
HAL Id: hal-00857801
https://hal.science/hal-00857801

Submitted on 4 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraic Dynamic Programming 2.0
Robert Giegerich, Hélène Touzet

To cite this version:
Robert Giegerich, Hélène Touzet. Algebraic Dynamic Programming 2.0. Workshop Haskell-Treffen
an der Universität Leipzig, Jun 2013, Leipzig, Germany. �hal-00857801�

https://hal.science/hal-00857801
https://hal.archives-ouvertes.fr


Algebraic Dynamic Programming 2.0

Robert Giegerich
Faculty of Technology and Center for Biotechnology,

Bielefeld University, 33594 Bielefeld, Germany
robert@techfak.uni-bielefeld.de

Hélène Touzet
LIFL (UMR CNRS 8022, University of Lille) and INRIA,

59655 Villeneuve d’Ascq Cedex, France
helene.touzet@lifl.fr

April 21, 2013

Abstract

Haskell has played a major role – and it still does – in the imple-
mentation of the Algebraic Dynamic Programming framework as it
emerged about a decade ago. Here, we present a—yet unpublished—
generalization of the ADP framework which also accomodates prob-
lems on trees. The new framework is not an “add-on” extension,
but suggests a reformulation of “classical” ADP. ADP 2.0 is not only
more general, but (arguably) more elegant – and more difficult to im-
plement. In fact, no general implementation technique is known at
present.
An ensemble of about 30 problems – most classical, some new – from
biosequence and structure analysis has been described in the new
framework. In the workshop contribution, we will present some of
them, according to audience’s choice. We will point out the chal-
lenges in implementing the new framework, hoping to solicit coopera-
tion from the Haskell community.

1 Outline of ideas

We introduce Inverse Coupled Rewrite Systems (ICOREs) as a high-level
and unified view on a diverse set of combinatorial optimization problems on

1



sequences and trees. ICOREs are based on the following ideas: Candidate
solutions of optimization problems have a natural representation in some
term algebra, whose function symbols reflect the case analysis required by
the problem at hand. A tree grammar may be used to further refine the
search space by describing a language of well-formed candidates. Optimiza-
tion objectives are specified as interpretations of these terms in a suitable
scoring algebra, together with an objective function. The relation between
input terms and their candidate solutions is established by a term rewrite
system. This rewrite system works in the wrong direction, mapping solutions
back to the input(s) of the problem they solve. For problems with several
inputs, the rewriting to these inputs is performed by different rules, but in a
coupled manner.

These constituents provide a mathematically precise and complete prob-
lem specification. Implementing an algorithm to solve the problem is non-
trivial. To actually solve a problem for given inputs, the coupled rewrite
relation must be inverted. Candidates must be constructed, evaluated, and
have the objective applied to them. To do so efficiently, all the dynamic
programming machinery must eventually be brought in – but no allusion to
dynamic programming appears in the problem specification.

The long-term goal of our work is twofold. We want to

• describe optimization problems on a declarative level of abstraction,
where fundamental ideas are not obscured by implementation detail,
and relationships between similar problems are transparent and can be
exploited;

• implement algorithmic solutions to these problems in a systematic or
even automated fashion, thus liberating algorithm designers from error-
prone coding and tedious debugging work, enabling re-use of tried-and-
tested components, and overall, enhancing programmer productivity
and program reliability.

In the present contribution, we focus on the former of these goals. We will
develop a substantial number of problem specifications expressed in our new
framework, all drawn from the application domains of computaional biology.
See Table 1. However, as much as sequences, trees and dynamic programming
are ubiquitous in computer science, this covers only a small sub-domain of the
potential scope of our approach. For example, the tree comparison techniques
we use with RNA secondary structure have also been employed to compare
objects assembled by robots, or to extract and compare documents from the
web.

2



The expressive power of the ICORE concept is not formally circum-
scribed. Note, for example, that rewrite rules are allowed to copy variables,
as in f(X) → X∼X, which covers some aspects of copy languages. By
presenting a diverse set of real-world examples from bioinformatics, we are
hoping to convince the reader that the second goal, developing implemen-
tation techniques for ICOREs, is a new and rewarding research challenge.

2 Examples

Definitions We skip all formalism, and rely on the reader’s background
with respect to signatures, algebras, tree grammars, and term rewrite rules.
An ICORE problem is specified by

• a dimension k, indicating the number of inputs,

• k ”satellite” signatures for the k inputs,

• a “core” signature ζ for the candidate solutions that make up the uni-
versal search space,

• a tree grammar G designating the legal candidates as a subset of the
term algebra Tζ ,

• a set of k “coupled” rewrite systems; their rules share the lefthand sides
and specify how a core term rewrites to each of its inputs,

• a ζ-algebra A (or several) specifying the evaluation (scoring) of core
terms and an objective function to choose optimal answers.

So in general, inputs are trees (terms) over some signature. Of course, se-
quences are an especially simple type of tree, made up from an alphabet of
characters, the empty word ε, and a concatenation operator, which we de-
note ∼ whenever we write it explicitly. Generally, inputs can be a mixture
of sequences and trees over different alphabets and signatures.

An instance of an ICORE problem is specified by its k inputs. Its solution
is the multiset of candidates t ∈ Tζ (resp. their scores A(t)) which

• are in L(G),

• rewrite to the inputs in all k dimensions,

• are chosen from all the above by the objective function in A.

3



ICORE / Grammar Dim. Problem addressed in Section Page

EditDistance 2 simple edit distance/alignment ?? ??
Affine 2 edit distance, affine gaps ?? ??

AffiOsci 2 oscillating affine gaps ?? ??
AffiTrace 2 Sequence traces, affine gaps ?? ??

LocalSearch 2 Generic Local Alignment ?? ??
MotifSearch 2 short in long alignment ?? ??
SemiGlobAlignment 2 semi-global alignment ?? ??
LocalAlignment 2 local alignment ?? ??
MatchSeq S 1 Hardwired sequence matching ?? ??

MatchAffi S 1 same with affine gap model ?? ??
MatchSeq S 1 Profile HMM ?? ??

with position-specific scores
RNAfold 1 RNA folding ?? ??
StructAli 2 struct. Alignment prototype ?? ??
SimultaneousFolding 2 generalized fold and align ?? ??
ExactConsensusStructure 2 exact consensus structure ?? ??

for two RNA sequences
Sankoff 2 simultaneous fold and align ?? ??
S2SGeneric 2 covariance model, generic ?? ??
S2SExact 2 match RNA sequence ?? ??

to target structure
Match S2S r 2 exact local motif matcher ?? ??
Match S2S r’ 1 motif matcher, hard coded ?? ??
SCFG 1 stochastic context free grammar ?? ??
CovarianceModel r 1 covariance model, hard coded ?? ??
TreeAlign 2 classical tree alignment ?? ??
TreeAliGeneric 2 tree alignment protoype + variants ?? ??
OsciSubforest 2 tree ali. with oscillating gaps ?? ??
TreeEdit 2 classical tree edit ?? ??
RNATreeAli 2 generalized tree alignment ?? ??

Table 1: A summary of the ICOREs available for the workshop presentation.
The unresolved links refer to a manuscript currently under submission.

4



Comparing this setup to “first generation” ADP, note that the tree gram-
mar no longer relates solutions to inputs. As a consequence, the tree gram-
mar is often not required, and the full term algebra Tζ is used in its place.
Connection between outputs and inputs is established solely by the rewrite
relation – in the “wrong” direction, which makes ICORE specification easy
and their implementation hard.

Often, the core as well as the satellite signatures can be infered from
the rewrite rules alone. In such a case, ICOREs lend themselves to a very
terse presentation, consisting only of rewrite system and algebra(s). This
is convenient for initial ICORE design, whereas in a practical programming
envorinment, a certain degree of redundancy is desirable.

Next, we show two ICORE examples, relying on the reader’s intuition to
guess some detail not given here explicitly.

5



String edit distance Here is the ICORE formulation for the classical edit
distance problem. A denotes the underlying alphabet.

The basic string edit ICORE smoothly generalizes to affine gap scoring,
local alignment, small-in-large alignment, alignments of genomic sequence
against amino acid sequences, sequence motif search, and profile HMMs.

6



Tree alignment Here is the ICORE formulation for the classical tree align-
ment problem. Satellite signature TREE allows for rooted, ordered, node-
labeled trees. Node labels are treated as unary operators, where forests of
subtrees are concatenated by ∼. Such an operator also exists in the core
signature, where forests of sub-alignments are also formed with ∼. Rule (5)
rewrites between the two instances of ∼.

The tree aligment ICORE generalizes to several variants of composite
gaps and affine gap scoring. Classical tree edit distance, however, starts
from a different ICORE and uses associative rewriting. A more expressive
tree alignment model, semantically richer than the classical, node-by-node
tree edit model, starts from a set of bidirectional rewrite rules, from which an
ICORE implementing this model can be constructed in a systematic fashion.

7


