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Abstract

A two-dimensional double Multiple-Relaxation-Time thermal lattice
Boltzmann method is used to simulate natural convection flows in dif-
ferentially heated cavities. The buoyancy effects are considered under
the Boussinesq assumption. Flow and temperature fields are respectively
solved with nine and five discrete velocities models. Boundary condi-
tions are implemented with the classical bounce-back or a “on-node” ap-
proach. The latter uses popular Zou and He and Counter-Slip formula-
tions. This paper evaluates the differences between the two implementa-
tions for steady and time-dependent flows as well as the space and time
convergence orders.

Keywords: Thermal lattice Boltzmann method double distribution
function time-dependent natural convection Richardson extrapolation con-
vergence study

1 Introduction

The Lattice Boltzmann Method (LBM), derived from the lattice gas automata (29]),
has been developed as an alternative numerical scheme for solving the incom-
pressible Navier-Stokes equations. It has demonstrated its ability to simulate
several physical systems (5l). Its straightforward implementation, natural par-
allelism and easy boundary condition treatment (4) make it very efficient and
accurate for hydrodynamical flows. However, for thermal flows, its efficiency is

a pending issue.

Indeed, thermal lattice Boltzmann methods can be split into three main
classes. The first one relies on increasing the number of discrete velocities in
order to make the original athermal LBM able to solve correctly the temper-
ature field (I). The main disadvantages of this approach are the loss of the
cellular automata transport scheme and a fixed Prandtl number. The second
one is the hybrid approach. Mass and momentum are solved with a lattice
Boltzmann model while the convection-diffusion equation for temperature is
solved with a classic macroscopic solver like Finite-Volume or Finite-Element
methods (24 BT} 22). Counterparts are an harder parallelization and the resolu-
tion of a linear system. Finally, the third one, the double distribution function



formulation uses two evolution equations: one for the mass and momentum con-
servation and one for the temperature (16} 11} B2). This approach preserves the
natural advantages of lattice methods: the local formulation and the explicit
time evolution scheme. Besides, supplementary distribution functions can be
added to take into account additional effects like magnetic field (2]). Mass and
momentum equations can be solved with the generalized, or Multiple Relaxation
Times (MRT), formulation (23; [§). Two approaches stand out for the thermal
part: the internal energy formulation (I8} [37) and lattice Boltzmann schemes
designed for convection-diffusion equations (40). The former might be suitable
for non straight boundary condition (44) and fluid-solid conjugate heat trans-
fer (42} B0). The latter offers more flexibility in the discrete velocities set (20)
and recent developments show that evolution equation can be solved with a
MRT collision operator (32} 35} [34% [4T]).

In many cases, lattice Boltzmann method is used for stationary flows and do
not enjoy the benefits of the inherent unsteady formulation. Indeed, the physical
transient flow has to be simulated and calculations of accurate solutions would
be very expensive compared to stationary solvers.

Considering this background, this work aims to analyze results and conver-
gence orders of the double MRT method for a time-dependent natural convection
flow configuration. Reference values are extracted from benchmark solutions
on differentially heated cavities (27; [43). Proper comparisons with theoreti-
cal second-order accuracy both in space and time (B) are also made thanks to
Richardson Extrapolation. Because of numerical instability, this analysis can
hardly be handled using the classical LBM method with the Bhatnagar-Gross-
Krook (BGK) collision term.

This paper is organized as follows. Section [2 presents the general configu-
ration of the differentially heated cavity under Boussinesq approximation. In
section |3}, the numerical method is described: a double MRT lattice Boltzmann
method using respectively nine and five velocities models for the fluid flow and
the energy equation is detailed. The obtained results for two configurations are
presented in Section ] Comparisons with reference and convergence orders are
discussed. Finally, the last section is dedicated to the concluding remarks.

2 Problem description

The configuration studied is the natural convection in a two-dimensional cavity
heated differentially on vertical side walls. The configuration is illustrated in
figure [[] where W is the width and H the height of the cavity. The cavity aspect
ratio is A = H/W. The gravity vector is directed in the negative y-coordinate
direction. The Boussinesq hypothesis is used and only small temperature vari-
ation from the mean temperature are admitted.

The dimensionless formulation of incompressible Navier-Stokes and energy
equation coupled with Boussinesq hypothesis for time-dependent convection



problem is written:

V- -u=
@ +u-Vu=-Vp+ V2u + fe
ot TTVPTVR v (1)

00 /
aJru Vo = RaPrV 0

where u = (u,v), p and 6 are respectively the velocity, pressure and temperature
fields and e, is the unit vector in the y-direction. This dimensionless system
was obtained using the characteristic length W, buoyancy velocity scale U =
VgBW AT, time scale W/U and pressure scale pU2. Here, p is the mass density,
g the gravitational acceleration and 8 the coefficient of thermal expansion. The
dimensionless temperature is defined as follows:

T—Tref Th+Tc

0 — ith Thor = 9
71, ™ f 5 (2)

and T}, and T, are respectively the prescribed temperatures of hot and cold walls.
The Rayleigh and Prandtl numbers are control parameters of the problem and

are written:
gBATW? v

Ra = and Pr=— (3)
a

va
where « is the thermal diffusivity, v the kinetic viscosity, and AT = T}, — T, the
temperature difference between the hot and the cold walls. For all calculations,
the Prandtl number is Pr = 0.71 (air at STP) and the aspect ratio A and the
Rayleigh number Ra are free parameters.

The cavity boundary conditions for the velocity field are a no-slip condi-
tions, i.e. u = v = 0 on all walls. On the left and right walls, the prescribed
temperature boundary conditions is written:

(z=0,y) = —I—% and f(z=1,y)=—= (4)

Along the horizontal bottom and top walls, the zero-flux condition reads
00 00
— =0 and — =0 (5)
ay y=0 ay y=A
For all calculations, solution is initialized with an isothermal fluid at rest, .i.e.
u(u,v) =0 and 6=0 (6)

Two configurations will be studied. The first one, the classical square cavity
(A = 1) with Ra = 10°, is used as a validation. In the second case, an aspect
ratio A = 8 and a Rayleigh number Ra = 3.4 x 10°, lead to a time-dependent
periodic flow, also referenced as a benchmark solution. In all cases, the Prandtl
number is set at 0.71.



3 Numerical methods

We consider the double Multiple-Relaxation-Times thermal lattice Boltzmann
(MRT-TLB) model introduced in (32} [35;[41]). Two sets of distribution functions
are used. The evolution equations for both mass and momentum and thermal
distributions will be described as well as the coupling. Boundary conditions
treatment will also be presented.

The general principle of lattice Boltzmann methods is the following: the
phase space is discretized into a regular lattice, or mesh, and into a finite set of N
symmetrical discrete velocities, e;—1,.. . Lattice nodes are xj—1,.. . n, X N, where
N, and N, stand respectively for the number of nodes in z— and y—directions.
A set of distribution functions, associated with discrete velocities, is defined
on each node. Their evolutions are governed by a free transport, associated
with the discrete time step d;, along the discrete velocities. Then, a collision
process makes the distribution functions relax through an equilibrium. During
collisions, macroscopic quantities such as mass and momentum are conserved.

3.1 Multiple relaxation time method for mass and mo-
mentum

The time evolution equation for the mass and momentum conservations can be
written as follows:

fl@j+ed,t+01) = flz),t) = = Q(f (=), 1) — f* (x5, 1))

+F(£L‘j,f) (7)

where @ is the collision matrix and F(x;,t) an external force. The collision
matrix @ can be written in the general form:

Q=M1'SM (8)
and the evolution equation @ becomes

flx;+ed,t+06:) — flxj, t) =— M_ls(m(:cj,t) —m®(x;,t))

9

+ F(IBJ‘, t) ( )
The quantities, f(x;,t), f(x;,t), m(x;,t), m®(x;,t) and F(x;,t) are N-
tuple vectors and the superscript eq stands for the equilibrium values. The
general notation for a N-tuple vector ¢ expressed at time ¢ is:

d)(mj?t) = (¢1(wjvt)v s a¢N(wjvt))T

10
o(x; +eo,t) = (p1(x; +€edy,t),...,on(z; + eét,t))T (10)

where T' denotes the transpose matrix. The velocity distribution function
f(x;,t) is expressed in the velocity space V = RY while its corresponding
moment m(x;,t) is in the moment space M = RY. With the above expres-
sions, the mapping between discrete velocity space V and moment space M is



achieved by the transformation matrix M which maps the vector f(x;,t) to the
vector m(x;,1):

m(x;,t) = Mf(x;t) and f(x;,t)= M_lm(wj7t) (11)

The operator M is a square matrix and its rank is equal to the number of
discrete velocities N. With the N = 9 velocities model (d2¢9), discrete velocities
are:

(0,0) 1=1
e, = (1,0)e, (0,1)e , (—=1,0)e, (0,—1)e i=2-5 (12)
(I, e, (=1,1)e, (—=1,—1)e, (1,—1)e i=6-9

where e = §, /¢, and §, and &; are the lattice spacing and discrete time steps.
On the lattice, CFL consideration generally leads to §, = §; = 1.

To determine the transformation matrix M, the ordering of the moments
must be prescribed first. Here, the choice is:

m(z;,t) = m = (mq, ma, m3, My, M5, Mg, M7, Mg, Mg )" (13)
= (pajxajyyeapxxapxw%taane)T

where p is the mass density, j = (Jz, jy) = p(u,v) = pu is the impulsion and u
is the flow velocity, e, py, and ps, are second-order moments corresponding to
energy, and two off-diagonal components of the stress tensor, respectively. g,
and g, are the third-order moments corresponding to z— and y— components
of the energy flux and e is the fourth-order moment of energy square. With this
ordering of the moments, the transformation matrix can be constructed thanks
to the Gram-Schmidt orthogonalization (24):

11 1 1 1 1 1 1 1
4 -1 -1 -1 -1 2 2 2 2
4 =2 -2 —2 -2 1 1 1 1
o 1 0 -1 0 1 -1 -1 1
M=|0 -2 0 2 0 1 -1 -1 1 (14)
o 0 1 0 -1 1 1 -1 -1
o 0 -2 0 2 1 1 -1 -1
o 1 -1 1 -10 0 0 0
0o 0 0 0 0 1 -1 1 -1 |

M being an orthogonal matrix, its inverse can be computed according to the for-
mula: M1 = MT(MM7)~1. In the case of an isothermal fluid, the conserved
variables are only the density p and the momentum j. The other moments are
non-conserved moments and as suggested in Ref. (24)), they relax linearly to-
wards their equilibrium values. For the d2¢9 model, the non-conserved moments



(i=4-09) are:
my? = el = —2p+3pou-u
mg’ = pgl = po(u? —v?)

€q __ eq __
mg = pmy = pouv

(15)
met = qu! = —pou
mg’ = 4, = —pov

eq _ _eq _
my' = €1 =p—3pou-u

where the constant pg is the mean density in the system. With the above equi-
librium moments, the sound speed of the lattice is ¢; = 1/ V/3. As mentioned,
the collision process makes the moments relax towards their equilibrium values
as follows:

m’=m — S(m —m*) (16)

where superscript ¢ denotes the post-collision state and S is the diagonal relax-
ation matrix. The post-collision vector f€ is then carried out as

Fo=7F-Qf - 5. (17)
The diagonal matrix S is given by
S = diag(1,1,1, Se, Sy, Su, Sqs Sqs Se) (18)

where s; € (0,2) for the non-conserved moments. The choice of the relaxation
parameters s; can be determined by a linear stability analysis (23)). In this work,
as suggested by (28) we will use

2—35,

Sy = Se = S = and s, =38 (19)

6v+1 8 — s,

That leads to the Two-Relaxation Time (TRT) model (I5)). Let’s note that,
based on the product A = (% — %) (i — l), the current choice gives A = 3/16

v Sq 2

and leads to correct positions of walls when bounce-back boundary conditions
are used. Other choices are possible. For example, A = 1/4 leads to a better
stability of the LBM and provides steady-state solutions dependant only on the
equilibrium function (14 13]). Values A = 1/6 and 1/12 respectively remove
high-order diffusion and advection errors. The choice s; = 1/7pgK recovers the
single relaxation time or Bhatnagar-Gross-Krook (BGK) model (3). Thanks
to this MRT formulation, the different models for the collision process can be
tested only by changing the values of the relaxation coefficients.

The macroscopic fluid variables density p and velocity w are obtained from
the moments of the distribution functions as follows:

9
p= Zfi and  pou = Zeifi (20)

i=1 i=1



The corresponding form of the equilibrium distribution is given by the for-
mula (23)):

[t =wip <1 +3(ei-u) + g(ei cu)? — ;’uQ) (21)

where w; =0, wa—4 = 1/9 and ws_g = 1/36 are lattice constants. This particu-
lar form of the equilibrium distribution function is related to the incompressible
formulation of the Navier-Stokes equations (I7). This expression will be useful
when formulating the boundary conditions.

3.2 Multiple relaxation time method for thermal problem

The same way, the energy conservation is modelled by an evolution equation.
The distribution functions, noted g, obey to the following equation:

g(x; +ed, t+ ;) — gz, t) = —Q(g(x;,t) — g (x;,t)) (22)

The corresponding lattice has now five discrete velocities, and reads:

_ | (0,0 i=1
“= { (1,0)e, (0,1)e, (=1,0)e, (0,—1)e i=2-5 (23)

Like in the previous section, ) represents the collision operator Q = M~'SM,
and the transformation matrix is given by

1 1 1 1 1
0 1 0 -1 0

M=| 0 0 1 0 -1]|. (24)
-4 1 1 1 1
0 1 -1 1 -1

Like the dynamic part, this matrix is invertible and orthogonal. The tempera-
ture @ is the only conserved quantity and can be computed by:

N
0=> g (25)
i=1
The equilibrium moments, m®? corresponding to the distribution functions g,
can be written as:
mi?=0, my?=uf, mi' =00, my?=ab, my’=0 (26)

where u = (u,v) is the macroscopic computed velocity and a is a constant. The
diagonal relaxation matrix is given by:

S = diag(1, sa, Sa, Se, Sv) (27)

The choice of s; is discussed in details in (41)). We take here

———j=c amd ——-= (28)



Theses parameters lead to the thermal diffusivity

V3(4 +a)

o= (29)
where the constant ¢ must be maintained ¢ < 1 in order to avoid numerical
instability of the d2¢5 model. The value of a will be determined with the

physical problem parameters and will be discussed in section [3.5
The corresponding form of the equilibrium for the distribution functions g

is given by the formula

gfq = wzﬂ (1 + 361' . u) (30)

where w; = 0 and we_5 = 1/4 are d2¢5 lattice constants.

3.3 External forcing

In a natural convection problem under Boussinesq hypothesis, the external forc-
ing represents the buoyancy effect. In the coordinate system, this force is given
by

F(xz;,t)=F = fe, with f=—poBg0AT (31)

The projection of F' on the velocity space related to mass and momentum con-
servation is given by:
€; - €y

Fi = _3wlf 2
C

(32)

A brief review of force term implementations and their consequences in lattice
Boltzmann model can be found in (33]).

3.4 Boundary conditions

Two popular kinds of boundary conditions (BCs) are used to impose the macro-
scopic conditions on velocity and thermal fields described in Sec. 2} The first
implementation uses the bounce-back, or anti bounce-back, conditions for both
velocity and thermal fields (BB-BCs). With this method, the position of phys-
ical walls is half a lattice spacing beyond the last fluid node. The second for-
mulation uses Zou and He (45)) implementation for the velocity field and a
Counter-Slip approach for thermal field (21t [I0). This particular choice is noted
ZHCS-BCs in the following. A review of common implementation of boundary
conditions for advection-diffusion models can be found in (20). Both methods
are then briefly described.

Two remarks are in order here: 1) With BB-BCs, physical walls are not
on nodes but halfway beyond the last fluid node. Then ,the use of a multiple
relaxation time model (MRT or TRT) is strongly recommended (41)). Indeed,
with the BGK model, the boundary location depends on the single relaxation
time Tpgk. 2) As a consequence, with N fluid nodes, the domain length in
lattice units is N when BB-BCs are used and N — 1 with ZHCS-BCs.



3.4.1 Bounce-back approach

As mentioned, when the bounce-back scheme is applied, the effective bound-
aries in the z—direction are in x = 1/2 and z = N, + 1/2. No-slip boundary
conditions are then realized by the bounce-back scheme. The incoming un-
known distribution function f;(xs,t+d;) is equal to the outgoing post-collision
distribution function f¢(xy,t):

fi@y t+6) = fi(xy,1) (33)
where x ¢ is a fluid node adjacent to a boundary and the incoming distribution
function f; corresponds to e; = —e;.

For the temperature field, a bounce-back like scheme can also be applied (41]).
For a wall at a fixed temperature 6,,, the following boundary condition is used:

gz, t+0) = —gi(xs,t) + 230, (34)

An adiabatic wall can be realized with the anti bounce-back condition:
gi(xy,t +6t) = gi(xy, 1) (35)

3.4.2 Zou-He and Counter-Slip boundary conditions

For the dynamic part, the no-slip condition for the velocity field is imposed by
Zou and He formulation (45). This approach relies on the bounce-back rule
for non-equilibrium part of the distribution functions. For thermal counterpart,
fixed temperature or zero-flux are set with a Counter-Slip approach (11} [10).
The incoming unknown distributions are assumed to be at the equilibrium. Both
approaches are consistent with the second-order accuracy (26). Derivation of
boundary conditions is not presented here. The implementation and the particu-
lar treatment for corners can be found in the following references (21} 45} 26} 39).
Let us underline that this “on-node” approach allows to impose more sophisti-
cated boundary conditions like pressure boundary conditions for the dynamic
part and non-zero fluxes for the thermal part. Furthermore, this formulation is
more portable and can also be used with the internal energy formulation method
that uses d2¢9 model to simulate the thermal effects (37 [@).

It is important to remind that the choice of boundary conditions defines the
size of the computational domain and, as a consequence, the physical space step.

3.5 Problem set-up

Setting up a problem in lattice Boltzmann method is not always obvious and
some cautions must be taken before each simulation.

The results are generally presented in dimensionless units. Then, we need to
convert values obtained on the lattice (in lattice units). The procedure presented
here resumes the general procedure given in Ref. (25). In dimensionless formula-
tion, conservation of mass, momentum and energy is given by system . Using



a Chapmann-Enskog procedure (12]), evolution equations and lead to
the following approached system:

VL Uy, = 0
auL
% +ur-Viup, =—-Vipp + VLVZLUL + fLey (36)
a0y,

— 4+ur, -Vl = CVLV%GL
otr,
In this section, values with subscript L denotes lattice values while clas-
sic notation stands for dimensionless ones. The following scalings are used to
express system on the lattice

) 52

x=0,xp, t=0tL, w=_uL, P=po5PL (37)
¢ 0

The lattice parameters can then be identified and related to dimensionless pa-

rameters Ra, Pr, 0, and d;:

| Pré; Y " _5t2
vp = méf;, ar = Taprg and fL—Ef (38)

However, in lattice Boltzmann simulations, it is rather convenient to work with
the Mach number Ma defined by Ma = U/cs where U is a reference velocity
and ¢, is the sound speed. Using +/gBATL as a reference velocity, we obtain
on the lattice the following relation:

Pr Ma 1 19 Ma
vy = E%a, O(L—ﬁ and (St—%dl (39)

The parameters are now Ra, Pr, §, = 1/N, and the Mach number Ma. The time
step varies linearly with Ma as shown in the previous relation. All parameters
are then known and it is convenient to chose Ma < 0.3 to make sure the flow
stays in the incompressible regime.

In practical, with the MRT formulation, the coefficient a is first set through

the relation a = 20Ma/d,v RaPr — 4. In order to avoid numerical instability of
the d2¢5 model, the value of a must be kept such as a < 1 (13} [4T]).

4 Results and discussion

System is solved with the double MRT thermal lattice Boltzmann formu-
lation for two configurations. In a first part we present a classical validation
test case: the square cavity with Ra = 10°. In a second part, we study a
periodic flow obtained for the 8:1 aspect ratio cavity and Ra = 3.4 x 10°. Con-
vergence orders and extrapolated values are then computed by the Richardson
extrapolation. In both cases the Prandtl number is Pr = 0.71.

10



4.1 Richardson Extrapolation

In order to check the numerical convergence and the order of the numerical
scheme, the Richardson Extrapolation (RE) is used. Detailed principles and
assumptions can be found in (36). RE is constructed with Taylor expansion and
then supposes sufficiently smooth exact solution fepqc:. Small space (or time)
step must be small enough so that the discrete solution fp, is in the convergence
region. The general principle of RE consists of computing numerical solutions
of the discretized problem on N different uniform grids of size h;, with hy the
coarsest grid and hy the finest one. The solution for the mesh h; is written in
the form

fhi = fezact + Cah? + O(h?Jrl) (40)

where C,, is a coefficient. Thus, by using three grids (N = 3) such as hy/hy =
ho/hs, the approximations &, C, and f¢¥'"® are given by

ln[(fh1 — fhz)/(.fhz — fh3)]

ll’l(hl/hg)
5 _ fra = Ins (41)
o= hg—ng

Fore = i = Gl

o)}

with C,, = C,, + O(hy-1) and fema = fexact + C’ah?\,ﬂ. As a consequence,
the approximation f”tm will be closer to the asymptotic solution feyqe: with
decreasing hy and increasing &. In practical, the use of RE under good condi-
tions increases of one order the numerical solution. In this paper, RE is used
with N =3 and N = 4 such as hy/hs = ho/hs and hy/he = hg/hy4 respectively
(see Ref. (36) for the N = 4 case). Since RE is based on Taylor expansion, the
same principle can be applied to temporal convergence.

4.2 Steady flow

In this section, the aspect ratio is fixed to the unity. The Rayleigh number is
Ra = 10%. This configuration has been extensively studied with various numer-
ical methods (7 27; [T6]). Here we will use the spectral results of Le Quéré (27)
as a comparison for the quantities of interest. To our knowledge, Le Quéré
provides the most accurate values in the literature.

For this benchmark, we need to compute the following quantities: the max-
imum horizontal velocity at mid-height umax = max(u(z,y = A/2)), the max-
imum vertical velocity at mid-width vmax = max(v(z = A/2,y)) and their
respective positions ymax and xmax. These values are then scaled with the diffu-
sive velocity a/W. The Nusselt number Nu and the averaged Nusselt number
Nu are calculated at the hot wall:

1 00

Nu(y) = ~0 0. o (42)

wall

11



and
1 [H
Nu:—/ Nu(y) dy (43)
H Jy

Integral calculations are performed with a second-order accuracy Newton-Cotes
quadrature (trapezoid or mid-point rule). Positions of maximum and minimum
Nusselt values at the hot wall are also estimated. The steady flow is assumed
converged when the following criteria is reached:

9 NzXN,
DY lfilmy t+10068) — fi(wj, 1)l
i=1 j=1 9
o N.xN, <10 (44)
> lfimyt+1006,)]y
=1 j=1
where || - ||1 denotes the Ly norm.

The Mach number is set to Ma = 5 x 1072, It has been shown (41)) that
there is no influence of the Mach number in this stationary problem. Tables []
and [2 shows the numerical results for BB-BCs and ZHCS-BCs respectively.

At first, using finer grids makes the values converge through the expected
ones. On the finer grid, N, x N, = 3012, the maximum difference is less than
2% for the BB-BCs and less than 1% for ZHCS-BCs. However, this difference
is not significant. We can notice that some quantities do not converge through
Le Quéré ones. For example, the extrapolated value x of the maximum vertical
velocity is slightly greater than the reference.

Thanks to the RE, extrapolated values and convergence order are computed.
The convergence orders are quite acceptable for both boundary conditions sets.
The second-order convergence (here with space step) is obtained for most of
the quantities of interest. The use of three and four points shows that the
convergence region seems to be larger for the ZHCS-BCs formulation.

We would like to underline that the use of a single time relaxation model for
the temperature (BGK) does not change results in a significant way.

To sum up, these observations are in good agreement with references. Both
boundary conditions approaches lead to the expected results. The relative dif-
ference between the two implementations is less than 0.5%. Furthermore, the
correct convergence orders validate our implementation and allows us to simu-
late a time-dependent natural convection case.

4.3 Periodic flow

In this section, the 8:1 aspect ratio differentially heated cavity is simulated. As
presented in (43; [6]), with the Rayleigh number Ra = 3.4 x 10°, the flow admits
only one time-dependent skew-symmetric solution. This configuration has been
studied by multiple authors and stands for a benchmark for time-dependent
natural convection. A synthesis can be found in (@).

Two probes are set in the cavity. Their respective coordinates are (z1,y1) =
(0.1810,7.3700) and (x2,y2) = (0.8190,7.3700). The quantities under study

12



are mean values of horizontal velocity @ and temperature 6 at probe position
1, mean value of pressure difference between points 1 and 2 Ap;,, mean value
of the Nusselt number Nu at hot wall and their respective perturbations u’,
0, Aply, Nu'. The pressure is obtained through the relation p = pcs. For a
quantity ¢, the mean value ¢ and the oscillatory component ¢’ are computed
as:

_ 1 t+7
i=2 [ s (45)

and
¢’ = max(¢(, t)) — min(¢(x, 1)) (46)

where 7 represents the period (based on temperature evolution at probe 1) for
which the average is computed.

The dimensionless temperature evolution is given in figure 2] while iso-lines of
the temperature field over one period are presented in figure[3] The temperature
field is stratified in the center while oscillations are visible at the top and the
bottom of the cavity. At first sight, a single frequency time-dependent flow is
observed. The periodic state is reached for dimensionless times greater than
600. Quantities of interest are extracted during a period 7 for times greater
than 1000.

Tables[3|and 4 present the evolution quantities of interest for different meshes
with Ma = 0.1. The reference values of Xin and Le Quéré (43) for this problem
are also given as the results of the RE on three and four meshes.

First, the mean values approach the reference for both boundary conditions
sets except the pressure difference Ap;, in the case of BB-BCs (Tab. . Unlike
most quantities, the relative difference on Ap;, obtained on coarse grids is
important (78%). Even for the finest grids, it remains greater than 20%. For this
particular variable, the RE produces nearly a first accuracy space convergence
order (& = 0.74 and 0.82 respectively with three and four meshes). With ZHCS-
BBs (Tab. , the difference is smaller and acceptable. It decreases form 12%
to 1.5% and a second order accuracy convergence is obtained (& ~ 2.1).

Secondly, the oscillatory values do not converge through the reference and
present a non negligible relative difference. With the finest meshes, almost a 5%
difference is obtained. As shown in table [f] for BB-BCs, this behaviour is linked
to the Mach number (or the time step). The decreasing time step makes the
values converge and, with the smallest Mach number Ma = 0.05, their relative
difference is about 2%. On the other side, the correct mean values are obtained
even for large Mach number. This observation is consistent with the Mach
number independence for stationary data.

Finally, the convergence orders are discussed (Tab. . With space step, RE
shows that theoretical predicted orders are better recovered with ZHCS-BCs
approach. Like in the pressure field case, space convergence orders for the mean
velocity 7; and temperature 8; are close to the unity with the BB-BCs approach.
With ZHCS-BBs, the second-order accuracy is obtained for most quantities,
mean value and oscillatory component. An explanation could be that when
bounce-back conditions are used, the grid is not totally regular: the wall is half
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a space-step beyond the last fluid node. Hence, the condition of regular grid for
the RE is not fulfilled when BB-BCs are applied. With time step, analysis on
mean values provides a second-order accuracy except for the Nusselt number.
We suppose this quantity outside the convergence region. The theoretical order
is also recovered for oscillatory data. It is important to notice that the choice of
the boundary condition formulation does not change the temporal convergence
order.

We notice that simulations were also performed with the simplified d2q9
internal energy thermal model for temperature introduced in (37). The results
on finer meshes are quite close to those obtained with the double MRT approach.
But, as it is based on a single relaxation time, simulations are unstable for small
relaxation rates, typically less than 0.55, and a rigorous convergence study is
not possible as it requires too important meshes. We should emphasize that this
problem is very expensive to simulate and a parallel implementation is highly
recommended. As mentioned in Sec. 3.5 the time step varies linearly with
both space step and Mach number. For guidance, time calculations are given in
table [5 as a function of the Mach number. Calculation times could probably be
reduced using a mesh refinement algorithm developed for non uniform grids (19
38). In this paper, regular meshes are uses as required for the Richardson
extrapolation.

To summarize this section, predicted results and convergence orders were
obtained for a periodic thermal flow. As expected, the Mach number is a crucial
parameter in time-dependent problem. When the pressure field is a relevant
quantity, ZHCS-BCs approach gives better results and should be used.

5 Conclusion

In this paper, the double multiple-relaxation-time collision model for the lattice
Boltzmann equation has been implemented to simulate two natural convection
problems under the Boussinesq assumption. Two kinds of popular boundary
conditions have been tested. The bounce-back approach where walls are halfway
beyond the last fluid node, and a “on-node” approach constructed with Zou and
He and Counter-Slip formulations. The Richardson extrapolation has system-
atically been used to compute an extrapolated solution and convergence orders
from the numerical results.

The results are in good agreement with reference benchmark studies. The
double MRT method is numerically more stable than double BGK or MRT-
BGK formulations and thus allows rigorous convergence studies. With the finest
space and time steps, less than 1% relative difference error is observed for most
of the quantities of interest. The non-negligible error made on the pressure
field and the small convergence order obtained with bounce-back conditions are
corrected with the “on-node” formulation. The latter provides a better frame-
work to study numerical properties. It should be used when the pressure field
is a relevant quantity. The time-dependent flow study highlights the significant
effect of the Mach number, or time step, on the oscillatory data. The expected

14



second-order time accuracy has been found for both mean and oscillatory val-
ues and makes the multiple-relaxation-time thermal lattice Boltzmann model
suitable for time-dependent thermal flows.
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Figure 1: Differentially heated cavity with insulated horizontal walls and con-
stant temperature vertical walls. The aspect ratio is A = H/W. Points 1 and
2, respectively in (z1,y1) and (x2,ys2), are time history points.
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Ny x Ny

umax

vmax

T

Y
0.8484(0.18%

752 64.7722(0.10%) ( ) 220.907(0.16%) 0.03791(0.24%)
1002 64.7999(0.05%) 0.8491(0.10%)  220.772(0.10%) 0.03786(0.37%)
1502 64.8216(0.02%) 0.8496(0.04%)  220.658(0.04%) 0.03780(0.53%)
200%  64.8279(0.01%) 0.8498(0.02%)  220.625(0.03%) 0.03779(0.55%)
300%  64.8264(0.01%) 0.8503(0.05%)  220.620(0.03%) 0.03777(0.61%)
Ref (27) 64.8344 0.8500 220.559 0.03800
frtra(a)  64.8269(3.36) 0.8517(0.65) 220.613(2.71) 0.03792(1.88)
fotre(a)  64.8361(1.97) 0.8500(1.94) 220.577(1.83) 0.03773(1.60)
Nz X Ny m Numax Yy Numin
757 8.9612(1.54%)  19.5679(11.6%) 0.0473(21.3%)  0.81666(16.6%)
100%  8.8980(0.83%)  18.6947(6.61%) 0.0428(9.78%)  0.90300(7.81%)
150%  8.8544(0.33%)  18.0240(2.78%) 0.0398(2.05%)  0.96117(1.87%)
2002 8.8403(0.17%)  17.7955(1.48%) 0.0391(0.32%)  0.97732(0.22%)
3007 8.8310(0.07%)  17.6419(0.60%) 0.0383(1.54%)  0.98440(0.50%)
Ref (27) 8.8252 17.5360 0.0390 0.97946
Jf]@ﬂgga(d) 8.8245(2.19) 17.5162(2.01) 0.03807(2.42) 0.9888(2.63)
fEEtra () 8.8237(2.13) 17.4770(1.87) 0.03847(2.47) 0.9944(2.31)

Table 1: Convergence of values with Pr = 0.71, Ra = 10° and Ma = 5 x 1072
The reference values of Le Quéré (27) are also presented as the
results of RE on three (N =
are relative differences with reference or convergence order.

for BB-BCs.
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Ny x Ny

umax

vmax

T

Y
0.8513(0.16%

762 64.2827(0.85%) ( ) 218.983(0.71%) 0.03893(2.46%)
1012 64.5255(0.48%) 0.8507(0.08%) 219.734(0.37%) 0.03842(1.12%)
1512 64.6988(0.21%) 0.8503(0.04%) 220.206(0.16%) 0.03807(0.18%)
2012 64.7601(0.11%) 0.8501(0.02%)  220.372(0.08%) 0.03793(0.18%)
3012 64.8010(0.05%)  0.8500(0.00%) 220.482(0.03%) 0.03778(0.57%)
Ref (27) 64.8344 0.8500 220.559 0.03800
~1‘°§,"”:tg“(c~v) 64.8342(2.02) 0.8498(1.62) 220.562(2.14) 0.03764(1.61)
f]e\,’”:tza(d) 64.8393(1.99) 0.8500(2.21) 220.553(2.26) 0.03774(1.95)
Nz X Ny m Numax Yy Numin
762 8.8362(0.13%)  18.0556(2.96%) 0.0460(17.5%)  0.82666(15.6%)
1012 8.8244(0.01%)  17.8409(1.74%) 0.0426(9.37%)  0.90280(7.83%)
1512 8.8161(0.10%)  17.6769(0.80%) 0.0403(3.36%)  0.96224(1.76%)
2012 8.8139(0.13%)  17.6226(0.49%) 0.0395(1.49%)  0.97792(0.16%)
3012 8.8128(0.14%)  17.5853(0.28%) 0.0393(0.91%)  0.98542(0.61%)
Ref (27) 8.8252 17.5360 0.0390 0.97946
fie (@) 8.8121(2.59) 17.5562(2.04)  0.0391(2.57) 0.99019(2.54)
fextra(a)  8.8114(2.25) 17.5488(1.91)  0.0387(2.12) 0.99742(2.05)

Table 2: Convergence of values with Pr = 0.71, Ra = 10° and Ma = 5 x 1072
for ZHCS-BCs. The reference values of Le Quéré (27) are also presented as the
results of RE on three (N =
are relative differences with reference or convergence order.
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Ny x Ny

Uy

01

Nu

Apyy

T

75 x 600
100 x 800
150 x 1200
200 x 1600
300 x 2400
Ref (43)
Fen (@)
fREE (@)

0.052258(7.27%)
0.053549(4.98%)
0.054752(2.85%)
0.055291(1.89%)
0.055794(1.00%)
0.056356
0.056541(1.25)
0.056539(1.24)

0.265875(0.15%)
0.265787(0.12%)
0.265701(0.08%)
0.265651(0.06%)
0.265598(0.04%)
0.265480
0.265448(0.75)
0.265472(0.85)

4.594463(0.33%)
4.587082(0.17%)
4.582309(0.06%)
4.580837(0.03%)
4.579920(0.01%)
4.579460
4.579335(2.34)
4.579281(2.31)

0.000394(78.7%)
0.000709(61.7%)
0.001065(42.4%)
0.001251(32.4%)
0.001443(22.0%)
0.001850
0.001930(0.82)
0.002032(0.74)

3.433715(0.65%)
3.425231(0.40%)
3.418987(0.22%)
3.417280(0.17%)
3.415954(0.13%)
3.41150
3.415167(2.27)
3.415277(2.14)

N, x Ny

A
Uy

01

Nu'

A10/12

75 x 600
100 x 800
150 x 1200
200 x 1600
300 x 2400
Ref (43)
()
fNZE (@)

0.050830(7.29%)
0.054594(0.43%)
0.056746(3.50%)
0.057327(4.56%)
0.057572(5.00%)
0.054828
0.0577060(2.84)
0.0578259(2.68)

0.039788(6.91%)
0.042632(0.25%)
0.044221(3.47%)
0.044617(4.39%)
0.044753(4.71%)
0.042740
0.0448256(3.05)
0.0449381(2.79)

0.006336(10.8%)
0.006860(3.38%)
0.007173(1.03%)
0.007261(2.27%)
0.007307(2.92%)
0.007100
0.0073325(2.64)
0.0073419(2.55)

0.018641(8.53%)
0.020011(1.81%)
0.020817(2.14%)
0.021052(3.30%)
0.021175(3.90%)
0.020380

0.0212455(2.60)
0.0212675(2.56)

Table 3: Convergence of values with Pr = 0.71, Ra = 3.4 x 10°> and Ma = 10~*
for BB-BCs. The reference values of Xin and Le Quéré (43)) are also presented
as the results of RE on three (N = 3) and four (N = 4) meshes. Values in

parenthesis are relative differences with reference or convergence order.
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T

3.441009(0.86%)
3.430037(0.54%)
3.421374(0.29%)
3.418490(0.20%)
3.416565(0.15%)
3.411500
3.415005(2.03)
3.414373(1.85)

Nz X Ny Uy 51 m Fp12
76 x 601  0.057049(1.23%) 0.265821(0.13%) 4.591869(0.27%) 0.001621(12.3%)
101 x 801  0.056936(1.03%) 0.265701(0.08%) 4.586808(0.16%) 0.001717(7.19%)
151 x 1201 0.056838(0.86%) 0.265621(0.05%) 4.583163(0.08%) 0.001785(3.51%)
201 x 1601  0.056818(0.82%)  0.265586(0.04%)  4.582049(0.06%) 0.001806(2.38%)
301 x 2401  0.056794(0.78%) 0.265557(0.03%) 4.581215(0.04%) 0.001823(1.46%)
Ref (43) 0.056356 0.265480 4.579460 0.001850
fiEtra(@)  0.056782(2.26)  0.265527(1.64)  4.580653(2.16)  0.001834(2.11)
feEtra(@)  0.056793(2.02)  0.265539(1.92)  4.580706(2.10)  0.001831(2.12)
N x N, u} 01 Nu/ Ap',
76 x 601  0.051456(6.15%) 0.039804(6.87%) 0.006324(10.9%) 0.018610(8.68%)
101 x 801  0.054653(0.32%) 0.042257(1.13%)  0.006793(4.32%) 0.020167(1.05%)
151 x 1201 0.056912(3.80%) 0.044062(3.09%) 0.007132(0.45%) 0.020983(2.96%)
201 x 1601  0.057483(4.84%) 0.044520(4.16%) 0.007232(1.86%) 0.021193(3.99%)
301 x 2401  0.057689(5.22%)  0.044698(4.58%) 0.007289(2.66%) 0.021279(4.41%)
Ref (43) 0.054828 0.042740 0.007100 0.020380
fertra(q)  0.057818(2.81)  0.044810(2.74)  0.007327(2.36)  0.021321(3.00)
fetra(@)  0.058098(2.28)  0.045040(2.20)  0.007351(2.12)  0.021353(2.91)

Table 4: Convergence of values with Pr = 0.71, Ra = 3.4 x 10°> and Ma = 10~*
for ZHCS-BCs. The reference values of Xin and Le Quéré (43) are also presented
as the results of RE on three (N = 3) and four (N = 4) meshes. Values in

parenthesis are relative differences with reference or convergence order.
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Ma

Uy

0,

Nu

Apyy

T

0.2
0.1

0.05
Ref (43)

f§e (@)

0.057180(1.46%)
0.055794(1.00%)
0.055468(1.58%)
0.056356
0.055368(2.09)

0.265746(0.10%)
0.265598(0.04%)
0.265558(0.03%)
0.265480
0.265543(1.89)

4.579715(0.01%)
4.579920(0.01%)
4.580093(0.01%)
4.579460
4.581028(0.24)

0.001384(25.1%)
0.001443(22.0%)
0.001456(21.3%)
0.001850
0.001460(2.18)

3.426895(0.45%)
3.415954(0.13%)
3.413460(0.06%)
3.411500
3.412724(2.13)

Ma

uy

4!

Nu/

Apl,

Cpu time (h)

0.2

0.1

0.05
Ref (43))

i ()

0.066978(22.1%)
0.057572(5.00%)
0.055209(2.04%)
0.054828
0.054416(1.99)

0.050714(18.6%)
0.044753(4.71%)
0.043100(0.84%)
0.042740
0.042466(1.85)

0.007989(12.5%)
0.007307(2.92%)
0.007114(0.20%)
0.007100
0.007004(1.85)

0.023792(16.7%)
0.021175(3.90%)
0.020418(0.19%)
0.020380
0.020083(1.79)

1700
3350
7480

Table 5: Convergence of values with Pr = 0.71, Ra = 3.4 x 10° and N, x N, =
300 x 2400 for BB-BCs. The reference values of Xin and Le Quéré (43) are also
presented as the results of RE on three (N = 3) meshes. Values in parenthesis
are relative differences with reference or convergence order. For guidance, the
total cpu time in hours on AMD 6276 computers is given.
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