinates and

the orientation of 24 joints of the user’s body.

5. More precise gesture analysis by wavelet

MRAs and pattern matching

It is very difficult to interpret user gestures by a simple

threshold value. The amplitude of the signal will change

when the user moves along the Z-direction as mentioned

above. Therefore, if a high threshold is selected, some parts

of the signal will remain under the threshold and the for-

ward function will never be initiated. To avoid this problem,



another approach will be selected to adjust the time and the

activation period of the function. The activation pulse can

be produced by defining a walking pattern and finding the

pattern in the signal by a signal processing approach. Walk-

ing can be approximately explained by the pattern shown in

Figure 5. Two walking patterns with different scales have

been shifted and superimposed on a triangular wave and

then they were recognized by wavelet analysis. The pri-

mary result shows that this method can find the position of

the pattern very precisely. To show how wavelet decom-

position is working, we will review the basics of wavelet

analysis below.

In a wavelet multi-resolution analysis (MRAs) [3], a sig-

nal x(t) ∈ V1, V1 ⊆ L (R) can be decomposed into a

linear combination of an infinite series of detail functions,

{G1, G2, ..., Gn}, so that

x (t) =

∞
∑

k=0

akGk (t) (3)

Figure 5. Generating a mother wavelet from the walking pattern.

Where ak is expansion coefficients. Using the same

method and just using different functions, each signal can

be decomposed into detail and the approximation. To do

this operation practically, the signals are projected on the

base of space Gk. Different sets have been proposed for

the base of the space, however the following sets which are

called mother wavelet and scale functions are more popular.
{

ψj,k = 2−
j

2ψ(2−jt− k), k ∈ Z

}

(4)

{

φj,k = 2−
j

2φ(2−jt− k), k ∈ Z

}

(5)

Then using Eq. (4) to Eq. (5) the projection is done by,

xj (t) =

∞
∑

k=−∞

dkj 2
−( j

2 )ψ
(

2−jt− k
)

(6)

yj (t) =
∞
∑

k=−∞

ckj 2
−( j

2 )φ
(

2−jt− k
)

(7)

dkj = 〈xj−1 (t) , ψj,k〉 , c
k
j = 〈xj−1 (t) , φj,k〉 (8)

Where, djk and cjk are the projection coefficients and 〈., .〉 is

the inner product in L2. Wavelet functions are not neces-

sarily limited to those that have already been proposed for

MRAs.

For specific signal analysis it is better not to use gen-

eral methods because the result will have better precision.

Rather, the better way is to find and adapt the wavelet which

fits to the application, for instance gesture analysis in this

study.

Here we proposed a mother wavelet function to take spe-

cific features from a walking signal. This paper will use

a technique called adapting wavelet from pattern which is

very well explained and documented in [3].

In practice and for numerical calculations we generally

know only one sampling of a function f over an [a, b] in-

terval. We have a finite set of values {(tk, yk)}k=1,...,k

such that: ak and yk ≈ f (tk). We consider a family

F = {ρi}
N

i=1
linearly independent in L2(a, b), and we de-

note by V , the span vector space of F . Formulated for this

finite set of pairs, the problem is seeking α = {αi}
N

i=1
in

R
N and thus ψ =

∑N

i=1
αiρi such that:

N
∑

k=1

[ψ (tk)− yk]
2
= min

β∈RN

{

N
∑

k=1

[Vβ (tk)− yk]
2

}

(9)

such that
∫ a

b

Vβdt = 0 (10)

Where for β in R
N , Vβ =

∑N

i=1
βiρi. In other terms, this

formulation says, a polynom can be fitted to a pattern such

that it satisfies the general condition of a mother wavelet [3]

while maximizing the output of the MRAs.

The degree of the polynom is limited to six in this ap-

plication to reduce the load of calculation and adapt the

method for real-time processing. Usually, polynoms with

a lower degree create huge amount of errors. The degree

of the polynom needs to be more than three for better per-

formance and less error. The selected pattern and adapted

mother wavelet are shown in Figure 5.

After the selection of a pattern, we try to fit a polyno-

mial function to the pattern such that it satisfies the defini-

tion of mother wavelet function [14]. The adapted mother

wavelet is used to decompose the signal with MRA to find

the position of the pattern. Two diagrams in the right side

of Figure 5 show the detection accuracy with the variation

of the scale factor. As seen, the superposition of the pattern

with scale factors of four and eight has been successfully

detected.



6. Experimental results and discussion

Walking and the coefficient signal of the adapted mother

wavelet are shown in Figure 6.a,b. The local maximum and

minimum are detected by MRAs analysis. MRA can be

considered as a convolution of the pattern and the walking

signal. When it is maximum, highly the pattern is located

in that point. On the contrary, when the value is minimum,

it means the possibility of finding the pattern in that specific

point is close to zero. The coefficient signal, see Figure 6.b,

represents the result after applying MRAs to the walking

signal. The new definition of the gesture for generating a

pulse is different now. The time that a signal is descend-

ing from top to bottom defines the width of pulses. The

associated function to the forward movement will be active

when the pulse is active. If the difference between max and

min is high, then the pulse width is longer. This mechanism

creates a train of pulses with different widths (Figure 6.c).

A new mother wavelet was designed to analyze the walk-

ing signal by MRAs method. The first question which

comes to our mind is “can we generalize this wavelet to a

real-time process? How much is the precision in the practi-

cal test?” To answer these questions we need to analyze the

performance of the adapted mother wavelet in the presence

of noise, scale variation, superposition and time shift. Fig-

ure 7.a.1,a.2 shows the performance of the mother wavelet

with the presence of Gaussian noise (50% of the pattern am-

plitude), scale variation (scale: 4, 8) and time shift (20, 40).

As seen, the result is quite precise. Figure 7.b.1,b.2 demon-

strates the result for the signal superposition with different

scale (8, 32) factors and the presence of noise. The base

triangular signal (T) and the noise are the same as in the

previous test (Figure 7.b.1). The result of the test is shown

in Figure 7.b.2, only very small error is created in the sec-

ond test comparing to the first test, which can be neglected

and does not affect the performance. The superposition of

two patterns happens very rarely in gesture analysis.

Another test was carried out to show the effectiveness of

the proposed wavelet compared to other most used mother

wavelets. Because of the similarity, Debouche (db6) mother

wavelet was selected for the test. The same settings as in the

previous tests were used in the test. The comparison of the

results depicted in Figure 7.c1,c2, shows that db6 creates

a lot of artifacts and the precision is not comparable with

the proposed method wavelet. “Haar”, “bio”, “db1-6” were

tested too and the error was quite high with low detection

precision. Figure 8 shows the experiment of the proposed

gesture navigation in the test platform.

Seventeen subjects (4 females and 13 males) participated

in the IVE locomotion study. They ranged 31.58 ± 12.69
years old in age and 74.65±15.22kg in weight. Participants

were subjected to two experiments: navigation in IVE by 1)

walking 2) fly-stick. The final score of Visually Induced

Motion Sickness (VIMS) is selected to evaluate these two

navigation mechanisms. The VIMS score is calculated by

the SSQ proposed by Kennedy [10]. The study was car-

ried out inside a real-scale 3D model of a building while

projecting in the CAVETMsystem. The statistical analysis

shows that walking in place induces less VIMS than fly-

stick (F (1, 16) = 21.16, p = 0.003).

Figure 6. Generating a movement command by pattern matching.

Figure 7. Performance of the mother wavelet with the presence of

noise and superposition effect (a.1, a.2, b.1, b.2), comparison of

the adapted (c.1) and db6 (c.2) mother wavelets.

7. Conclusion

Due to involuntary movement of the user along the Z-

axis (from the sensor to the user), the amplitude of the walk-

ing signal changes from time to time and a simple threshold



Figure 8. Practical result of the proposed method.

is not a good criterion to interpret the walking signal. On

the contrary, using an adapted mother wavelet and multi-

resolution analysis will help to detect the instances where a

walking action happens. Consequently we can force the 3D

scene to move forward/backward in those instances. Since

the adapted wavelet has a very precise performance in the

presence of noise, variation of the scale and superposition

with other signals, we can trust the adapted mother wavelet

in a similar situation.

References

[1] P. Brodal. The central nervous system. Oxford University

Press, USA, 2010.

[2] Y.-P. Chang, D.-J. Lee, J. Moore, A. Desai, and B. Tippetts.

Finger tracking for hand-held device interface using profile-

matching stereo vision. In IS&T/SPIE Electronic Imaging,

pages 86620H–86620H. International Society for Optics and

Photonics, 2013.

[3] J. O. Chapa and R. M. Rao. Algorithms for designing

wavelets to match a specified signal. Signal Processing,

IEEE Transactions on, 48(12):3395–3406, 2000.

[4] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti. Surround-

screen projection-based virtual reality: the design and im-

plementation of the cave. In Proceedings of the 20th an-

nual conference on Computer graphics and interactive tech-

niques, pages 135–142. ACM, 1993.

[5] A. Febretti, A. Nishimoto, T. Thigpen, J. Talandis, L. Long,

J. Pirtle, T. Peterka, A. Verlo, M. Brown, D. Plepys, et al.

Cave2: A hybrid reality environment for immersive simu-

lation and information analysis. In IS&T/SPIE Electronic

Imaging, pages 864903–864903. International Society for

Optics and Photonics, 2013.

[6] E. Foxlin and M. Harrington. Weartrack: A self-referenced

head and hand tracker for wearable computers and portable

vr. In Wearable Computers, The Fourth International Sym-

posium on, pages 155–162. IEEE, 2000.

[7] P. Fuchs, G. Moreau, and P. Guitton. Virtual reality: con-

cepts and technologies. CRC Press, Inc., 2011.

[8] A. Kageyama and Y. Masada. Applications and a three-

dimensional desktop environment for an immersive virtual

reality system. arXiv preprint arXiv:1301.4535, 1:1–6, 2013.

[9] A. Kar. Skeletal tracking using microsoft kinect. Methodol-

ogy, 1:1–11, 2010.

[10] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilien-

thal. Simulator sickness questionnaire: An enhanced method

for quantifying simulator sickness. The international journal

of aviation psychology, 3(3):203–220, 1993.

[11] K. Khoshelham. Accuracy analysis of kinect depth data. In

ISPRS workshop laser scanning, volume 38, page 1, 2011.

[12] T. Leyvand, C. Meekhof, Y.-C. Wei, J. Sun, and B. Guo.

Kinect identity: Technology and experience. Computer,

44(4):94–96, 2011.

[13] M. Mackay, R. G. Fenton, and B. Benhabib. Pipeline-

architecture based real-time active-vision for human-action

recognition. Journal of Intelligent & Robotic Systems, 1:1–

23, 2013.

[14] M. Misiti, Y. Misiti, G. Oppenheim, and J.-M. Poggi. Matlab

wavelet toolbox user\’s guide. version 3. Mathwork website,

1:1–360, 2004.

[15] C. Papadopoulos, D. Sugarman, and A. Kaufmant. Nunav3d:

A touch-less, body-driven interface for 3d navigation. In

Virtual Reality Workshops (VR), 2012 IEEE, pages 67–68.

IEEE, 2012.

[16] R. Radkowski and J. Oliver. A hybrid tracking solution to en-

hance natural interaction in marker-based augmented reality

applications. In ACHI 2013, The Sixth International Confer-

ence on Advances in Computer-Human Interactions, pages

444–453, 2013.

[17] E. A. Suma, B. Lange, A. Rizzo, D. Krum, and M. Bolas.

Faast: The flexible action and articulated skeleton toolkit. In

Virtual Reality Conference (VR), 2011 IEEE, pages 247–248.

IEEE, 2011.

[18] R. M. Taylor II, T. C. Hudson, A. Seeger, H. Weber, J. Ju-

liano, and A. T. Helser. Vrpn: a device-independent,

network-transparent vr peripheral system. In Proceedings

of the ACM symposium on Virtual reality software and tech-

nology, pages 55–61. ACM, 2001.

[19] R. I. Thompson, L. J. Storrie-Lombardi, R. J. Weymann,

M. J. Rieke, G. Schneider, E. Stobie, and D. Lytle. Near-

infrared camera and multi-object spectrometer observations

of the hubble deep field: Observations, data reduction, and

galaxy photometry. The Astronomical Journal, 117(1):17,

2007.

[20] M. Usoh, K. Arthur, M. C. Whitton, R. Bastos, A. Steed,

M. Slater, and F. P. Brooks Jr. Walking¿ walking-in-place¿

flying, in virtual environments. In International Conference

on Computer Graphics and Interactive Techniques: Pro-

ceedings of the 26 th annual conference on Computer graph-

ics and interactive techniques, volume 1999, pages 359–364,

1999.

[21] R. Van Liere and J. D. Mulder. Optical tracking using pro-

jective invariant marker pattern properties. In Virtual Reality,

2003. Proceedings. IEEE, pages 191–198. IEEE, 2003.


