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Partial linearization of the PVTOL aircraft with internal stability

V. Léchappé, Y. Aoustin, L.A. Márquez-Martínez and C.H. Moog

Abstract— The planar vertical take-off and landing (PVTOL)
aircraft is worked out by inspecting the various feedback
linearization solutions. Partial linearizations of the state space
are performed, which ensure the stability of the associated
internal dynamics. The results are obtained through the search
of dummy outputs with a 0-dimensional, 1-dimensional or 2-
dimensional zero-dynamics that are stable.

Index Terms— nonlinear, MIMO, underactuated, non-
minimum phase, zero-dynamics, internal dynamics, algebraic
method, partial linearization, stabilization, PVTOL

I. I NTRODUCTION

VTOL (Vertical Take-Off and Landing) aircrafts are
adapted for applications in a narrow environment since they
do not require strips for take-off or landing. Helicopters and
quad-rotors are examples of such devices. PVTOL (Planar
VTOL) aircrafts are VTOL aircrafts that perform only in
the vertical plane. Hauser et al. [1] have exhibited the
mechanical model of the PVTOL in 1992. It is obtained
by applying Newton’s laws of motion to a rigid body
subjected to its weight and thrusts (see [2] for a set of
equations). The model is simplified because it does not take
into account aerodynamic effects, wings deformation and
propellers dynamics (for more complete models see [3] and
[4]). This model motivated numerous works as it keeps the
main characteristics of 6DOF VTOL vehicles, including the
coupling between rotation and translation. Furthermore, it
is simple enough for the purpose of control. This coupling
is represented by the parameterǫ in (1). It is shown in [1]
that there exists an unstable internal dynamics of order 2
when the "natural" outputs (horizontal position and altitude)
are linearized by state feedback. The system is said to be
non-minimum phase. A controller was designed neglecting
the coupling, and applied to the real system. Good results
are obtained for slightly non-minimum phase systems (with
weak coupling). The main drawback remains when the
coupling becomes stronger.

Besides, many papers have considered the control of the
PVTOL using various methods. Amongst them, one may
cite digital control [5], flat control [6], backstepping [7][8],
sliding mode control [9], predictive control [10] and model-
free control [2]. Various control problems have been con-
sidered like output tracking [11], stabilization with bounded
inputs [12], robustness to delay in the inputs [13], robustness
to delayed outputs [14], robustness to crosswind [15] and
robustness to aerodynamic effects [4].
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In [6], flat outputs are computed to completely linearize
the system. Those flat outputs are interpreted as the coor-
dinates of the center of percussion. The controller yields a
good performance for both slight and strong couplings but
exhibits a singularity. Besides, it requires the computations
of the fourth time derivatives of each output. Other authors
use linearization but not on the entire system [16] or just
to shape the model before applying other methods [17]. In
[16], Consolini et al. design a feedback that decomposes the
PVTOL model into a transversal subsystem which is linear
time invariant and a tangential subsystem. These subsystems
are then driven by transversal and tangential control inputs to
solve a path following problem. The methodology exhibits
output invariance of the path and boundedness of the roll
angle.

An exhaustive analysis of the feedback linearization solu-
tions is not available yet: the two major milestones are [1],
which copes with a2-dimensional unstable zero-dynamics,
and [6] which gets rid of any zero-dynamics. The present
article investigates new solutions: two outputs are sought
such that the resulting zero-dynamics has dimension 1. It is
shown that they can be computed so that their zero-dynamics
is asymptotically stable, and its velocity can be tuned as well
(by the proper choice of the outputs).

This paper is organized as follows: Section II is a presen-
tation and a structural analysis of the model and the existing
results [1], [6]. We will also explain some results on the order
of the zeros at infinity. Section III is divided in two parts:
the first one computes the inversion algorithm and displays
controller’s equations. The second one is dedicated to the
internal dynamics stability. Finally, several simulationresults
are given and the performance is compared with the one
derived from the flat outputs linearization [6] in section IV.

II. PRESENTATION AND STRUCTURAL ANALYSIS WITH

THE ALGEBRAIC METHOD

A. Analysis of the PVTOL equations

The normalized equations (1) of the PVTOL, associated
to Figure 1, were obtained in [1], considering the aircraft as
a rigid body upon which act its weight and the thrusts:







ẍ = −u1 sin θ + ǫu2 cos θ
z̈ = u1 cos θ + ǫu2 sin θ − 1

θ̈ = u2

(1)

where ǫ > 0. x and z denote, respectively, the horizontal
position and the altitude of the PVTOL’s center of gravity
andθ the roll angle.u1 is the thrust which is always positive
andu2 is the rolling moment."-1" is the normalized gravity
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Fig. 1. View of the PVTOL aircraft in the vertical plane

acceleration, and the parameterǫ represents the coupling
between the horizontal and the vertical motions. The6-
dimensional state vector is[x z θ ẋ ż θ̇]T . The system is
underactuated because it has three degrees of freedom (x,z,θ)
but only two control inputs (u1, u2).

We are now going to analyzeHk subspaces to characterize
outputs with the maximum relative degree.Hk are subspaces
containing all the elements (one-forms) whose relative degree
is greater than or equal tok. More explanations overHk

subspaces and integrability condition are available in [18].
After some computations, we obtain:

H1 = span{dx, dẋ, dz, dż, dθ, dθ̇}
H2 = span{dx, dz, dθ, d(cos θẋ+ sin θż − ǫθ̇)}
H3 = span{ω1, ω2}
H4 = span{0}
with ω1 = cos θdx + sin θdz − ǫdθ

andω2 = θ̇ sin θdx + cos θdẋ− θ̇ cos θdz + sin θdż − ǫdθ̇

H4 equal to 0 means that there is no autonomous element so
the system is accessible. However,H3 is not fully integrable
according to Frobenius Theorem becausedω1 ∧ω1 ∧ω2 6= 0
so the input/state linearization can not be solved by static
feedback. Finally, it can be shown that there is no (nonzero)
exact one-form inH3: no output exists with a relative degree
greater than or equal to3.

B. Partial linearization with a2-dimensional internal dy-
namics [1]

Choosingx andz as outputs [1], the following decoupling
matrix is obtained:











∂ẍ

∂u1

∂ẍ

∂u2

∂z̈

∂u1

∂z̈

∂u2











=

(

− sin θ ǫ cos θ
cos θ ǫ sin θ

)

whose determinant is−ǫ. Sinceǫ 6= 0 the matrix rank is 2
and it is said that the outputs (x andz) have 2 zeros at infinity
of order 2. The notion of zeros at infinity describes how
control inputs occur explicitly in output derivatives. Here u1

and u2 appear independently in the second derivative ofx

andz since the decoupling matrix is invertible. Applying the
static feedback:

(

u1

u2

)

=

(

− sin θ cos θ
cos θ

ǫ

sin θ

ǫ

)

((

v1
v2

)

+

(

0
1

))

leads to the system :











ẍ = v1
z̈ = v2

θ̈ =
1

ǫ
(sin θ + v1 cos θ + v2 sin θ)

We see that the evolution of the third equation is imposed
by the decoupling of̈x and z̈: this is the internal dynamics
associated to the outputsx andz. The order of the dynamics
is calculated subtracting the number of states from the sum
of the order of the zeros at infinity: we have an internal
dynamics of order 6-4=2. Canceling the outputs, and all their
time derivatives, the zero-dynamics is obtained as:

θ̈ =
1

ǫ
sin θ (2)

Equation (2) is the equation of an undamped pendulum which
has two equilibrium points. However, one equilibrium point
is unstable so it is said that the system is non-minimum phase
for the outputsx andz.

C. Flat outputs [6]

In [6], it has been shown that the outputs

xf = x− ǫ sin θ zf = z + ǫ cos θ

are without zero-dynamics. They are called flat outputs. By
computing the second time derivative ofxf , and the fourth
time derivative ofzf , we get the invertible decoupling matrix:













∂ẍf

∂u1

∂ẍf

∂u2

∂z
(4)
f

∂u1

∂z
(4)
f

∂u2













=

(

− sin θ 0
0 −η1sinθ

)

whereη1 = u1 − ǫθ̇2. Thus, the orders of zeros at infinity
are 2 and 4, and the sum is 6 as the number of states so the
internal dynamics is empty. The dynamic feedback























η̇1 = η2
η̇2 = −v1 sin θ + v2 cos θ + η1θ̇

2

u1 = η1 + ǫθ̇2

u2 =
1

η1
(−v1 cos θ − v2 sin θ − 2η2θ̇)

where η2 = η̇1, decouples and fully linearizes PVTOL
equations:

{

x
(4)
f = v1

z
(4)
f = v2

Note that the controller dynamics is 2 (η1, η2) and, that it
has a singularity inη1 = 0. Then by an appropriate pole-
placement,xf and zf are stabilized. That is equivalent to
stabilizex andz + ǫ becauseθ=0 at equilibrium. The result
holds even for strong coupling values.



D. Partial linearization with a 1 dimension internal dynam-
ics

The exhaustive investigation of partial linearization is not
done yet, although new alternatives are offered to circumvent
the minimum phase issue, as shown next. On one hand, the
outputs (x,z) were recalled to have zeros at infinity of order
(2,2), and an internal dynamics of order 2. On the other
hand, the outputs (xf ,zf ) have zeros at infinity of order (4,2),
and an internal dynamics of order 0. Any alternative choice
of output will feature a structure displayed in the following
table:

Orders of the zeros at
infinity

Order of the internal
dynamics

(5,1) (4,2) (3,3) 0
(4,1) (3,2) 1
(2,2) (3,1) 2

(2,1) 3
(1,1) 4

The expression "(n1,n2) structure" is used to designate
outputs with "zeros at infinity of order (n1,n2)". As a
consequence, it is equivalent to say that outputs have a
(n1,n2) structure or a (n2,n1) structure.

Let us explain why we focus on outputs with (4,1)
structure. First, we did not consider the cases where the order
of internal dynamics is larger than 1 because we obviously
want to control the larger part of the system. (5,1) structure
would lead to a dynamic controller of dimension greater
than or equal to 3 which would slow down the response.
Structure (3,3) looks interesting because it would guarantee
a static controller. However, it cannot be achieved since it
would require outputs with a relative degree of 3 which do
not exist as we have seen in section II-A. Structure (4,2) has
already been studied. The structure (3,2) yields outputs with
undesired singularities [12]. For example, the outputs

x(3,2) = θ y(3,2) = x cos θ + z sin θ − ǫθ

have a (3,2) structure because the decoupling matrix is










∂ẍ(3,2)

∂u1

∂ẍ(3,2)

∂u2

∂
...
y (3,2)

∂u1

∂
...
y (3,2)

∂u2











=

(

0 1

2θ̇ 0

)

The inversion yieldsu1 =
1

2θ̇
(...) but θ̇ has to be0 at

the equilibrium so we necessary go through this singularity.
Next, the structure(4, 1) is investigated extensively, with the
outputs (y1,y2) which are derived from the flat outputs as
follows:

y1 = xf y2 = zf + kżf − ǫ

where k is a real non-zero constant. This parameterk

is introduced to tune the internal dynamics stability and
velocity. In the following, we are going to find out dynamic
controller’s equations, and show that we can tune the stability
and velocity of the zero-dynamics thanks tok.

III. O UTPUTS WITH ZEROS AT INFINITY OF ORDER(4,1)

A. Inversion algorithm and controller’s equations

Consider the following outputs:

y1 = x− ǫ sin θ (3)

y2 = z + ǫ cos θ + kż − kǫθ̇ sin θ − ǫ (4)

The inversion algorithm is a way to know if the system is
invertible, and if this is the case, to derive the controller’s
equations. This process of inversion is obviously related to
the chosen outputs. The general algorithm is developed in
[18]. Let us apply it to the PVTOL with the outputsy1 and
y2:

ẏ1 = ẋ− ǫθ̇ cos θ (5)

ẏ2 = ż − ǫθ̇ sin θ + ku1 cos θ − k − kǫθ̇2 cos θ (6)

We notice that the control appears only inẏ2, and we cannot
fully invert the system. There is a zero at infinity of order
one. Consequently, we carry on derivatingy1:

ÿ1 = −u1 sin θ + ǫθ̇2 sin θ (7)

This time u1 appears inÿ1 but the decoupling matrix has
still no inverse. At this point, we see that linearization by
static feedback is impossible, and we are going to introduce
againη1 = u1 − ǫθ̇2 as a new state to delay the apparition
of u1: we are designing a dynamic feedback. From (7) we
have:

ÿ1 = −η1 sin θ (8)

Remark that following explicitly the inversion algorithm
from [18], ẏ2 would have been introduced instead ofη1.
Nevertheless, it has been prefered to chooseη1 as the
controller dynamics (as in [6] for flat outputs) because
it makes computations easier, and avoids to add an extra
singularity. See [19] for more details about the construction
of such decoupling feedbacks. We continue differentiating
y1 but u2 still does not explicitly appear:

...
y 1 = −θ̇η1 cos θ − η̇1 sin θ (9)

so we differentiate once more, and we obtain:

y
(4)
1 = −u2η1 cos θ+θ̇2η1 sin θ−θ̇η1 cos θ−θ̇η̇1 cos θ−η̈1 sin θ

(10)
and the decoupling matrix is:













∂ẏ2

∂u1

∂ẏ2

∂u2

∂y
(4)
1

∂u1

∂y
(4)
1

∂u2













=

(

k cos θ 0
0 −η1 cos θ

)

This time it is invertible since the determinant is non zero.
There is a zero at infinity of order4. Now, we are able to
decouple and linearize the PVTOL as follows:

{

y
(4)
1 = v1

y
(3)
2 = v2

(11)



with the controller defined by equations :


























































η̇1 = η2

η̇2 =
1

k

[

−kv1 sin θ − v2 cos θ + (1− k)θ̇η1 cos θ sin θ+

kθ̇η1 + kθ̇η2 cos θ sin θ − η2 cos
2 θ
]

u1 = η1 + ǫθ̇2

u2 =
1

kη1

[

−kv1 cos θ − v2 sin θ − θ̇η1(sin
2 θ + k cos2 θ)

+η2 sin θ cos θ − kθ̇η2(cos
2 θ + 2 sin2 θ)

]

The controller exhibits the same singularity as the controller
for flat outputs :η1 = 0. It also has an internal dynamics of
order 2 (η1, η2). This dynamics has not to be confused with
the internal dynamics of the PVTOL (calledσ in the next
parts) which is of dimension 1 for these outputs. System
(11) is linear, and can be stabilized by pole placement.
The objective of the next paragraph is to demonstrate that
for some values ofk we can stabilize system (1). For
that purpose, a suitable design of the zero-dynamics was
achieved.

B. Zero-dynamics stability

y1 and y2 have, respectively, zeros at infinity of order 1
and 4, so the system is only partially linearized and there
remains an internal dynamics of order1. In this section,
the zero-dynamics is computed, and its stability is studied.
Let us call σ the internal dynamics. The coordinateσ
represents the internal dynamics of system (1) (with outputs
y1 and y2) if and only if there exists a local diffeomor-
phism φ betweenXs = (x, ẋ, z, ż, θ, θ̇, η1, η2) and ζ =

(y1, ẏ1, ÿ1, y
(3)
1 , y2, ẏ2, ÿ2, σ). There are a lot of solutions so

to make the computations easier, we choose to takeσ of
relative degree greater or equal to 2. With this condition,
we have limited the possibilities without losing generality
because we are actually looking for the zero-dynamics and
not the internal dynamics. Even if there are plenty of internal
dynamics, there is only one zero-dynamics associated with
these outputs. After some computations, we notice thatz

complies with these two constraints so we now consider
σ = z. The objective is to expresṡz as a function of
ζ = (y1, ẏ1, ÿ1, y

(3)
1 , y2, ẏ2, ÿ2, z), and then to cancel outputs

and their derivatives to exhibit the equation of the zero-
dynamics. This the classical way to find the expression of
a zero-dynamics. In our case, it is easier to show first that
when zero-dynamics is reached,θ must be equal to zero.
This result is demonstrated by a contradiction proof :
Let’s suppose that∃ t0 such thatθ(t0) 6= 0 (moduloπ).
When the outputs and their derivatives are cancelled, equa-
tion (8) becomes0 = − sin θ(t0)η1(t0) and it follows that

η1(t0) = 0 (12)

Using this equality in (9) results in0 = − sin θ(t0)η̇1 so

η̇1(t0) = 0 (13)
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Fig. 2. Aggressive maneuver with strong coupling :ǫ = 2

Finally, the contradiction0 = −1 is found by substituting
(12) and (13) in

ÿ2 = η1 cos θ − kθ̇η1 sin θ + kη̇1 cos θ − 1

The negation of the initial claim leads to desired result :

θ = 0 (moduloπ) (14)

when zero-dynamics is reached. A similar argument gives

θ̇ = 0 (15)

From (3) and (14), we know thatx is always stabilized
independently of the value of the constant k. From (4) and
(14), we draw the zero-dynamics equation:

ż +
1

k
z = 0 (16)

This is a simple linear ODE of order 1 with constant
coefficients.

• k > 0: (16) is asymptotically stable.
• k < 0: (16) is unstable.

This result was expected regarding the definition ofy2: y2 =
zf + kżf − ǫ. Indeed, stabilizingy2 implies zf + kżf = ǫ

so the sign of the constantk governs the stability ofzf and
consequently the stability ofz. If the internal dynamicsz is
stable, we see from (5) and (15) thatẋ also tends to zero.
To sum up,(y1, ẏ1, ÿ1, y

(3)
1 , y2, η1, η2) → 01×7, andk > 0

results in(x, ẋ, z, ż, θ, θ̇) → 01×6. It means that stabilizing
(11), and choosingk > 0 induces the stabilization of system
(1) to the origin.

IV. SIMULATION AND COMPARISON WITH FLAT OUTPUTS

Simulations were carried out to check the controller ef-
ficiency for a large coupling parameter. We setǫ = 2,
k = 0.1, and an aggressive maneuver is imposed. The result
is displayed on Figure 2. The initial position of the aircraft
is in red. We observe the non-minimum phase character
of outputsx and z because thex response begins in the
opposite direction. Besides, the controller behaves well even
for a large value ofǫ. This is important because the first
studies did not tolerate large coupling parameters since they
were synthesized on an approximate model (ǫ = 0) [1] and
[7]. The controller has also been checked to be robust with
respect to variations ofǫ: for ǫ values around 1, the system
is stabilized even for deviations up to 50%. Figures 3, 4,
and 5 show the influence of parameter k on the stabilization.



For these simulations, we choseǫ = 0.5, x0 = 10, z0 =
2 and other initial conditions are in 0. We notice that
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Fig. 4. Influence of k on altitude z

parameterk has little influence onx: all controllers have
approximately the same response time. This is coherent since
k does not appear iny1. On the contrary, the higherk, the
higher the response time forz: this confirms the result (16).
This is interesting to notice that a modification onk has
almost no influence on thex dynamics but strongly affectsz
dynamics. It is theθ dynamics which is modified and cause
the slowing down or the acceleration of thez dynamics.
This is really useful to be able to control precisely thez
dynamics of an aircraft to take off and land properly. That
is why we chose(y1, y2) = (xf , zf + kżf − ǫ) and not
(y1, y2) = (zf , xf + kẋf − ǫ) which would have lead to a
similar zero-dynamics but inx. With these graphs, we cannot
analyze precisely the response time because equation (16) is
valid only wheny1 and y2 are stabilized to zero. For all
these responses we make sure that commandsu1 andu2 do
not go through singularities and keep low level. We also
make sure thatu1 remains positive because it represents
the thrust. On Figures 6 and 7, the controller in Section
III (with k = 0.1 and k = 1) is compared with the one
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derived from flat outputs. The same pole placement is used
for both controllers. Figure 6 confirms thatx dynamics is
similar for the three controllers becausey1 does not depend
on k and y1 = xf . Figure 7 shows that fork = 0.1, the
controller designed from the outputs with the structure (4,1)
is faster than the controller from flat outputs. This advantage
is accentuated because it can be seen on Figures 8 and 9 that
it requires less effort to achieve better result. The difference
is clear foru1 but it is still more important foru2 where the
"flat" controller needs four times more energy than "(4,1)"
controller. Note that time scale on Figures 8 and 9 has been
voluntary reduced to focus on the beginning of the maneuver
where the variations are the most important.
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V. CONCLUSION

In this paper, outputs have been computed with a structure
at infinity (4,1) that partially linearize the PVTOL aircraft.
The resulting zero-dynamics was computed, and we have
demonstrated that the stability was governed by the sign ofk

and that the convergence speed was governed by the value of
k. Simulations results are in accordance with our assertions,
and have shown that the controller stabilizes the aircraft
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even with a strong input coupling. Furthermore, for small
values ofk, the "(4,1)" controller has better performance for
z dynamics with lower input requirements. Finally, results
are achieved with the possibility to adjustz dynamics. More
generally, a new perspective for dealing with zero-dynamics
is offered for general underactuated systems.
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