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We introduce new sufficient conditions for a numerical method to approximate with high order of accuracy the invariant measure of an ergodic system of stochastic differential equations, independently of the weak order of accuracy of the method. We then present a systematic procedure based on the framework of modified differential equations for the construction of stochastic integrators that capture the invariant measure of a wide class of ergodic SDEs (Brownian and Langevin dynamics) with an accuracy independent of the weak order of the underlying method. Numerical experiments confirm our theoretical findings.

Introduction

We consider a system of (Itô) stochastic differential equations (SDEs) dX(t) = f (X(t))dt + g(X(t))dW (t), X(0) = X 0 ,

where X(t) is the solution in the space E, X 0 ∈ E is the initial condition assumed deterministic for simplicity, f : E → E, g : E → E m are smooth, and W (t) is a standard d-dimensional Wiener process. The space E denotes either E = R d or the torus E = T d , and is specified when needed. With the exception of some special cases, the solutions to [START_REF] Abdulle | High order weak methods for stochastic differential equations based on modified equations[END_REF] are not explicitly known, and numerical methods are needed. We first state our results on the torus and then explain extensions to R d . Working on the torus permits to have automatically finite moments of any order for both the exact and numerical solutions of (1), and thus avoid technicalities. We consider a one step numerical integrator for the approximation of (1) at time t = nh of the form

X n+1 = Ψ(X n , h, ξ n ) ( 2 
)
where h denotes the stepsize and ξ n are independent random vectors. The choice behind the numerical method used to approximate (1) depends crucially on the type of the approximation that one wants to achieve. In particular, for the approximation of individual trajectories one is interested in the strong convergence properties of the numerical method, while for the approximation of the expectation of functionals of the solution, one is interested in its weak convergence properties. The numerical approximation (2) of (1), starting from the initial condition X 0 = x ∈ E is said to have local weak order p if for all test functions φ ∈ C ∞ P (E, R) (with all derivatives at all orders of polynomial growth in the case

E = R d ), |E(φ(X 1 )) -E(φ(X(h)))| ≤ C(x, φ)h p+1 , (3) 
for all h sufficiently small, where C(x, φ) is independent of h but depends on x, φ. Under appropriate conditions one can infer "a global weak order p" from the local weak error, also in the R d setting [START_REF] Milstein | Weak approximation of solutions of systems of stochastic differential equations[END_REF] (see [START_REF] Milstein | Stochastic numerics for mathematical physics[END_REF]Chap. 2.2]).

Strong and weak types of convergence relate to the finite time properties of (1) and its numerical approximations. We say that the process X(t) is ergodic if it has a unique invariant measure µ satisfying for each smooth function φ and for any deterministic initial condition X 0 = x, 

Before considering the different sources of error, one needs to make sure that the numerical approximation is itself ergodic. In particular, the case where the coefficients are not globally Lipschitz is particularly challenging and it is still an active research area [START_REF] Milstein | Numerical integration of stochastic differential equations with nonglobally lipschitz coefficients[END_REF][START_REF] Mattingly | Ergodicity for sdes and approximations: locally lipschitz vector fields and degenerate noise[END_REF][START_REF] Roberts | Exponential convergence of Langevin distributions and their discrete approximations[END_REF][START_REF] Shardlow | A perturbation theory for ergodic markov chains and application to numerical approximations[END_REF][START_REF] Talay | Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme[END_REF][START_REF] Hutzenthaler | Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients[END_REF][START_REF] Kopec | Weak backward error analysis for overdamped Langevin processes[END_REF][START_REF] Kopec | Weak backward error analysis for Langevin process[END_REF]. This important question is however not the focus of the present paper as we will rather assume ergodicity of the numerical method. We recall that the numerical method [START_REF] Abdulle | Effectiveness of implicit methods for stiff stochastic differential equations[END_REF] is called ergodic if it has a unique invariant probability law µ h with finite moments of any order and lim

N →∞ 1 N + 1 N n=0 φ(X n ) = E φ(y)dµ h (y), almost surely, (5) 
for all deterministic initial condition X 0 = x and all smooth test functions φ.

We will say that the numerical method (2) has order r ≥ 1 with respect to the invariant measure if |e(φ, h)| ≤ Ch r with e(φ, h) := lim

N →∞ 1 N + 1 N n=0 φ(X n ) - E φ(y)dµ(y), (6) 
where C is independent of h small enough and X 0 . In the sequel, we will assume that the ergodic measure µ has a density function ρ ∞ . The study of the error e(φ, h) in approximating the invariant measure, its relation with the weak error and the construction of numerical methods with high order of convergence with respect to the invariant measure is the main focus of our paper. We mention that various papers related to the study of e(φ, h) have appeared in the literature. In [START_REF] Talay | Second Order Discretization Schemes of Stochastic Differential Systems for the Computation of the Invariant Law[END_REF] an error estimate for e(φ, h) was established for a variety of different numerical methods. In addition, in [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF] with a use of a global weak error expansion, an expansion of (6) in powers of h was derived for Euler-Maruyama and the Milstein methods. This allowed the use of extrapolation techniques to further reduce the bias in the calculation of the error e(φ, h) between the numerical time average and its true value.

The error e(φ, h) was also the subject of study of [START_REF] Mattingly | Convergence of numerical time-averaging and stationary measures via poisson equations[END_REF]. Given an ergodic integrator of weak order p for an ergodic SDE (1), it is shown that it has order r ≥ p for the invariant measure [START_REF] Burrage | Accurate stationary densities with partitioned numerical methods for stochastic differential equations[END_REF]. In [START_REF] Abdulle | Effectiveness of implicit methods for stiff stochastic differential equations[END_REF] an example of integrator with r > p is given: for the so-called stochastic θ-method with θ = 1/2 applied to the Orstein-Uhlenbeck process, we have e(φ, h) = 0 despite the weak order two of the method. Related works where such a mismatch is mentioned are [START_REF] Burrage | Accurate stationary densities with partitioned numerical methods for stochastic differential equations[END_REF][START_REF] Bou-Rabee | Long-run accuracy of variational integrators in the stochastic context[END_REF][START_REF] Leimkuhler | Rational construction of stochastic numerical methods for molecular sampling[END_REF]. Such phenomena where a low order integrator preserves certain invariants with higher order is classical in geometric integration of deterministic ODEs [START_REF] Hairer | Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations[END_REF][START_REF] Leimkuhler | Simulating Hamiltonian Dynamics[END_REF]. For instance, a symplectic Runge-Kutta method of order p preserve the energy of Hamiltonian systems at the same order p without drift over long times, but it also conserves exactly quadratic first integrals.

In this paper, we present two results for the numerical approximation of ergodic nonlinear systems of SDEs. Firstly, we derive new sufficient conditions for an ergodic integrator to have high order [START_REF] Burrage | Accurate stationary densities with partitioned numerical methods for stochastic differential equations[END_REF] for the invariant measure, possibly larger than its weak order of accuracy [START_REF] Abdulle | Long time accuracy of lie-trotter splitting methods for second order stochastic dynamics[END_REF]. A crucial ingredient is a new expansion of the error e(φ, h) based on the work [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF], and the analysis in [START_REF] Debussche | Weak backward error analysis for SDEs[END_REF][START_REF] Kopec | Weak backward error analysis for Langevin process[END_REF][START_REF] Kopec | Weak backward error analysis for overdamped Langevin processes[END_REF] of numerical invariant measures. Secondly, we introduce a systematic procedure to design high order integrators for the invariant measure based on modified differential equations for SDEs proposed in [START_REF] Abdulle | High order weak methods for stochastic differential equations based on modified equations[END_REF]. Our new methodology is based on modified differential equations, which is a fundamental tool for the study of geometric integrators for ODEs [START_REF] Hairer | Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations[END_REF][START_REF] Leimkuhler | Simulating Hamiltonian Dynamics[END_REF]. It was recently extended to SDEs in [START_REF] Zygalakis | On the existence and the applications of modified equations for stochastic differential equations[END_REF][START_REF] Debussche | Weak backward error analysis for SDEs[END_REF] for the backward error analysis of stochastic integrators and in [START_REF] Abdulle | High order weak methods for stochastic differential equations based on modified equations[END_REF] for the construction of high weak order integrators. The integrators designed using the proposed framework involve high-order derivatives of the drift and diffusion functions which can make the integrators costly and inefficient in general for large systems. We show however that Runge-Kutta type formulation of these schemes can also be constructed to avoid the such derivatives.

The paper is organized as follows. In Section 2, we present the framework used for the analysis and based on the backward Kolmogorov and Fokker-Planck equations. In Section 3, we derive our main results: sufficient order conditions for the invariant measure of an ergodic integrator and a construction procedure of high order integrators based on modified differential equations. The extension of our results to R d is discussed in Section 4. In Section 5, we apply our methodology and construct a range of new integrators based on the stochastic θ-method for Brownian dynamics. Finally in Section 6, we present various numerical investigations, that illustrate the behaviour of our new integrators and corroborate the claimed orders of convergence.

Preliminaries

In this section, we describe some preliminary results related to ergodicity of SDEs and their numerical approximations, using the standard framework of the backward Kolmogorov and Fokker-Planck equations. We also recall the formal expansion of the solution of the backward Kolmogorov equation, the weak Taylor expansion for a numerical integrator and a series expansion of the numerical invariant measure based on backward error analysis.

Setting

We start by recalling that the differential operator L

L := f • ∇ + 1 2 gg T : ∇ 2 , (7) 
where ∇ 2 φ denotes the Hessian of φ is called the generator of the SDE (1). 1 We next state our basic assumptions.

Assumption 2.1. We assume the following:

• f, g are C ∞ functions on the torus T d ;

• the generator L is elliptic or hypo-elliptic;

• in the case where L is hypo-elliptic, we further assume the uniqueness of the invariant measure of (1).

Under these assumptions, there exists a unique the invariant measure µ. It has a density function ρ ∞ which is the unique solution of the equation

L * ρ ∞ = 0, (8) 
where L * is the L 2 -adjoint of the generator L, given by

L * φ = -∇ y • (f φ) + 1 2 gg T : ∇ 2 φ. (9) 
We also have a unique solution for u(t, x) = E (φ(X(t))|X 0 = x) satisfying the backward Kolmogorov equation

∂u ∂t = Lu, u(x, 0) = φ(x), (10) 
where φ ∈ C ∞ (T d , R). If we denote by ρ(y, t) the probability density of the random variable X(t) defined by (1) with initial condition X 0 = x, we have

E (φ(X(t))|X 0 = x) = E φ(y)ρ(y, t)dy, (11) 
where ρ(y, t) is the solution of the Fokker-Planck equation

∂ρ ∂t = L * ρ, (12a) 
ρ(y, 0) = δ(y -x), (12b) 
where δ denotes the Dirac measure in zero and L * is given by [START_REF] Hairer | Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations[END_REF]. We further assume that there exists a constant λ and for all integer k ≥ 0 constants C k , κ k such that for all t ≥ 0 u(t, •) -

T d φ(y)ρ ∞ (y)dy C k ≤ C k (1 + t κ k )e -λt φ C k , (13) 
where v(t, •) C k denotes the norm of the function v(x, t) and its derivatives with respect to x up to order k. Notice that setting t → ∞ in (13) and using equation [START_REF] Hasminskii | Stochastic stability of differential equations[END_REF] yields

lim t→∞ u(x, t) = φ(x) + ∞ 0 Lu(t, x)dt = T d φ(y)ρ ∞ (y)dy. ( 14 
)
We refer to [START_REF] Bally | The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function[END_REF][START_REF] Mattingly | Convergence of numerical time-averaging and stationary measures via poisson equations[END_REF][START_REF] Debussche | Weak backward error analysis for SDEs[END_REF][START_REF] Kopec | Weak backward error analysis for Langevin process[END_REF][START_REF] Kopec | Weak backward error analysis for overdamped Langevin processes[END_REF] for a discussion of the Assumptions 2.1 and (13). Assumption 2.1 is naturally satisfied for Brownian and Langevin dynamics on the torus, but also in R d under appropriate smoothness and growth assumptions on the potential involved (see [START_REF] Kopec | Weak backward error analysis for overdamped Langevin processes[END_REF][START_REF] Kopec | Weak backward error analysis for Langevin process[END_REF][START_REF] Mattingly | Ergodicity for sdes and approximations: locally lipschitz vector fields and degenerate noise[END_REF]). The Brownian dynamics equation describes the motion of a particle in a potential subject to thermal noise [START_REF] Risken | The Fokker-Planck equation[END_REF][START_REF] Gardiner | Handbook of stochastic methods[END_REF] 

dX(t) = -∇V (X(t))dt + σdW (t), (15) 
where V : T d → R is a smooth potential, σ > 0 is a constant, and W = (W 1 , . . . , W d ) T is a standard d-dimensional Wiener process. Assuming ergodicity, the Gibbs density function of the invariant measure is given by

ρ ∞ = Ze -2V (x)/σ 2 , ( 16 
)
where Z is a renormalization constant such that T d ρ ∞ dx = 1. We also mention the Langevin equation which has the invariant measure density with the same form [START_REF] Leimkuhler | Simulating Hamiltonian Dynamics[END_REF] where V (p, q) = β H(p, q) and H(p, q) = 1 2 p 2 + U (q) denotes the Hamiltonian. It describes the motion of a particle in the potential U (q) subject to linear friction and molecular diffusion [START_REF] Risken | The Fokker-Planck equation[END_REF][START_REF] Gardiner | Handbook of stochastic methods[END_REF] dq

= pdt, dp = -(γp + ∇U (q))dt + 2β -1 γdW (t) (17) 
where q(t) ∈ T d , p(t) ∈ R d , U : T d → R is a smooth potential, γ, β > 0 are constants, and W = (W 1 , . . . , W d ) T is a standard d-dimensional Wiener process.

Series expansion of the numerical invariant measure

A formal Taylor series expansion in terms of the generator operator L of the Markov process is derived in [START_REF] Zygalakis | On the existence and the applications of modified equations for stochastic differential equations[END_REF] for u and a rigorous finite term expansion is proposed in [START_REF] Debussche | Weak backward error analysis for SDEs[END_REF] namely

u(x, h) -φ(x) = l j=1 h j j! L j φ(x) + h l+1 r l (f, g, φ)(x), (18) 
where for all positive integer l, the remainder r l (f, g, φ) is bounded on the torus. In terms of the numerical solution (2) one can define for all smooth test function φ,

U (x, h) = E(φ(X 1 )|X 0 = x)), (19) 
for the expectation at time h. We make the following regularity and consistency assumption on the integrator, which is easily satisfied by any reasonable numerical method.

Assumption 2.2. We assume that (19) has a weak Taylor series expansion of the form,

U (x, h) = φ(x) + hA 0 (f, g)φ(x) + h 2 A 1 (f, g)φ(x) + . . . , (20) 
where A i (f, g), i = 0, 1, 2, . . . are linear differential operators with coefficients depending smoothly on the drift and diffusion functions f, g, and their derivatives (and depending on the choice of the integrator). In addition, we assume that A 0 (f, g) coincides with the generator L given in [START_REF] Debussche | Weak backward error analysis for SDEs[END_REF], which means that the method has (at least) local order one in the weak sense,

A 0 (f, g) = L. (21) 
Example 2.3. Consider the stochastic θ-method [START_REF] Higham | Mean-square and asymptotic stability of the stochastic theta method[END_REF] for (1) where g = σI and d = m (additive noise case) defined as

X n+1 = X n + h(1 -θ)f (X n ) + θf (X n+1 ) + σ √ hξ n . (22) 
For θ = 0, this scheme coincides with the explicit Euler-Maruyama method while for θ = 0 it is implicit, i.e. it requires the resolution of a nonlinear system at each timestep. A straightforward calculation yields that the differential operator A 1 in (20) is given by

A 1 φ = 1 2 φ ′′ (f, f ) + σ 2 2 d i=1 φ ′′′ (e i , e i , f ) + σ 4 8 d i,j=1
φ (4) (e i , e i , e j , e j )

+ θφ ′ (f ′ f + σ 2 2 d i=1 f ′′ (e i , e i )) + θσ 2 2 d i=1 φ ′′ (f ′ e i , e i ), (23) 
where e 1 , . . . , e d denotes the canonical basis of R d and φ ′ (•), φ ′′ (•, •), φ ′′′ (•, •, •), . . ., are the derivatives of φ which are linear, symmetric bilinear, trilinear, . . . , forms, respectively. In

dimension d = 1, it reduces to A 1 φ = 1 2 f 2 φ ′′ + σ 2 2 f φ ′′′ + σ 4 8 φ (4) +θ(f ′ f φ ′ + σ 2 2 f ′′ φ ′ + σ 2 2 f ′ φ ′′ ).
Since on the torus, all numerical moments are automatically bounded, Assumption 2.2 immediately implies that we have for all φ ∈ C ∞ (T d , R) the rigorous expansion

U (x, h) = φ(x) + l i=0 h i+1 A i (f, g)φ(x) + h l+2 R l (f, g, φ)(x) (24) 
where for all positive integers l, the remainer R l (f, g, φ) is bounded on the torus. We next recall the main result in [START_REF] Debussche | Weak backward error analysis for SDEs[END_REF], which permits to expand the numerical invariant measure µ h of an ergodic method in series with respect to h. The idea, originating from backward error analysis for ODEs [START_REF] Hairer | Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations[END_REF][START_REF] Leimkuhler | Simulating Hamiltonian Dynamics[END_REF], is to construction a modified generator given as a formal series

L = L + i≥1 h i L i such that U (h, x) in (20) satisfies formally U (x, h) -φ(x) = j≥1 h j j! L j φ(x).
The operators L n can be computed recursively as

L n = A n - 1 2 (LL n-1 + L n-1 L + . . .) -• • • - 1 (n + 1)! L n+1 (25) 
where A i , i = 1, • • • , n are the differential operators defined in [START_REF] Milstein | Stochastic numerics for mathematical physics[END_REF]. Equation [START_REF] Roberts | Exponential convergence of Langevin distributions and their discrete approximations[END_REF] has been derived in [START_REF] Zygalakis | On the existence and the applications of modified equations for stochastic differential equations[END_REF] in the framework of modified equations and coincides with an expression used in [START_REF] Debussche | Weak backward error analysis for SDEs[END_REF] involving the Bernoulli numbers.

Lemma 2.4. [START_REF] Debussche | Weak backward error analysis for SDEs[END_REF] Let E = T d and suppose that Assumptions 2.1, (13) and 2.2 hold. Consider L n the operators defined in [START_REF] Roberts | Exponential convergence of Langevin distributions and their discrete approximations[END_REF]. Then there exists a sequence of functions (ρ n (x)) n≥0 such that ρ 0 = ρ ∞ and for all n ≥ 1, T d ρ n (x)dx = 0 and

L * ρ n = - n l=1 (L l ) * ρ n-l . ( 26 
)
For any positive integer M , setting

ρ h M (x) = ρ ∞ (x) + M n=1 h n ρ n (x),
then there exists a constant C(M, φ) such that for all φ ∈ C ∞ (T d , R),

T d φ(x)dµ h (x) - T d φ(x)ρ h M (x)dx ≤ C(M, φ)h M +1 , (27) 
where C(M, φ) is independent of h.

Main results: high order approximation of invariant measures

In this section, we present our methodology for constructing integrators of weak order p that approximate the ergodic averages on the torus E = T d with order of at least p + k, with k ≥ 1. In Section 3.1, we provide a characterization of numerical methods with high order invariant measure. We then introduce in Section 3.2 a framework based on modified equations to construct numerical method with high order invariant measure. Extensions of our results to R d are discussed in Section 4.

A characterization of high order numerical invariant measure

We observe that Lemma 2.4 not only provides an expansion for the numerical invariant measure in powers of h, but also provides an explicit way for calculating the corrections ρ n . In Theorem 3.2, we prove that a sufficient condition for a numerical integrator of weak order p to have r-th order of convergence for the ergodic averages is that Assumption 2.2 holds with

A * j ρ ∞ = 0, for j = 1, • • • r -1. ( 28 
)
Remark 3.1. An interpretation of (28) is that the invariant measure µ is invariant through one step of the numerical integrator up to a O(h r ) error. Precisely,

E(φ(X 1 )|X 0 ∼ µ) - T d φ(x)dµ(x) ≤ Ch r
where C is independent of h but depends on the test function φ ∈ C ∞ (T d , R).

An obvious way to achieve [START_REF] Talay | Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme[END_REF] is by choosing a method of weak order r (which implies A * j ρ ∞ = 0 for all j < r, since (j + 1)!A j = L j+1 ), but as shown below, we can also achieve this by using a numerical integrator only of weak order one. For example, ρ 1 and ρ 2 in Lemma 2.4 satisfy

L * ρ 1 = -L * 1 ρ ∞ , L * ρ 2 = -L * 1 ρ 1 -L * 2 ρ ∞ where L * 1 = A * 1 -1 2 (L * ) 2 .
Assuming A * 1 ρ ∞ = 0 and using (8) then yields L * 1 ρ ∞ = 0 and thus ρ 1 = 0. We obtain

L * ρ 2 = -A * 2 ρ ∞ + 1 2 (L * L * 1 + L * 1 L * ) ρ ∞ + 1 6 (L * ) 3 ρ ∞ = -A * 2 ρ ∞ ,
and thus ρ 2 = 0 if in addition A * 2 ρ ∞ = 0. We thus see using [START_REF] Talay | Second Order Discretization Schemes of Stochastic Differential Systems for the Computation of the Invariant Law[END_REF] with M = 2 that if a weak first order method satisfies A * 1 ρ ∞ = A * 2 ρ ∞ = 0 then its order of convergence for the ergodic averages is 3. More generally, we have the following result. Theorem 3.2. Consider the SDE (1) on T d satisfying Assumptions 2.1 and (13), and solved by an ergodic numerical method satisfying Assumptions 2.2 and (28). Then it has (at least) order r in (6) for the invariant measure. More precisely the invariant measure error e(φ, h) in [START_REF] Burrage | Accurate stationary densities with partitioned numerical methods for stochastic differential equations[END_REF] 

satisfies for all φ ∈ C ∞ (T d , R) and h → 0, e(φ, h) = h r ∞ 0 T d u(x, t)A * r ρ ∞ (x)dx + O(h r+1 )
where u(x, t) solves the backward Kolmogorov equation [START_REF] Hasminskii | Stochastic stability of differential equations[END_REF].

Proof. We start our proof by noticing on the one hand that since our numerical method is assumed ergodic, lim

N →∞ 1 N + 1 N n=0 φ(X n ) = T d φ(y)dµ h (y),
for all deterministic initial conditions X 0 = x. Thus, in order to prove the theorem one needs to bound the difference

T d φ(y)dµ h (y) - T d φ(y)ρ ∞ (y)dy.
On the other hand, Lemma 2.4 allows to expand ρ h M (y) in powers of h and allows for an explicit characterization of each term in the expansion. Using ( 8), [START_REF] Roberts | Exponential convergence of Langevin distributions and their discrete approximations[END_REF], and (26), we prove by induction on j that L * ρ j = A * j ρ ∞ = 0 and ρ k = 0 for j = 1, . . . , r -1. Finally, using equation ( 27) with M = r, observing that ρ h r (y) = ρ ∞ (y) + ρ r (y) implies

T d φ(y)dµ h (y) - T d φ(y)ρ ∞ (y)dy -h r T d φ(y)ρ r (y)dy ≤ Ch r+1 ,
where C depends on r, φ but is independent of h. Using ( 14) and T d ρ r (x)dx = 0, we deduce

T d φ(y)ρ r (y)dy = - ∞ 0 T d Lu(t, y)ρ r (y)dydt = ∞ 0 T d u(t, y)A * r ρ ∞ (y)dydt
where we used L * ρ r = -A * r ρ ∞ in the last identity. This concludes the proof.

Remark 3.3. Under the hypotheses of Theorem 3.2, we may also deduce high accuracy results in finite time. Following [7, Thm. 2.1], there exists constants C, λ, κ > 0 such that for all k ≥ 0,

E(φ(X k )) - T d φ(x)ρ ∞ (x)dx ≤ C((1 + |t k | κ )e -λt k + h r )
where t k = kh, the constants C, λ, κ are independent of k, h, and h is assumed small enough (and C depends on φ).

High order numerical methods for the invariant measure based on modified equations

Our second main result is the derivation of a framework for the construction of numerical methods with high order (6) for the numerical invariant measure. We explain how Theorem 3.2 permits to construct high order integrators for the invariant measure by considering the framework of modified differential equations, an approach first considered in [START_REF] Zygalakis | On the existence and the applications of modified equations for stochastic differential equations[END_REF][START_REF] Debussche | Weak backward error analysis for SDEs[END_REF] in the context of backward error analysis for the study of stochastic integrators, and extended in [START_REF] Abdulle | High order weak methods for stochastic differential equations based on modified equations[END_REF] for the construction of high weak order integrators. Precisely, given an ergodic integrator (2) with order p for the invariant measure of for an ergodic system of SDEs (1), we search for modified vector fields f h and g h of the form

f h = f + h p f p + . . . + h p+m-1 f p+m-1 , g h = g + h p g p + . . . + h p+m-1 g p+m-1 ,
such that the integrator (2) applied to the modified SDE dX = f h dt + g h dW has order r = p + m in (6) with respect to the invariant measure. To this aim, we consider an ergodic SDE (1) and assume that it has an invariant measure whose Gibbs density function has the form

ρ ∞ (x) = Ze -V (x) (29) 
where Z = ( T d e -V (x) dx) -1 is a normalization constant. We assume that the potential function V :

T d → R is a smooth function in C ∞ (T d , R
). Notice that the above assumptions on ρ ∞ are automatically satisfied if ρ ∞ is a smooth strictly positive function on the torus T d . Furthermore, in the case E = R d , such an assumption is satisfied in the case of Brownian and Langevin dynamics (see Section 5).

The following lemma shows, using integration by parts, that for any high order linear differential operator B with smooth coefficients, there exist an order one differential operator B such that B * ρ ∞ = B * ρ ∞ . For instance, for the differential operator A 1 of order 4 given in [START_REF] Milstein | Computing ergodic limits for Langevin equations[END_REF] for the θ-method applied to Brownian dynamics [START_REF] Leimkuhler | Rational construction of stochastic numerical methods for molecular sampling[END_REF], one can construct a vector field

f 1 such that A * 1 ρ ∞ = div(f 1 ρ ∞ ) (see more details in Prop. 5.1 in Section 5). Lemma 3.4. For all φ, w ∈ C ∞ (T d , R), consider the linear differential operator Bφ := w ∂ j φ ∂x k 1 • • • ∂x k j , (30) 
where k i , i = 1, . . . , j are indices with 1 ≤ k i ≤ d. Then, the following identity holds

T d (Bφ)ρ ∞ dx = T d ( Bφ)ρ ∞ dx, for all φ ∈ C ∞ (T d , R), ( 31 
)
where B is the order one linear differential operator given by

Bφ := D k 2 • • • • • D k j (w) ∂φ ∂x k 1
with D i , 1 ≤ i ≤ d the linear differential operator defined as

D i w := w ∂V ∂x i - ∂w ∂x i , ( 32 
)
where V is the potential involved in the density [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF].

Proof. Integrating by parts successively with respect to x k 2 , . . . , x k j , we obtain

T d Bφρ ∞ dx = T d ∂ j φ ∂x k 1 • • • ∂x k j wρ ∞ dx = (-1) j-1 T d ∂φ ∂x k 1 ∂ j-1 (wρ ∞ ) ∂x k 2 • • • ∂x k j dx
We conclude using repeatedly the identity

∂(wρ ∞ ) ∂x i = -(D i w)ρ ∞ for all w and all i = k 2 , . . . , k j (a consequence of ∂ρ∞ ∂x i = -∂V ∂x i ρ ∞ ).
The above lemma is a crucial ingredient to prove the following theorem on the construction of numerical integrators that approximate (1) with high order for the invariant measure.

Theorem 3.5. Consider an ergodic system of SDEs (1) in T d with an invariant measure of the form (29) and a numerical method (2) or order p for the invariant measure, and satisfying Assumption 2.2. Then, for all fixed m ≥ 1, there exist a modified SDE of the form dX = (f + h p f p + . . . + h p+m-1 f p+m-1 )dt + gdW (33)

such that the numerical method applied to this modified SDE satisfies

A * k (f + h p f p + . . . + h p+m-1 f p+m-1 , g)ρ ∞ = 0 k = p, . . . , p + m -1. ( 34 
)
Furthermore, if the numerical method applied to this modified SDE is ergodic, then this yields a method of order (at least) r = p + m in (6) for the invariant measure of (1).

Proof. The construction of the vector fields f k , k < p + m is made by induction on k.

Assume that f j , j < k has been constructed. Consider the scheme obtained by applying the numerical method to the modified SDE

dX = (f + . . . + h k-1 f k-1 )dt + gdW
and the corresponding weak expansion [START_REF] Risken | The Fokker-Planck equation[END_REF] involving the differential operators 

A j (f +. . .+ h k-1 f k-1 , g), j = 1,
(f + . . . + h k-1 f k-1 , g)ρ ∞ = A * k ρ ∞ where A k = -f k • ∇, equivalently A * k (f + . . . + h k-1 f k-1 , g)ρ ∞ = div(f k ρ ∞ ). (35) 
Using [START_REF] Milstein | Numerical integration of stochastic differential equations with nonglobally lipschitz coefficients[END_REF] and the definition (7), we have

A * 0 (f + . . . + h k-1 f k-1 + h k f k , g)φ = A * 0 (f + . . . + h k-1 f k-1 , g)φ -h k div(f k φ),
which yields

A * k (f + . . . + h k-1 f k-1 + h k f k , g)φ = A * k (f + . . . + h k-1 f k-1 , g)φ -div(f k φ).
Using (35), this achieves the proof of (34). Applying Theorem 3.2, we conclude that the scheme applied to the modified SDE (33) has order p + m for the invariant measure.

Note that the proof of Theorem 3.5 not only shows the existence of the vector fields f i , but also provide an explicit way for calculating them. This is exemplified in Section 5, where we discuss long time integrators for Brownian and Langevin dynamics.

Extension to R d

In this section, we explain how the results of Theorems 3.2 and 3.5 derived on the torus can be generalized to R d .

Basic tools

We denote C ∞ P (R d , R) the set of C ∞ functions whose derivatives up to any order have a polynomial growth of the form

|φ(x)| ≤ C(1 + |x| s ) ( 36 
)
for some constants s and C independent of x. For simplicity, following [29, Lemma 2], we assume that f, g in ( 1) are C ∞ with bounded derivatives up to any order. This together with the assumption φ(x) ∈ C ∞ P (R d , R) implies that the backward Kolmogorov equation (10) has a unique smooth solution u(x, t) ∈ R d whose derivatives up to any order have a polynomial growth with respect to x ∈ R d . This makes the Taylor expansion (18) also rigorous in R d with a remainder with a polynomial growth with respect to x.

In addition, we make the following assumption which guaranties that the numerical moments of all orders remain bounded along time.

Assumption 4.1. We assume that the numerical integrator [START_REF] Abdulle | High order weak methods for stochastic differential equations based on modified equations[END_REF] 

satisfies for all x ∈ R d that |E(X 1 -X 0 |X 0 = x)| ≤ C(1 + |x|)h, |X 1 -X 0 | ≤ M (1 + |X 0 |) √ h, ( 37 
)
where C is independent of h small enough and M is a random variable that has bounded moments of all orders independent of h and X 0 .

In addition, assuming that Assumption 2.2 holds for all φ ∈ C ∞ P (R d , R) immediately implies for all φ ∈ C ∞ P (R d , R) that the numerical solution U (x, h) = E(φ(X 1 )|X 0 = x) has the rigorous expansion

U (x, h) = φ(x) + l i=0 h i+1 A i (f, g)φ(x) + h l+2 R l (f, g, φ)(x)
for all positive integers l, with a remainder satisfying |R l (f, g, φ)(x)| ≤ C l (1 + |x| k l ) for some constants C l , k l . We also deduce that the moments of the numerical solution are uniformly bounded, as stated in the following lemma, shown in the proof of [START_REF] Milstein | Stochastic numerics for mathematical physics[END_REF] 

E |X n | k ≤ C k e D k tn , with t n = nh. ( 38 
)
The following theorem permits to infer the global weak order of convergence from the local order p of convergence of a given numerical integrator. Using Assumption 2.2 in R d , the local weak order p of the numerical scheme can be written out as

E(φ(X(h))) -E(φ(X 1 )) = h p+1 L p+1 (p + 1)! -A p φ(X 0 ) + O(h p+2 ). (39) 
Theorem 4.3 combines results derived by Talay and Milstein. Precisely, the expression (40) has been proved in [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF] for specific methods (e.g., he Euler-Maruyama or the Milstein methods), while the general procedure to infer the global weak order from the local weak order is due to Milstein [START_REF] Milstein | Weak approximation of solutions of systems of stochastic differential equations[END_REF] 

(R d , R), E(φ(X(T ))) -E(φ(X N )) = h p T 0 E(ψ e (X(s), s))ds + O(h p+1 ) ( 40 
)
where ψ e (x, t) satisfies

ψ e (x, t) = 1 (p + 1)! L p+1 -A p v(x, t), (41) 
with v(x, t) = E(φ(X(T ))|X(t) = x) satisfying ∂v ∂t + Lv = 0, v(x, T ) = φ(x). (42) 
4.2 High order for the numerical invariant measure in R d

In the sequel, we also assume that the solution X(t) of ( 1) is ergodic with an invariant measure µ with density function ρ ∞ that has bounded moments of any order, i.e. for all n ≥ 0,

R d |x| n ρ ∞ (x)dx < ∞. (43) 
These assumptions hold if one supposes the following sufficient conditions (see [START_REF] Hasminskii | Stochastic stability of differential equations[END_REF]).

Assumption 4.4. We assume the following.

1. f, g are of class C ∞ , with bounded derivatives of any order, and g is bounded;

2. the generator L in (7) is a uniformly elliptic operator, i.e. there exists α > 0 such that for all x, ξ ∈ R d , x T g(ξ)g(ξ) T x ≥ αx T x;

3. there exist C, β > 0 such that for all

x ∈ R d , x T f (x) ≤ -βx T x + C.
Using Theorem 4.3 one can obtain a similar expansion to (40) for the difference between the true and the numerical ergodic averages. In particular we have the following theorem which provides an explicit expression of the first term in the error e(φ, h) in ( 6) for the invariant measure. It will next be the key result in deriving integrators that have an order for the invariant measure strictly larger than the weak order of accuracy. Theorem 4.5. Assume that the hypotheses of Theorem 4.3 and Assumption 4.4 hold. Then, if a numerical method of weak order p is ergodic, its invariant measure error in [START_REF] Burrage | Accurate stationary densities with partitioned numerical methods for stochastic differential equations[END_REF] satisfies for all φ ∈ C ∞ P (R d , R) and h → 0, e(φ, h) = -λ p h p + O(h p+1 ) (44)

for any deterministic initial condition, with λ p defined as

λ p = +∞ 0 R d 1 (p + 1)! L p+1 -A p u(y, t)ρ ∞ (y)dydt ( 45 
)
where u(x, t) is the solution of (10).

Proof. The proof is similar to the one found in [29, Theorem 4], with the main difference being that now (40) is used as the starting point of the proof instead of the specific formula for the Euler-Maruyama method used in [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF].

An immediate consequence of Theorem 4.5 is the following result in R d which gives necessary conditions for an ergodic integrator of weak order p to have the higher order p + 1 for the invariant measure. Proof. We consider the identity (45) and use the L 2 -adjoint of the differential operator 1 (p+1)! L p+1 -A p . This implies

λ p = +∞ 0 R d u(y, t) 1 (p + 1)! (L * ) p+1 -A * p ρ ∞ (y)dydt.
Using ( 8) yields (L * ) p+1 ρ ∞ = 0 which concludes the proof.

Theorem 4.7. Consider an ergodic system of SDEs (1) in R d with an invariant measure of the form (29) and a numerical method (2) or order p for the invariant measure, and satisfying Assumption 2.2. Then, there exists a smooth vector field f p such that if the numerical method applied to the modified SDE

dX = (f + h p f p )dt + gdW (46) satisfies A * p (f + h p f p , g)ρ ∞ = 0
. Furthermore, if the numerical method applied to this modified SDE is ergodic and satisfies Assumption 4.1, then it has order (at least) r = p + 1 in (6) for the invariant measure.

Proof. By Assumption 2.2, the differential operator A p in ( 20) is a sum of differential operators of the form [START_REF] Zygalakis | On the existence and the applications of modified equations for stochastic differential equations[END_REF], where w is an expression involving f and g and their derivatives. We observe that Lemma 3.4 remains valid replacing the space C ∞ (T d , R) by C ∞ P (R d , R). It follows that there exists a smooth vector field 21) and the definition (7), we deduce [START_REF] Burrage | Accurate stationary densities with partitioned numerical methods for stochastic differential equations[END_REF], we obtain that the numerical method applied to (46) yields an approximation of order p + 1 for the invariant measure of (1).

f p : R d → R d such that A * p ρ ∞ = A * p ρ ∞ , where A p = -f p • ∇, equivalently A * p ρ ∞ = div(f p ρ ∞ ). Using (
A * p (f + h p f p , g)ρ ∞ = A * p (f, g)ρ ∞ -div(f p ρ ∞ ) = 0. Applying Theorem 4.

Brownian dynamics in R d

The results in [START_REF] Debussche | Weak backward error analysis for SDEs[END_REF] on the torus were recently extended to R d for Brownian and Langevin dynamics in [START_REF] Kopec | Weak backward error analysis for overdamped Langevin processes[END_REF] and [START_REF] Kopec | Weak backward error analysis for Langevin process[END_REF], respectively. The main difficulty is to fullfill Assumption 2.1 and (13) in this context. For Brownian dynamics [START_REF] Leimkuhler | Rational construction of stochastic numerical methods for molecular sampling[END_REF], in the non-globally Lipschtiz setting of semi-convex potentials

V = V 1 + V 2 where V 1 , V 2 ∈ C ∞ P (R d , R) with V 1 convex
and V 2 bounded, assuming the third condition in Assumption 4.4 and (43), it is proved in [START_REF] Kopec | Weak backward error analysis for overdamped Langevin processes[END_REF] that Assumptions 2.1 and (13) holds in R d for all φ ∈ C ∞ P (R d , R), and Assumption 2.2 and the boundedness of numerical moments hold for two specific implicit schemes. 3The implicitness is used in [START_REF] Kopec | Weak backward error analysis for overdamped Langevin processes[END_REF] to guaranty the boundedness of the numerical moments in spite of the fact that ∇V is non globally Lipschiz. Here, we shall rather assume its global Lipschizness using the first condition in Assumption 4.4. This permits to consider a general class of integrators satisfying Assumption 2.2 and Assumption 4.1 which also have bounded numerical moments. We may now state the following lemma which is a variant in the globally Lipschiz case of the main result in [START_REF] Kopec | Weak backward error analysis for overdamped Langevin processes[END_REF]. Lemma 4.8. For Brownian dynamics (15) on R d satisfying the conditions in Remark 4.4, consider a numerical integrator fulfilling Assumptions 2.2, 4.1. Then there exists a sequence of functions (ρ n (x)) n≥0 such that ρ 0 = ρ ∞ and for all n ≥ 1, R ρ n (x)dx = 0 and setting 26), ( 27) hold with T d replaced by R d and for φ ∈ C ∞ P (R d , R).

ρ h M (x) = ρ ∞ (x) + M n=1 h n ρ n (x), (
Based on Lemma 4.8 we may extend Theorem 3.2 in R d for Brownian dynamics.

Theorem 4.9. For Brownian dynamics (15) on R d , assume the hypotheses of Lemma 4.8 and assume that (28) holds for a given r. Then the integrator has order (at least) r in [START_REF] Burrage | Accurate stationary densities with partitioned numerical methods for stochastic differential equations[END_REF] for the invariant measure. More precisely, the invariant measure error in [START_REF] Burrage | Accurate stationary densities with partitioned numerical methods for stochastic differential equations[END_REF] 

satisfies for all φ ∈ C ∞ (R d , R) and h → 0, e(φ, h) = h r ∞ 0 R d u(x, t)A * r ρ ∞ (x)dxdt + O(h r+1 )
where u(x, t) solves the backward Kolmogorov equation [START_REF] Hasminskii | Stochastic stability of differential equations[END_REF].

Analogously, we have the following theorem which extends to Brownian dynamics in R d the statement of Theorem 3.5.

Theorem 4.10. For Brownian dynamics (15) on R d , assume the hypotheses of Lemma 4.8. Assume that the numerical method (2) has order p for the invariant measure. Then, for all fixed m ≥ 1, there exist a modified SDE of the form dX = (f + h p f p + . . . + h p+m-1 f p+m-1 )dt + gdW such that the numerical method applied to this modified SDE satisfies

A * k (f + h p f p + . . . + h p+m-1 f p+m-1 , g)ρ ∞ = 0 k = p, . . . , p + m -1.
Furthermore, if the numerical method applied to this modified SDE is ergodic and satisfies Assumption 4.1, then this yields a method of order (at least) r = p + m in (6) for the invariant measure of (1).

Proof of Theorem 4.9 and Theorem 4.10. The proofs are identical to that of Theorems 4.9 and 3.5, respectively, with the exception that we now rely on Lemma 4.8 in R d instead of Lemma 2.4 in T d .

Remark 4.11. One can extend to arbitrarily high order the extrapolation results described in [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF] for the Euler and the Milstein methods. In particular, under the hypotheses of Theorem 4.3, a straightforward calculation shows that if one considers the Romberg extrapolation

Z h n = 2 p 2 p -1 φ(X h/2 2n ) - 1 2 p -1 φ(X h n ), (47) 
where X h n denotes the numerical solution of weak order p at time T = nh with stepsizes h, then Z h n yields an approximation of weak order p + 1, i.e. |E(φ(X(T ))) -E(Z h n )| ≤ Ch p+1 . Analogously, considering an ergodic method X h n of order p for the invariant measure and under the assumptions of Theorem 3.2 (for E = T d ) and Theorem 4.9 (for E = R d ) the Romberg extrapolation (47) yields an approximation of order p + 1 for the invariant measure, i.e.

lim N →∞ 1 N + 1 N n=0 Z h n - E φ(y)ρ ∞ (y)dy ≤ Ch p+1 .

Examples of high order integrators

We highlight that the Brownian dynamics [START_REF] Leimkuhler | Rational construction of stochastic numerical methods for molecular sampling[END_REF] and the Langevin dynamics [START_REF] Mattingly | Ergodicity for sdes and approximations: locally lipschitz vector fields and degenerate noise[END_REF] are two wide classes of ergodic SDEs that have an invariant measure of the form [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF], with a wide range of applications in different branches of physics, biology and chemistry.

In this section, we shall focus on the class of Brownian SDEs (15) and construct numerical integrators that have low weak order of accuracy but high order with respect to the invariant measure [START_REF] Burrage | Accurate stationary densities with partitioned numerical methods for stochastic differential equations[END_REF]. We emphasize that similar constructions could be obtained in the context of the Langevin equation [START_REF] Mattingly | Ergodicity for sdes and approximations: locally lipschitz vector fields and degenerate noise[END_REF].

For the nonlinear system of SDEs [START_REF] Leimkuhler | Rational construction of stochastic numerical methods for molecular sampling[END_REF], consider the standard θ-method defined in [START_REF] Milstein | Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients[END_REF] where f = -∇V . For general nonlinear systems [START_REF] Milstein | Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients[END_REF], it can be checked that the weak order and the error (6) for the invariant measure coincide: it is 1 for θ = 1/2 and 2 for θ = 1/2. In this latter case, it is shown in [START_REF] Abdulle | Effectiveness of implicit methods for stiff stochastic differential equations[END_REF] that the method samples exactly the invariant measure for linear problems (i.e. e(φ, h) = 0 in (6) if V quadratic), but this is not true for nonlinear systems in general. In this section, we explain using the strategy of modified equations introduced in the previous section how the θ-method can be modified to increase the order (6) of accuracy for the invariant measure for nonlinear systems.

An illustrative example: linear case

As an example, consider first the linear scalar case where V (x) = γx 2 , corresponding to the classical Orstein-Uhlenbeck process,

dX = -γXdt + σdW. (48) 
The exact solution X(t) is a Gaussian random variable satisfying lim t→∞ E(X(t) 2 ) = σ 2 2γ . Considering the Euler-Maruyama method,

x n+1 = x n -γhx n + √ hσξ n , a calculation yields lim n→∞ E(x 2 n ) = σ 2 2γ(1 -γh/2) .
Then, applying the Euler-Maruyama method to the modified SDE

dX = -γ h Xdt + σdW t ,
where γh satisfies γh (1γh h/2) = γ, i.e. for all h ≤ 1/(2γ),

γh = h -1 (1 -1 -2hγ) = γ + hγ 2 2 + h 2 γ 3 2 + 5h 3 γ 4 8 + 7h 4 γ 5 8 + . . . (49) 
yields a method which is exact for the invariant measure (ρ h ∞ = ρ ∞ ), i.e. the left hand side in ( 6) is zero, even-though the approximation has only weak order 2. Notice also that truncating (49) after the h p-1 term and applying the Euler-Maryuama yields a scheme of order p for the invariant measure.

Nonlinear case: modified theta method of order two for the invariant measure

Given a vector field f 1 , consider the θ method applied to the modified SDE dX = (f + hf 1 )dt + σdW , i.e.,

X n+1 = X n + (1 -θ)(f + hf 1 )(X n ) + θ(f + hf 1 )(X n+1 ) + √ hσξ n . (50) 
The following proposition with proof postponed to Appendix states that order two for the invariant measure can be achieved if the corrector f 1 is appropriately chosen.

Proposition 5.1. Let E = R d or T d . Consider the numerical method (50) applied to [START_REF] Leimkuhler | Rational construction of stochastic numerical methods for molecular sampling[END_REF], where

f 1 = -(1 -2θ) 1 2 f ′ f + σ 2 4 ∆f (51) 
Assume Assumptions 2.1 and ( 13) for E = T d , and the hypotheses of Theorem 4.5 for E = R d , respectively. If (50) is ergodic, then it has order r = 2 for the invariant measure in (6).

Remark 5.2. In [START_REF] Abdulle | High order weak methods for stochastic differential equations based on modified equations[END_REF], a modified weak order two θ scheme was constructed for general systems of SDEs with non-commutative noise. In the context of additive noise [START_REF] Leimkuhler | Rational construction of stochastic numerical methods for molecular sampling[END_REF] it has the form

X n+1 = X n + (1 -θ)(f -hf 1 )(X n ) + θ(f -hf 1 )(X n+1 ) + √ hσ(ξ n + h( 1 2 -θ)f ′ (x n )ξ n ).
It can be observed that both the drift and diffusion functions are modified in contrast to the scheme (50) where only the drift function is modified. Notice that for θ = 1/2, we have f 1 = 0 in (51) which is not surprising because in this case, the θ-method has weak order two of accuracy.

Applying the recursive procedure of Theorem 3.5 we may next derive a modification of the θ method of order 3. 

= (f + hf 1 + h 2 f 2 )dt + σdW i.e. X n+1 = X n + hf (X n ) + h 2 f 1 (X n ) + h 3 f 2 (X n ) + √ hξ n , (52) 
where f = -∇V , f 1 is defined in (51) with θ = 0 and f 2 is defined by

f 2 = - 1 2 f ′ f ′ f + 1 6 f ′′ (f, f ) + 1 3 σ 2 i f ′′ (e i , f ′ e i ) + 1 4 σ 2 f ′ ∆f .
Assume Assumptions 2.1 and (13) for E = T d and the hypotheses of Lemma 4.8 for E = R d , respectively. If (52) is ergodic, then it has order r = 3 for the invariant measure in [START_REF] Burrage | Accurate stationary densities with partitioned numerical methods for stochastic differential equations[END_REF].

The proof of Proposition 5.3 is postponed to Appendix.

Remark 5.4. We highlight that integrators with arbitrarily higher order for the invariant measure could be constructed analogously using Theorem 3.5. The statement of Proposition 5.3 can be generalized to the θ-method [START_REF] Milstein | Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients[END_REF] and yield again an order 3 method for the invariant measure, but the calculation becomes rather tedious. In the linear case (48), the obtained scheme reduces to

X n+1 = x n -(hγ + (1 -2θ)h 2 γ 2 2 + (1 -2θ) 2 h 3 γ 3 2 ) (1 -θ)X n + θX n+1 + σ √ hξ n . ( 53 
)
For θ = 1/2, it coincides with the standard θ-method [START_REF] Milstein | Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients[END_REF] which is not surprising because it samples the invariant measure exactly in this linear context [START_REF] Abdulle | Effectiveness of implicit methods for stiff stochastic differential equations[END_REF].

We shall discuss in the next Section 6 derivative free implementations of the new derived schemes.

Numerical experiments

In this section, we illustrate numerically our main results. We consider first the linear case (48) where V (x) = x 2 /2, and compare the Euler-Maruyama method and the modifications of orders 2 (Proposition 5.3, θ = 0). and 3 (Proposition 5.3, θ = 0). In Figure 1, we plot the error e(φ, h) defined in [START_REF] Burrage | Accurate stationary densities with partitioned numerical methods for stochastic differential equations[END_REF] for φ(x) = x 2 (second moment error) and many different stepsizes h. In theory computing one long trajectory suffices, however in practice computing several long trajectories allows also to draw some statistics such as the variance of the error. We therefore approximate the error using the average over 10 long trajectories on a time interval of length T = 10 8 and the deterministic initial condition 4 . X 0 = -2. We observe the expected lines of slopes 1, 2, 3 for the Euler-Maruyama method and the modifications of order 2, 3. We next consider examples of nonlinear problems in E = R d which have non-globally Lipschitz coefficients. We emphasize that our results do not apply in this situation. However, numerical experiments still exhibit the high order convergence of the numerical invariant measure predicted in the Lipschitz case.

In Figure 2, we perform the same convergence experiment in the nonlinear with a quartic potential, either symmetric (left picture) or non-symmetric (right picture). Again, we observe the expected lines of slopes 1, 2, 3 which corroborates Propositions 5.1 and 5.3.

We finally consider the case of Brownian dynamics [START_REF] Leimkuhler | Rational construction of stochastic numerical methods for molecular sampling[END_REF] for the following two dimensional quartic potential 

V (x) = (1 -x 2 1 ) 2 + (1 -x 2 2 ) 2 + x 1 x 2 2 + x 2 5 . ( 54 
(x) = (1 -x 2 ) 2 (symmetric). Right picture: V (x) = (1 -x 2 ) 2 -x/2 (
non-symmetric). Euler-Maruyama method (order 1) and modifications of orders 2 and 3. Error for the second moment Since calculating the derivative f ′ f and ∆f in (50)-( 51) is not convenient in general for multi-dimensional systems and can be computational expensive, we introduce the following Runge-Kutta type scheme for (15)

Y 1 = X n + √ 2σ √ hξ n Y 2 = X n - 3 8 hf (Y 1 ) + √ 2 4 σ √ hξ n X n+1 = X n - 1 3 hf (Y 1 ) + 4 3 hf (Y 2 ) + σ √ hξ n (55) 
where f = -∇V , ξ n,i ∼ N (0, 1) (or alternatively P(ξ n,i = ± √ 3) = 1/6, P(ξ n,i = 0) = 2/3), 15)-(54). Errors for φ(x) = x 2 +y 2 for the Euler-Maruyama method (order 1), and the modifications (55) (order 2) and (56) (order 2 but 3 for linear problems) with T = 10 7 .

are independent random variables. It can be checked straightforwardly that the weak Taylor expansions (20) of the schemes (55) and ( 50)-(51) coincide up to order 2, i.e. they have the same operators A 0 , A 1 and thus the same order 2 in (6) for the invariant measure, and the same weak order 1. This is detailed in the Appendix (see Proposition 8.1).

Our investigations indicate that there does not exist a similar Runge-Kutta type approximation of the scheme (52) with only 3 evaluations of the function f per timestep. We thus propose the following Runge-Kutta type method which has order 2 in (6) for general nonlinear multi-dimensional problems [START_REF] Leimkuhler | Rational construction of stochastic numerical methods for molecular sampling[END_REF], but order 3 for linear problems,

Y 1 = X n + σ √ hξ n Y 2 = X n - h 2 f (Y 1 ) + σ 2 √ hξ n Y 3 = X n + 3hf (Y 1 ) -2hf (Y 2 ) + σ √ hξ n X n+1 = X n - 3 2 hf (Y 1 ) + 2hf (Y 2 ) + 1 2 hf (Y 3 ) + σ √ hξ n (56) 
where f = -∇V and ξ n is a vector of independent random variables with ξ n,j ∼ N (0, 1). We plot in Figure 4 the errors e(φ, h) for φ(x) = x 2 + y 2 for the Euler-Maruyama method, and the modifications (55) and (56). We observe the expected lines of slope 1, 2. Notice that the error constant for the variant (56) is about twice as smaller than the error for (55). The results for the scheme (50) are not included in this plot, but are nearly identical to that of (55).

Conclusion

To achieve high order of convergence in sampling the invariant measure of ergodic nonlinear systems of SDEs, we have proved that the usual approach of using a high weak order method is not necessary. We presented a general methodology based on modified differential equations and inspired by backward error analysis which permits to construct arbitrarily high order methods for approximating the invariant measure of ergodic SDEs, while their standard weak order remains low on short time intervals. The approach was illustrated with several high order integrators applied to Brownian dynamics. In [START_REF] Abdulle | Long time accuracy of lie-trotter splitting methods for second order stochastic dynamics[END_REF], we shall analyze specifically the case of splitting methods for Langevin dynamics to investigate their order of accuracy in sampling the invariant measure, again independently of their standard weak order of convergence.

In [START_REF] Milstein | Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients[END_REF], it is shown in the non globally Lipschitz case, relevant in most applications, that explicit SDE integrators can still be applied successfully by introducing and justifying theoretically the concept of rejecting exploding trajectories. This approach is applied in [START_REF] Milstein | Computing ergodic limits for Langevin equations[END_REF] to weak methods with high order for the efficient calculation of ergodic limits of Langevintype equations. This is done taking advantage of the exponentially fast convergence to ergodic limits, which allows to consider relatively short time interval trajectories rather than a single long one. This approach could be extended straightforwardly to the new class of methods proposed here, with high order for the approximation of invariant measures but a low standard weak order. 5) (f, e i , e i , e j , e j ) + ijk σ 6 48 φ (6) (e i , e i , e j , e j , e k , e k ).

Applying repeatedly integration by parts as in Lemma 3.4 (see the proof of Proposition 5.1) then yields

σ 2 φ ′′ (f ′ e i , f ′ e i ) = φ ′ (-σ 2 f ′′ (e i , f ′ e i ) -f ′ ∇(σ 2 div f + f 2 )) φ ′′ (f, f ′ f ) = -φ ′ (f ′ f ′ f + f ′′ (f, f ) + (div f )f ′ f + 2 σ 2 f 2 f ′ f )
φ ′′ (f, f ′′ (e i , e i )) = -φ ′ (f ′′′ (f, e i , e i ) + (div f )f ′′ (e i , e i ) + 2 σ 2 f 2 f ′′ (e i , e i ))

σ 4 φ (3) (f ′′ (e i , e i ), e j , e j ) = -φ ′ (σ 4 f (4) (e i , e i , e j , e j ) + 4σ 2 f ′′′ (f, e i , e i ) + 2(div f )f ′′ (e i , e i ) + 4 f 2 f ′′ (e i , e i )) 3) (f, f ′ e i , e i ) = -σ 2 φ ′′ (f, f ′′ (e i , e i ))σ 2 φ ′′ (f ′ e i , f ′ e i ) -2φ ′′ (f ′ f, f ) σ 4 φ (4) (e i , e i , f ′ e j , e j ) = -σ 4 φ (3) (f ′′ (e i , e i ), e j , e j ) -2σ 2 φ (3) (f ′ f, e i , e i ) σ 2 φ (4) (f, f, e i , e i ) = -2φ (3) (f, f, f ) -2σ 2 φ (3) (f, f ′ e i , e i ) σ 4 φ (5) (f, e i , e i , e j , e j ) = -2σ 2 φ (4) (f, f, e i , e i )σ 4 φ (4) (e i , e i , f ′ e j , e j ) σ 6 φ (6) (e i , e i , e j , e j , e k , e k ) = -2σ 4 φ (5) (f, e i , e i , e j , e j )

σ 2 φ (3) (f ′ f, e i , e i ) = φ ′ (σ 2 f ′′′ (f, e i , e i ) + 2σ 2 f ′′ (f ′ e i , e i ) + σ 2 f ′ f ′′ (e i , e i ) + 4(f ′ f ′ f + f ′′ (f, f )) + 2(div f )f ′ f + 4 σ 2 f 2 f ′ f ) σ 2 φ (
where sums should be taken over all indices i, j, k = 1, . . . , d in the above formulas (omitted for brevity of the notation). Using the symmetry of f ′ = -∇ 2 V , we have ∇div f = ∆f and ∇( f 2 ) = 2f ′ f in the first equality and we obtain A * 2 ρ ∞ = div(f 2 ρ ∞ ). Theorem 4.9 (for E = R d ) and Theorem 3.5 (for E = T d ) conclude the proof. Proposition 8.1. Consider the method (55) for (15) on the space E = T d (assuming Assumptions (2.1) and (13)) or E = R d (assuming the hypotheses of Theorem 4.5), and assume that it is ergodic. Then, (55) has order r = 2 in (6) for the invariant measure.

Proof. We justify the construction of the derivative free implementation (55) of the scheme (50) (θ = 0). Consider a Runge-Kutta type scheme of the form

Y i = X n + h s j=1 a ij f (Y j ) + c i √ hξ n , X n+1 = X n + h s i=1 b i f (Y i ) + σ √ hξ n ,
with coefficients a ij , b j , c i , with i, j = 1, . . . , s. Setting c i = s j=1 a ij , we expand in Taylor series the numerical solution,

X 1 = X 0 + h( s i=1 b i )f + √ hσξ n + h 3/2 σ(

Theorem 4 . 6 .

 46 Assume the hypothesis of Theorem 4.5. If an ergodic integrator of weak order p satisfies A * p ρ ∞ = 0 in the weak Taylor expansion[START_REF] Milstein | Stochastic numerics for mathematical physics[END_REF], then it has ergodic order (at least) r = p + 1 in (6).
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 53 Let E = R d or T d . Consider the Euler-Maruyama method applied to the modified SDE defined by dX

Figure 1 :

 1 Figure 1: Linear case (V (x) = x 2 /2). Euler-Maruyama method (order 1) and modifications of orders 2 and 3. Error for the second moment R x 2 ρ(x)dx versus time stepsize h obtained using 10 trajectories on a long time interval of length T = 10 8 . The vertical bars indicate the standard deviation intervals.

)Figure 2 :

 2 Figure 2: Nonlinear problem with double-well potential. Left picture: V(x) = (1x 2 ) 2 (symmetric). Right picture: V (x) = (1x 2 ) 2x/2 (non-symmetric). Euler-Maruyama method (order 1) and modifications of orders 2 and 3. Error for the second moment

R x 2

 2 ρ(x)dx versus time stepsize h obtained using 10 trajectories on a long time interval of length T = 10 8 . The vertical bars indicate the standard deviation intervals.one numerical trajectory of the scheme (56) (discusses below) with stepsize h = 0.02 and time interval of size T = 2 • 10 3 (the initial condition is X 0 = (-2, -2)).

2 Figure 3 :

 23 Figure 3: 2D problem (15)-(54). Left picture: 3D plot of the Gibbs density (29). Middle picture: ten level curves of the Gibbs density are represented in solid lines (the five extrema are represented with crosses). Right picture: a numerical trajectory {X n } of the scheme (56) (with h = 0.02, T = 2 • 10 3 ).

d e r 2 Figure 4 :

 24 Figure 4: 2D problem (15)-(54). Errors for φ(x) = x 2 +y 2 for the Euler-Maruyama method (order 1), and the modifications (55) (order 2) and (56) (order 2 but 3 for linear problems) with T = 10 7 .
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  2, 3, . . .. It follows from Lemma 3.4 that for all differential operator of the form (30), we have B * ρ ∞ = B * ρ ∞ where B is a differential operator of order one. Since by Assumption 2.2, A k is a sum of such differential operator, 2 we obtain that there exists a vector field f k such that A * k

  Proposition 4.2. [20] Assume Assumption 4.1. Then, for all positive integers k, there exist constants C k , D k independent of n, h such that

	, Lemma
	2.2, p. 102].
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We use the notation of the scalar product A : B = trace(A T B) on matrices.

See for example the expression for A1 in[START_REF] Milstein | Computing ergodic limits for Langevin equations[END_REF] for the θ-method.

Namely, the implicit Euler scheme Xn+1 = Xn -h∇V (Xn+1) + σ∆Wn and the implicit split-step scheme X * n+1 = Xn -h∇V (X * n+1 ), Xn+1 = X * n+1 + σ∆Wn, where ∆Wn ∼ N (0, hI) are independent Gaussian random vectors with dimension d.

Recall that the choice of the initial condition has no influence on the numerical ergodic average in[START_REF] Burrage | Accurate stationary densities with partitioned numerical methods for stochastic differential equations[END_REF] 

Acknowledgements. The work of AA and GV was partially supported by Swiss National Foundation, Grant 200021 140692. and Grant 200020 144313/1, respectively.

Appendix

We provide in this Appendix the proofs of Propositions 5.1, 5.3, 8.1.

Proof of Proposition 5.1. Consider the weak Taylor expansion [START_REF] Milstein | Stochastic numerics for mathematical physics[END_REF] for the θ method. Applying Lemma 3.4 to each differential operator of order greater than 1 in A 1 given in [START_REF] Milstein | Computing ergodic limits for Langevin equations[END_REF] and using f = -∇V , we obtain

where we use the notation u = E u(x)ρ ∞ (x)dx and the sums are for i, j = 1, . . . , d and e i is the canonical basis of R d . Using the above identities, a straightforward calculation then yields that f 1 in (51) satisfies Proof of Proposition 5.3. Consider the weak Taylor expansion [START_REF] Milstein | Stochastic numerics for mathematical physics[END_REF] for the modified θ method (50) (θ = 0). We have A 0 = L because the method has weak order 1, and by the construction of Theorem 3.5, A * 1 ρ ∞ = 0. A calculation of A 2 yields

φ ′′ (f, f ′′ (e i , e i ))