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Partial linearization of the PVTOL aircraft with internaiability

V. Léchappé, Y. Aoustin, L.A. Marquez-Martinez and C.H. Moo

_ Abstract— The planar vertical take-off and landing (PVTOL) In [6], flat outputs are computed to completely linearize
aircraft is worked out by inspecting the various feedback the system. Those flat outputs are interpreted as the coor-
linearization solutions. Partial linearizations of the stte space dinates of the center of percussion. The controller yields a

are performed, which ensure the stability of the associated d f for both sliaht and st i but
internal dynamics. The results are obtained through the segh 9000 Performance for both slight and strong couplings bu

of dummy outputs with a 0-dimensional, 1-dimensional or 2-  €Xhibits a singularity. Besides, it requires the compatei
dimensional zero-dynamics that are stable. of the fourth time derivatives of each output. Other authors

Index Tﬁrms—nonligear, ‘MIMO, UTddefaCtU?tedll ngr_l- use linearization but not on the entire system [16] or just
minimum phase, zero-dynamics, intemal dynamics, algebia 14 shape the model before applying other methods [17]. In
method, partial linearization, stabilization, PVTOL [16], Consolini et al. design a feedback that decomposes the

|. INTRODUCTION PVTOL model into a transversal subsystem which is linear

VTOL (Vertical Take-Off and Landing) aircrafts are grr‘r;etrl]r;\:]a;l?nér?gd ?r;iggsgﬁla?u dbtsayfzr:t.';r::%ﬁ;r; systtem
adapted for applications in a narrow environment since theé’olve a alt\r/I foll())lwin Vroblem The ?netrlmdolo exEl]inits
do not require strips for take-off or landing. Helicoptergla P 9p ' gy

guad-rotors are examples of such devices. PVTOL (Planglutpm invariance of the path and boundedness of the roll

VTOL) aircrafts are VTOL aircrafts that perform only in ng\le. hausti vsis of the feedback i it |
the vertical plane. Hauser et al. [1] have exhibited the n exhaustive analysis of the teedback linearization solu-

mechanical model of the PVTOL in 1992. It is obtaineo“ons is not available yet: the two major milestones are [1],
by applying Newton's laws of motion to a rigid bodywhich copes with a&-dimensional unstable zero-dynamics,

subjected to its weight and thrusts (see [2] for a set and [6] which gets rid of any zero-dynamics. The present

equations). The model is simplified because it does not taR?'tStICIe investigates new solutions: two outputs are sought

into account aerodynamic effects, wings deformation an ch tht?]t ihtﬁ resultlrg)g zero-dytnzm|c?hhzt;1fhd|.men3|odn L It_|s
propellers dynamics (for more complete models see [3] an own that they can be compuled So that their zero-dynamics

[4]). This model motivated numerous works as it keeps th! asymptotically stable, and its velocity can be tuned at we

main characteristics of 6DOF VTOL vehicles, including th YI_:]he proper chmce_of(’;he (}uhputs)..s tion Il i

coupling between rotation and translation. Furthermare, | . IS paper Is organized as Tollows. Section 1 1S a presen-
is simple enough for the purpose of control. This couplinggatlon and a structur_al analysis O.f the model and the exstin
is represented by the parametein (1). It is shown in [1] esults [1], [6]. We will also explain some results on theeard

that there exists an unstable internal dynamics of ordert tr]l.e feros at |nf|nt|ty. tSrs]ec.tmn ”! IS d;wdtﬁ n twg dpartls:
when the "natural” outputs (horizontal position and adtéy € hirst one computes the inversion aigorithm and dispiays

are linearized by state feedback. The system is said to Bgntrollers eql_Jat|0ns._'_I'he _second one |s_ded|c§ted o the
non-minimum phase. A controller was designed neglectin' tern_al dynamics stability. Fmally,_several S|mulat_|tm;ults
the coupling, and applied to the real system. Good resul e given and the periormance is compared with the one

are obtained for slightly non-minimum phase systems (wit erived from the flat outputs linearization [6] in section. IV
weak coupling). The main drawback remains when the
coupling becomes stronger.

Besides, many papers have considered the control of the ) )
PVTOL using various methods. Amongst them, one maf}- Analysis of the PVTOL equations
cite digital control [5], flat control [6], backstepping [3], The normalized equations (1) of the PVTOL, associated
sliding mode control [9], predictive control [10] and model to Figure 1, were obtained in [1], considering the aircraft a

free control [2]. Various control problems have been cona rigid body upon which act its weight and the thrusts:
sidered like output tracking [11], stabilization with baled

PRESENTATION AND STRUCTURAL ANALYSIS WITH
THE ALGEBRAIC METHOD

inputs [12], robustness to delay in the inputs [13], robest & = —wupsinf + eugcosb
to delayed outputs [14], robustness to crosswind [15] and Z = wuicost+eugsing —1 @
robustness to aerodynamic effects [4]. 0 = wus
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leads to the system :
}(\UQ T = V1
N %ﬁ P =
6 = —(sin 6 4 v1 cos O + vo sin )
€

i lg =-1 B

We see that the evolution of the third equation is imposed

T o by the decoupling ofi and Z: this is the internal dynamics
Fig. 1. View of the PVTOL aircraft in the vertical plane associated to the outputsandz. The order of the dynamics

is calculated subtracting the number of states from the sum

acceleration, and the parameterepresents the coupling of the order of the zeros at infinity: we have an internal
between the horizontal and the vertical motions. The dynamics of order 6-4=2. Canceling the outputs, and alf thei
dimensional state vector i& z 6 @ 2 0]7. The system is time derivatives, the zero-dynamics is obtained as:
underactuated because it has three degrees of freedof) 1
but only two control inputsa(;, us). § = —ginb )

We are now going to analyzk; subspaces to characterize €
outputs with the maximum relative degré¢, are subspaces Equation (2) is the equation of an undamped pendulum which
containing all the elements (one-forms) whose relativeeeg has two equilibrium points. However, one equilibrium point

is greater than or equal tb. More explanations ovet; s unstable so it is said that the system is non-minimum phase
subspaces and integrability condition are available in.[18for the outputs: and z.

After some computations, we obtain:

Hy = span{dzx,di,dz,dz,d0,d0} ' C. Flat outputs [6]

Ha = span{dz, dz,df, d(cos 0& + sin 0z — ef) } In [6], it has been shown that the outputs

Hs = span{w, w2}

Hy = span{0} Ty =2x —esinf zy = z+ecosd

with wy = cosfdx + sin0dz — edf

andws = 6 sin Odx + cos0di — 0 cosOdz + sinfds — edd ~ are without zero-dynamics. They are called flat outputs. By

computing the second time derivative ©f, and the fourth

H4 equal to 0 means that there is no autonomous element ggie derivative of: s, we get the invertible decoupling matrix:
the system is accessible. HowevAs is not fully integrable

according to Frobenius Theorem becadse A w1 Aws # 0 0y 0 ¢

so the input/state linearization can not be solved by static ouy  Ous )

feedback. Finally, it can be shown that there is no (nonzero) — (_ sin 6 0 >
exact one-form irf{5: no output exists with a relative degree azgfl) 62}4) 0 —1msing
greater than or equal t&. Oy s

B. Partial linearization with a2-dimensional internal dy- wheren, = u; — €02, Thus, the orders of zeros at infinity
namics [1] are 2 and 4, and the sum is 6 as the number of states so the

Choosingz andz as outputs [1], the following decoupling internal dynamics is empty. The dynamic feedback
matrix is obtained:

85 0i o= .
_.I' _(E 7?2 = =1 sin 6 -+ vg COS 0 + 7’]192
ui  duy - (— sinf ecos 9) wp = M+ €b?
— ‘ : i .
0z 0z cosf)  esind uy = —(—v1c0860 — vgsinh — 2190)
Bul 6u2 n
whose determinant is-e. Sincee # 0 the matrix rank is 2 WhGI’? 2 = 1, decouples and fully linearizes PVTOL
equations:

and it is said that the outputs ndz) have 2 zeros at infinity

of order 2. The notion of zeros at infinity describes how { ng) = v

control inputs occur explicitly in output derivatives. tder; 54

and us appear independently in the second derivativer of J

andz since the decoupling matrix is invertible. Applying theNote that the controller dynamics is 2:( 72) and, that it

static feedback: has a singularity inj; = 0. Then by an appropriate pole-
placementz; and z; are stabilized. That is equivalent to

u —sinf  cosf v 0 o _ e
( ) = cosf siné (( ) + (1)) stabilizex and z 4 ¢ becaus&=0 at equilibrium. The result
U2 v2 holds even for strong coupling values.

= ’[}2




D. Partial linearization with a 1 dimension internal dynam- 11l. OUTPUTS WITH ZEROS AT INFINITY OF ORDER(4,1)

ICS A. Inversion algorithm and controller's equations

The exhaustive investigation of partial linearization @ n  consider the following outputs:
done yet, although new alternatives are offered to circurhve
the minimum phase issue, as shown next. On one hand, the Y1 =z —esind )
outputs {,z) were recalled to have zeros at infinity of order
(2,2), and an internal dynamics of order 2. On the other
hand, the outputsif,z¢) have zeros at infinity of order (4,2), The inversion algorithm is a way to know if the system is
and an internal dynamics of order 0. Any alternative choicvertible, and if this is the case, to derive the contrddler
of output will feature a structure displayed in the follogin equations. This process of inversion is obviously related t
table: the chosen outputs. The general algorithm is developed in
[18]. Let us apply it to the PVTOL with the outputs and

Yo =z + ecosb + ki — kefsinf — e (4)

Orders of the zeros at  Order of the internal

infinity dynamics Ya: . . .
(5,1) (4’2) (3,3) 0 Y1 = — €6 cos (5)
(‘21*;) (2’? é Yo = % — efsin @ + kuy cosO — k — ke?cosf  (6)
( ’(z)é)’ ) 3 We notice that the control appears onlygix and we cannot
(1,1) 4 fully invert the system. There is a zero at infinity of order

one. Consequently, we carry on derivating
The expression #(1,n2) structure" is used to designate

outputs with "zeros at infinity of ordern{,n.)". As a i1 = —u1sing + €6?sin 0 (7)

consequence, it is equivalent to say that outputs have(@is time u, appears inj, but the decoupling matrix has

(n1,n2) structure or as(,ny) structure. _ still no inverse. At this point, we see that linearization by

Let us explain why we focus on outputs with (4,1)gavic feedback is impossible, and we are going to introduce
structure. First, we dlq not consider the cases where the_rorc‘ijlgam771 — u, — 6% as a new state to delay the apparition
of internal dynamics is larger than 1 because we obvious|y u1: we are designing a dynamic feedback. From (7) we
want to control the larger part of the system. (5,1) struetur, 5 e
would lead to a dynamic controller of dimension greater
than or equal to 3 which would slow down the response.
Structure (3,3) looks interesting because it would guaeant Remark that following explicitly the inversion algorithm
a static controller. However, it cannot be achieved since ftom [18], . would have been introduced instead mf.
would require outputs with a relative degree of 3 which dd\evertheless, it has been prefered to chogseas the
not exist as we have seen in section II-A. Structure (4,2) hasntroller dynamics (as in [6] for flat outputs) because
already been studied. The structure (3,2) yields outputs wiit makes computations easier, and avoids to add an extra
undesired singularities [12]. For example, the outputs singularity. See [19] for more details about the constarcti

of such decoupling feedbacks. We continue differentiating

§1 = —n1sind (8)

T(3,2) =0 Y(3.2) = xcost + zsinf — b y1 but uy still does not explicitly appear:
have a (3,2) structure because the decoupling matrix is Uy = —6n1 cosf — 1y sin 6 9)
0%z  O%sa) so we differentiate once more, and we obtain:
8u1 6u2
B (O 1>
3?'(3,2) 3?'(3,2) 26 0 y§4) = —u2oM COS 9—!—927]1 sin 9—9771 cos 9—97'71 cos 0—1jy sin 6
6u1 6u2 (10)
1 ) and the decoupling matrix is:
The inversion yieldsu; = —(...) but ¢ has to be0 at i i
the equilibrium so we necessary go through this singularity ou,  Oum
Next, the structuré4, 1) is investigated extensively, with the _ (k cos ¢ 0 )
outputs {1,y2) which are derived from the flat outputs as By(4) ay(4) 0 —11 cos
follows: = =L
8u1 6u2

Yr =T Y2 =zp+ ki —e o . . . .
This time it is invertible since the determinant is non zero.

where k is a real non-zero constant. This parameker There is a zero at infinity of ordet. Now, we are able to
is introduced to tune the internal dynamics stability andiecouple and linearize the PVTOL as follows:

velocity. In the following, we are going to find out dynamic @
controller’'s equations, and show that we can tune the #abil Yy = u

; : by (11)
and velocity of the zero-dynamics thanksko Yy | = U2



with the controller defined by equations :

=12

E
I3

1 .
Tjp = Z [—kvl sin @ — ve cos 0 + (1 — k)6 cos 0 sin 0+

kém + kénQ cos 6 sin O — 1 cos? 9}

uy = 11 + €6? Ll
Uy = kinl [—kvl cosf) — vy sinf — 9171 (sin2 6 + kcos? 6) sl s . - - (?n) : " -
+n2 sinf cos ) — kém (C052 0 + 2sin® 9)} Fig. 2. Aggressive maneuver with strong coupling = 2
The controller exhibits the same singularity as the colgrol Finally, the contradictiod = —1 is found by substituting

for flat outputs :p; = 0. It also has an internal dynamics of (12) and (13) in
order 2 {1, n2). This dynamics has not to be confused with
the internal dynamics of the PVTOL (called in the next
parts) which is of dimension 1 for these outputs. Systerhe negation of the initial claim leads to desired result :
(11) is linear, and can be stabilized by pole placement.

The objective of the next paragraph is to demonstrate that =0 (modulom) (14)
for some values ofk we can stabilize system (1). Forwhen zero-dynamics is reached. A similar argument gives
that purpose, a suitable design of the zero-dynamics was .

achieved. 0=0 (15)

From (3) and (14), we know that is always stabilized
independently of the value of the constant k. From (4) and

v, andy, have, respectively, zeros at infinity of order 1(14), we draw the zero-dynamics equation:
and 4, so the system is only partially linearized and there )
remains an internal dynamics of ordér In this section, ET AT 0 (16)
the zero-dynamics is computed, ar_1d its stability is studleq-hiS is a simple linear ODE of order 1 with constant
Let us call o the internal dynamics. The coordinate coefficients
represents the internal dynamics of system (1) (with ostput k> 0 .(16) is asymptotically stable
d if and only if th ist local diff - ° : . :
y1 and y9) if and only if there exists a local diffeomor . k<0 (16) is unstable.

phism ¢ betweenX, = (x,i,z %,60,0,1m1,72) and { =
ol This result ted regarding the definition:ofys —
(1, 91, 31, 4, 42, 92, §j2, o). There are a lot of solutions so ' NS result was expected regarding the definitionty, =
z§ + kZy — e. Indeed, stabilizingy, implies zy + kzy = ¢

to make the computations easier, we choose to takaf he o fth h bility of d
relative degree greater or equal to 2. With this conditiors® th€ sign of the constaktgoverns the stability ot an

we have limited the possibilities without losing genesalit consequently the stability of. If the mternal dynamics is
because we are actually looking for the zero-dynamics ar?tﬁable' we see frorp (523)and (15) thatalso tends to zero.
not the internal dynamics. Even if there are plenty of indérn 10 SUM UP,(y1, 91, 1,417 2,71, 712) — O1x7, andk > 0
dynamics, there is only one zero-dynamics associated wiffSUlts in(z,#, 2, 2,6,6) — 01¢. It means that stabilizing
these outputs. After some computations, we notice that (11), and ch_oqsm@ > 0 induces the stabilization of system
complies with these two constraints so we now considdt) © the origin.

o = z. The objective is to express as a function of |v. SMULATION AND COMPARISON WITH FLAT OUTPUTS

¢ = (v1, 91, yl’ygg)’m’ 2,42, 2), and then to cancel outputs g 1avions were carried out to check the controller ef-
and their derivatives to exhibit the equation of the zerog

) . . : _ iency for a large coupling parameter. We set= 2,
dynamics. This the classical way to find the expression %C: 0.1, and an aggressive maneuver is imposed. The result

ahzero-dyna(ljmlcs. !n our Casi’egi 'S easi)er 0 shlow first th?é displayed on Figure 2. The initial position of the air¢raf
when zero-dynamics Is reachel,must be equal to Zero. jo i, voq e observe the non-minimum phase character

This result is demonstrated by a contradiction proof : of outputsz and > because the: response begins in the

Let's suppose thad o SUCh. thaw_(tf’)_ # 0 (modulo). opposite direction. Besides, the controller behaves welhe
When the outputs and their derivatives are cancelled, eq i a large value ofe. This is important because the first

tion (8) becomes) = —sin 0(to )1 (to) and it follows that gy, ies did not tolerate large coupling parameters sineg th

Yo = 1M1 cosf — kém sin @ + k1 cosf — 1

B. Zero-dynamics stability

m(to) = 0 (12) were synthesized on an approximate modek(0) [1] and
0 [7]. The controller has also been checked to be robust with
Using this equality in (9) results il = — sin 6(to)7; SO respect to variations of: for e values around 1, the system

is stabilized even for deviations up to 50%. Figures 3, 4,
M (to) =0 (13) and 5 show the influence of parameter k on the stabilization.



For these simulations, we chose= 0.5, xo = 10, zg
2 and other initial conditions are in 0. We notice that

12

T
—6—k=0.1
—k=1

- - —k=10
— - k=50

~120 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 . 10 2 14 16
time (sﬁ
Influence ofk on angled

Fig. 5.

14 derived from flat outputs. The same pole placement is used
for both controllers. Figure 6 confirms that dynamics is
similar for the three controllers becaugedoes not depend

on k andy; = xs. Figure 7 shows that fok = 0.1, the
controller designed from the outputs with the structurd)4,

is faster than the controller from flat outputs. This advgata

is accentuated because it can be seen on Figures 8 and 9 that
it requires less effort to achieve better result. The déffee

is clear foru; but it is still more important fow, where the
"flat" controller needs four times more energy than "(4,1)"
controller. Note that time scale on Figures 8 and 9 has been
voluntary reduced to focus on the beginning of the maneuver
where the variations are the most important.

time (sﬁ2

Fig. 3. Influence of k on position x

T
—66—k=0.1
—k=1

- — —k=10
—-—-k=50

12 T T

—e— flat outputs

—o— structure (4,1) k=0.1
structure (4,1) k=1

time (s)’

Fig. 4. Influence of k on altitude z

parameterk has little influence onz: all controllers have
approximately the same response time. This is cohererg sin
k does not appear ip;. On the contrary, the highdr, the
higher the response time far this confirms the result (16).
This is interesting to notice that a modification énhas
almost no influence on the dynamics but strongly affects
dynamics. It is thé dynamics which is modified and cause
the slowing down or the acceleration of thedynamics.
This is really useful to be able to control precisely the

’ time (s)°

dynamics of an aircraft to take off and land properly. Tha
is why we chose(y:,y2) = (xf,2z5 + ki — ¢€) and not
(y1,92) = (25,25 + kiy — €) which would have lead to a

Fig. 6. Comparison between controllers derived from owtpuith structure
(4,1) and from flat outputs: position

V. CONCLUSION

similar zero-dynamics but im. With these graphs, we cannot
analyze precisely the response time because equations(16) iIn this paper, outputs have been computed with a structure
valid only wheny; and y, are stabilized to zero. For all at infinity (4,1) that partially linearize the PVTOL airctaf
these responses we make sure that commandsdus, do  The resulting zero-dynamics was computed, and we have
not go through singularities and keep low level. We alsadlemonstrated that the stability was governed by the sign of
make sure that,; remains positive because it representand that the convergence speed was governed by the value of
the thrust. On Figures 6 and 7, the controller in Sectiok. Simulations results are in accordance with our assertions
Il (with & = 0.1 andk = 1) is compared with the one and have shown that the controller stabilizes the aircraft
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Fig. 7. Comparison between controllers derived from owstpuith structure
(4,1) and from flat outputs: altitude

T T
—e— flat outputs
—o— structure (4,1) k=0.1 |4
structure (4,1) k=1

uy (normalized)

0.5 0.6, 0.7
time ' (s)
Influence ofk on commanduy

0.9 1

(4]

(5]

(6]

(7]

(8]

El

[10]

even with a strong input coupling. Furthermore, for small
values ofk, the "(4,1)" controller has better performance forl11]
z dynamics with lower input requirements. Finally, results

are achieved with the possibility to adjustlynamics. More
generally, a new perspective for dealing with zero-dynamic[13

is offered for general underactuated systems.
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