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Abstract

We derive a Weierstrass-type formula for conformal Lagrangian im-
mersions in complex Euclidean 2-space, and show that the data satisfies
a Dirac-type equation with complex potential. We apply the representa-
tion to the Hamiltonian-stationary case to construct all possible tori and
obtain a first approach to a moduli space in terms of a simple algebraic-
geometric problem on the plane. Results described here are contained in
two articles in collaboration with Frédéric Hélein.

1 Introduction

The vector space C2, seen as a real vector space (thus identified with R
4),

is endowed with a double structure: on one side the metric (namely the
scalar product that we will denote by 〈, 〉) and on the other the complex
structure coming from the multiplication by i, embodied by the matrix J .
If we identify (x1, x2, x3, x4) ∈ R

4 with (x1 + ix2, x3 + ix4), the complex
structure is

J =









0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0









.

We derive a symplectic structure with symplectic (i.e., non-degenerate,
closed) 2-form ω given by ω(ξ, η) = 〈Jξ, η〉. Of course the hermitian
metric contains both structures, the metric and the symplectic form being
simply its real and imaginary parts1.

When interested in surfaces in R
4, we may consider the following spe-

cial cases:

• the complex curves, i.e. (in real notation) the surfaces whose tangent
planes are (globally) J-invariant;

• the Lagrangian surfaces, where the tangent bundle is mapped by J
to the normal bundle; these surfaces are as far as possible from being
complex.

2000 Mathematics Subject Classification. Primary 53D12; Secondary 53C42, 49Q10,
53A05.

1The reason for sticking to the real notation will become apparent later on: basically we
will use a complexification of R4 which is rather awkward when writing it as C

2.
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Another (and more usual) way to define Lagrangian surfaces is to require
that ω vanishes on the surface. Lagrangian surfaces (and more generally
Lagrangian submanifolds) play a key role in physics and symplectic ge-
ometry; see the references for some reading directions.

The expression “Weierstrass representation” has been used widely re-
cently. It refers of course to the old and celebrated Weierstrass-Enneper
representation which describes completely all minimal surfaces in R

3 – to
be precise all conformal immersions f of such surfaces – by analytic data:
a meromorphic function g and a holomorphic 1-form η, plus an algorithm
to recover the immersion from the data and vice-versa:

f(z) = Re

∫ z

(1− g2, i(1 + g2), 2g)η

where z is some local conformal coordinate on the surface. Moreover the
data has geometric significance since g is the (stereographic projection
of the) Gauss map and gη is the complexified differential of the height
function. Later on many generalizations were built, for instance for sur-
faces with prescribed mean curvature [Ke], for any surface in R

3 using
spinors [Ko1], or R4 [Ko2], or for cmc-1 surfaces in H

3 [B]. In even greater
generality and abstraction, Weierstrass-type representations were proved
to exist for harmonic maps of simply-connected two dimensional domains
into symmetric spaces [DPW]. Many other examples exist (see [Ko2] for
some references). The goal of such a representation is to describe com-
pletely the local (and sometimes global) theory of the surfaces, to allow
the construction of explicit examples, and maybe even a classification. Its
use partially explains the success of classical minimal surface theory.

Those Lagrangian surfaces in R
4 solutions to some variational prob-

lem, namely that are Hamiltonian-stationary, are also given by an abstract
Weierstrass-type formula as explained in [HR1]. However there is a sim-
pler way to describe any conformal Lagrangian immersion into R

4:

Theorem. Let L be a simply connected domain in C. Then for any
smooth conformal Lagrangian immersion f : L → R

4, there exist smooth
functions β : L → R/2πZ, which is the Lagrangian angle, and s1, s2 : L →
C, not simultaneously vanishing, that satisfy the Dirac-type equation

((

0 ∂/∂z
−∂/∂z̄ 0

)

−

(

Ū 0
0 U

))(

s1
s̄2

)

= 0 (1)

with complex potential U = 1
2

∂β

∂z
. Conversely any given β and any solu-

tion (s1, s2) to (1) satisfying |s1|
2 + |s2|

2 > 0 gives rise to a conformal
Lagrangian immersion given by

f(z) = Re

∫ z

e
β
2
J









s1
s2

−is1
is2









.
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2 A Dirac-type equation

As many representations quoted above, our formula requires two ingre-
dients : (i) a good choice of the immersion (most often conformal ones
are preferred) and (ii) use of the appropriate group acting on R

4 – here
U(2) is the important group. Let f : L → R

4 be a Lagrangian immersion
from a contractible domain L ⊂ C; we may assume without loss of gen-
erality that f is conformal. In coordinates, df = eρ(e1dx + e2dy) where
eρ(z) is the conformal factor, and (e1, e2) is an orthonormal basis of the
tangent plane at f(z). Furthermore f is Lagrangian if and only if (e1, e2)
is a unitary basis (for the implicit Hermitian structure). Since U(2) –
written here as a real subgroup of GL(4,R) – acts transitively on unitary
frames, we have ej = gǫj for j = 1, 2 and (ǫ1, ǫ2) any fixed unitary frame.
However U(2) splits into a product U(1)× SU(2) with factors unique up
to sign, and U(1) consisting of complex-diagonal matrices, i.e. exp(RJ).

Hence g = e
β
2
Jk where β(z) = arg detC g(z) is known as the Lagrangian

angle and defined modulo 2π. The sign ambiguity poses no problem on a
simply-connected domain. Now set

α = e−
β
2
Jdf = eρk(ǫ1dx+ ǫ2dy)

and consider its (1, 0) part α′ = u dz = kǫ dz where ǫ = (ǫ1 − iǫ)/2. A
priori u takes values in (R4)C = C

4, but remarkably it stays in a two-
dimensional complex vector subspace V :

Lemma. The (1,0) part of e−
β
2
Jdf takes values in the orbit under R

∗

+ ×
SU(2) of ǫ which is the vector space V = Cǫ⊕ CJǭ, minus the origin.

The proof goes by direct computation. Still one may wonder why. One
(good) reason is that the space V is not accidental, but rather comes as
an eigenspace for some order four automorphism on the Lie algebra of the
group of unitary displacements U(2) ⋉ C

2, acting on R
4.

As a consequence we may write the integrability condition d2f = 0 as

∂u

∂z̄
=

1

2

∂β

∂z
Jū.

Setting u = s1ǫ+ s2Jǭ we derive easily the Dirac equation (1). Since the
integrability condition above is the only local condition, we have proved
the announced theorem. Note that allowing s1 and s2 to vanish at points
amounts to replacing conformal immersion by weakly-conformal maps.

As a conclusion we may note that this formula is quite similar in
spirit to the classical Weierstrass representation, with β playing the role
of the Gauss map (indeed β is a part of the Gauss map) and (s1, s2)
equivalent to η. In a way Lagrangian surfaces in R

4 behave like surfaces
in 3-space due to the additional Lagrangian constraint. However, while
the integration procedure is simpler than the classical case, ours relies on
solving a non obvious Dirac equation2, very close to the equation for the
spinor representation of surfaces in R

3. Still our solutions (s1, s2) are not
spinors but 1-forms. .

2For instance it is not clear for which angular functions β there exist solutions to (1).
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3 The Hamiltonian-stationary case

Our formula is even more interesting in the case of Hamiltonian-stationary
surfaces. These are the Lagrangian surfaces that are critical for the area
functional but under a restricted set of possible deformations: instead of
all compactly supported vector fields, one restricts to Hamiltonian vector
fields, i.e. symplectic gradients of functions. Namely X = J∇φ for some
compactly supported φ. The one-parameter group generated by X will
then preserve the symplectic structure as well3. Hamiltonian stationary
surface have been introduced and studied (in C

n) by Y.-G. Oh [O1,O2],
and later on by R. Schoen and J. Wolfson [ScW] with a different point
of view. In particular Y.-G. Oh showed that rectangular tori – cartesian
products of circles r1S

1×r2S
1 ⊂ C×C are local minima of area. However

it was probably unclear at that time whether many such tori existed or
not. This is where our formalism comes into play.

The condition for being Hamiltonian stationary has a very neat for-
mulation:

∆β = 0 (2)

where ∆ is the Laplacian for the induced metric. Due to the representation
formula, finding Hamiltonian stationary examples reduces to solving (1)
with a harmonic potential (we can think of the conformal Laplacian now).
Thus we have replaced a third-order non linear PDE with two successive
linear PDES, plus an integration procedure.

This point of view applies remarkably to the toric case. Let Γ be a
lattice in C, Γ∗ the dual lattice, and T = C/Γ a torus with universal cover
C. Then eiβ is a well-defined harmonic Γ-periodic function on C if and
only if β(z) = 2πRe (β0z̄) for some frequency β0 ∈ Γ∗ (up to a rotation in
space, or equivalently an affine change of variable). Equation (1) simplifies
dramatically using Fourier expansions to yield:

s1 =
∑

γ

aγe
2iπRe (γz̄) , s2 =

2

iβ0

∑

γ

γ̄aγe
2iπRe (γz̄)

where the sum is taken over all frequencies γ ∈ Γ∗/2 such that

|γ| =

∣

∣

∣

∣

β0

2

∣

∣

∣

∣

(3)

Further careful analysis reveals that frequencies ±β0

2
yield non periodic

terms (though df will be periodic) and hence should be discarded. We end
up with an interesting geometric problem: find couples (Γ, β0) where Γ is
a lattice and β0 ∈ Γ∗ is a frequency such that the circle of radius β0 meets
the lattice at points other than the obvious ±β0. Then any such config-
uration gives rise to an (weakly-immersed) Lagrangian surface. Known

3Minimal Lagrangian surfaces are also worth studying; they coincide with special La-

grangian surfaces, i.e. (calibrated) surfaces with constant Lagrangian angle. However spe-
cial Lagrangian surfaces in R4 are none other than complex curves for a different complex
structure. Nonetheless our analysis still applies, though we recover the classical Weierstrass
representation in R4, with the added Lagrangian condition.
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examples are well characterized by that special lattice configuration. It
may also be proven that the number of possible frequencies γ is a lower
bound for the type number when using finite gap methods to construct
tori.

Finally we may consider the following questions/problems:

• What are the possible conformal types ? All previously known ex-
amples were rectangular but through our formulas, we were able to
construct a rhombic torus4.

• Can there be arbitrarily many frequencies ? The answer is yes but
should be analyzed in view of the next question.

• Choosing a set of frequencies guarantees that the solution f is Γ-
periodic; however Γ may not be the lattice of periods of f (in other
words f : C/Γ → R

4 may be a multiple cover of some torus). When
is a configuration optimal in that sense ?

• What are the local (global) minima for area ? Y.-G. Oh [O2] conjec-
tured that product of circles were minimizers in their Hamiltonian
isotopy class. Recently H. Anciaux [A] showed the conjecture under
the assumption that smooth minimizers exist (in that class); he also
pointed out another isotopy class where no minimizer were known
(the rhombic example’s).

Remark. Although hidden from the first glimpse, the quaternions play
a major role in our representation. Indeed we may identify R

4 with H,
the group SU(2) with the right multiplication by unit quaternions, and J
with left multiplication by i, j or k. A elegant one-line formulation of our
representation in terms of quaternions can be found in [HR2].
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