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Abstract

In this article, we describe the theoretical foundations of the Ω-arithmeti-
zation. This method provides a multi-scale discretization of a continuous
function that is a solution of a differential equation. This discretization
process is based on the Harthong-Reeb line HRω. The Harthong- Reeb line
is a linear space that is both discrete and continuous. This strange line HRω

stems from a nonstandard point of view on arithmetic based, in this paper, on
the concept of Ω-numbers introduced by Laugwitz and Schmieden. After a
full description of this nonstandard background and of the first properties of
HRω, we introduce the Ω-arithmetization and we apply it to some significant
examples. An important point is that the constructive properties of our
approach leads to algorithms which can be exactly translated into functional
computer programs without uncontrolled numerical error. Afterwards, we
investigate to what extent HRω fits Bridges’s axioms of the constructive
continuum. Finally, we give an overview of a formalization of the Harthong-
Reeb line with the Coq proof assistant.
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1. Introduction

Multi-resolution object representation and numerical precision problems
are important subjects in computer imagery. In the continuation of previous
works of the authors [11, 5, 6], we detail in this article a new method called the
Ω-arithmetization. It is a process of multiscale discretization of a continuous
function that is a solution of a differential equation. The Ω-arithmetization is
an extension of the arithmetization method based on Ω-numbers introduced
by Laugwitz and Schmieden [16, 14, 15]

Initially, the arithmetization method was introduced by Georges Reeb
and Jacques Harthong. The principle of the arithmetization method has led
Reveillès to the definition of the discrete analytical line [26, 27, 28]. Jacques
Harthong and Jean-Pierre Reveillès were part of a group of young mathemati-
cians that gathered around Georges Reeb to work on nonstandard analysis.
Georges Reeb is well known in mathematics for his work on the geomet-
ric topological theory of foliations and in computer science for what is now
known as the Reeb graphs. What is less known is that Georges Reeb was
also interested in intuitionism with a keen interest in the relations between
computers and nonstandard analysis. Jacques Harthong and Georges Reeb
proposed a model of the discrete line Z, called the Harthong-Reeb line, that
they showed to be equivalent to the real line R. The arithmetization is ob-
tained by transforming, for instance, the classical integration Euler scheme
used to compute the curves, solution to differential equations, into an equiv-
alent integer scheme. The transformation from Z to R corresponds to a
rescaling which induces a strong deformation of space. A rigorous imple-
mentation of this approach requires a model of the set Z of integer numbers
together with a notion of infinitely large number (i.e. a scale on Z). In
previous works such a model was introduced with the help of an axiomatic
version of nonstandard analysis. The major drawback of such an approach
is that the infinitely large integers which arise in the corresponding method
have only an axiomatic status, i.e. no indication is available to know how to
compute these integers.

In the present paper, we propose the arithmetization method based on
the notion of Ω-numbers introduced by Laugwitz and Schmieden [16, 14, 15].
Roughly speaking, an Ω-number (natural, integer or rational) is a sequence
of numbers of the same nature together with an adapted equality relation.
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The sets of Ω-numbers are extending the corresponding sets of usual numbers
with the added advantage of providing a natural concept of infinitely large
integer numbers: for instance, an Ω-integer α represented by a sequence (αn)
of integers is such that α ' +∞ if limn→+∞ αn = +∞ in the usual meaning.
Clearly, these infinite numerical entities are effectively constructive. This is
one of the main interest points of the authors in this work. Indeed, from a
computer science point of view, it is interesting as practical real numbers are
only constructive ones that cannot be other that denumerable.

After choosing an Ω-integer ω such that ω ' +∞, we can define the
Harthong-Reeb line HRω [9] which is a numerical system consisting of Ω-
integers with the additional property of being “roughly” equivalent to the
real line system. Not only the elements of HRω have a constructive flavor,
but we show that the structure of this system partially fits with the construc-
tive axiomatic developed by Bridges [2]. The constructive properties of the
underlying theory that is presented in this paper leads, as we will show, to al-
gorithms which can be exactly translated into functional computer programs
without uncontrolled numerical errors. An important part of this work is
devoted to the definition and the study of the theoretical framework of the
method. It corresponds also to an intuition of Georges Reeb that speculated
that the Harthong-Reeb line is constructive in nature.

The Ω-arithmetization is an extension of the arithmetization method
based on Ω-numbers. The principle of this method is unchanged and the
resulting algorithm is formally the same. The new and crucial facts are the
following:

• The algorithm operates on Ω-numbers in a completely constructive way
and consequently, in the applications, we can represent adequately all
the entities present in the theory.

• The result of the algorithm appears to be an exact discrete multi-
resolution representation of the continuous function on which the method
is applied. See figure 1.

From the first point, we deduce that the implementation of the method does
not lead to uncontrolled approximation errors. The second point is par-
ticularly interesting from a computer imagery point of view. This multi-
resolution aspect is a direct consequence of the Ω-arithmetization: this is in
relation with the nature of the scaling parameter β used in the method (see
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Figure 1: Plot of the multi-resolution aspects of the Ω-arithmetization of the real function
X(T ) = 3T/5. (Full explanation in section (4)).

section 4). This parameter, as an infinitely large Ω-integer, encodes an infin-
ity of increasing scales. The arithmetization process gives simultaneously a
discretization of the initial continuous function at each of these scales.

Since nowadays many developments in image analysis, geometric mod-
eling, etc. use multi-resolution approaches and must deal with numerical
precision problems, the Ω-arithmetization is a new tool which has the inter-
esting property of taking into account these two aspects. Let us note that our
goal is not to define a discretization method that produce “better” images
and “faster” algorithms. On the bases of a significant theoretical analysis,
our originality is to propose a constructive and exact discrete representa-
tion of continuous functions. Moreover, this framework naturally leads to a
multi-resolution representation.

However, even if practical handling of Ω-numbers is just manipulations
of integer sequences, the underlying concepts are not so easy to apprehend
as they are rather far from the usual mathematical practice. In order to
help people (and at first the authors) to obtain a good grasp of this unusual
mathematical framework, a formalization into the Coq proof assistant [1] is
proposed by Magaud and some of the authors [17]. This formalization had
helped to verify the proofs that we made, and a quick overview of it is given
in this paper.

Let us now clarify the links of the present study with the existing literature.
The preceding description has shown what are the main preexisting ideas
and works which are directly and explicitly at the root of the present study:
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firstly the topics of the Harthong-Reeb line and the arithmetization method
introduced in the French school of nonstandard analysis, secondly the theory
Ω-numbers of Laugwitz and Schmieden and thirdly, in a lower proportion,
Bridges’s axiomatic approach of the constructive real line.

On the other hand, since our contribution used some tools of nonstandard
analysis and provides a constructive form of the continuum, it is natural to
draw an analogy with the realm of constructive nonstandard analysis. The
origin of this last theoretical field is the pioneer work of P. Martin-Löf [20]
which is also one of our sources of reflections. Following this first headway,
various versions of constructive nonstandard analysis were developed in par-
ticularly in the works of E. Palmgren [22, 23, 24, 25, 30, 31]. Starting with
the use of the rational Ω-numbers of Schmieden and Laugwitz [14], these
works have introduced some formal systems and models, thus offering a rich
and effective theoretical framework for a constructive practice of nonstandard
analysis.

The analogy between these works and the present article comes from the
fact that we use Ω-numbers - Ω-integers to be more precise - and that we end
up with a nonstandard and constructive representation of certain continuous
functions. Nevertheless, we argue that there is no fundamental interference,
no theoretical dependence between our work and the quoted works. Indeed,
it is not our purpose to define or to use a general version of the constructive
nonstandard analysis. Following the reflections of Harthong, Reeb [12, 13]
and of our previous own works [11, 5, 6], we essentially want to clarify and to
study a new digital system, the Ω-Harthong-Reeb line, as base of a discrete
multi-scale representation of certain continuous functions. For that purpose,
we absolutely have to stay at the semantic level of the Ω-integers because it
is the functional structure of these last ones that is at the heart of our multi-
scale discrete representation. Finally, the functional programming allows
an exact and effective implementation of this representation on computers,
proving, practically, the constructive character of our approach.

The specificity of our work with related developments in the field of con-
structive nonstandard analysis will be discussed later in more detail about the
following points: the treatment of the Euler scheme in the end of the intro-
duction of part 3, the study of the the regular elements of the Harthong-Reeb
line in the beginning of part 5.2.2 just before theorem 2.

Finally, let us note that it would certainly be interesting to define and
to study an Harthong-Reeb line in one or other of the various approaches
of constructive nonstandard analysis mentioned previously. This would be,
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however, a rather different subject than the one developed in this article.
The paper is organized as follow: in part 2, we introduce the Ω-numbers

and study their general mathematical and logical properties, in part 3, we
use the Ω-numbers to define an Harthong-Reeb line HRω. In part 4, we
present the Ω-arithmetization and finally in part 5 we present a theoretical
analysis on the constructive content of HRω.

2. The Ω-numbers of Laugwitz and Schmieden

In this section we will present the notion of Ω-numbers introduced by
Laugwitz and Schmieden [16, 14, 15]. For the most part, we follow the
presentations of these authors, but on some points, we have introduced new
developments and, from our point of view, important distinctions. The Ω-
numbers are nonstandard numbers but the encompassing theory has two
complementary characteristics: it seems theoretically weaker than the usual
versions of nonstandard analysis [29, 21, 8] but it has an undeniable flavor of
constructivity suggesting the possibility of explicit and exact computations.
The principal goal of Laugwitz and Schmieden was to build a new approach
to real analysis based only on the introduction of a set of Ω-rational numbers
which is an extension of the usual set Q. In our case and in view of the
arithmetization process, we are mainly interested in Ω-integers but we will
occasionally consider Ω-rationals.

2.1. Extension by an infinitely large number Ω

The first step is to extend a given formal theory T (unspecified but in-
cluding an elementary theory of integer and rational numbers) by introducing
a new number constant Ω and a new rule (BD) described thereafter. This
leads to a new theory T 〈Ω〉 which is an extension of T . Thus, any formula
of T is also a formula of T 〈Ω〉. In this connection, we will need the following
definition.

Definition 1. A formula of the theory T 〈Ω〉 is said internal if it can be
formulated in the initial theory T

In addition to internal formulas, we can form in T 〈Ω〉 new formulas depending
on Ω for which the truth is given by the following axiom called the Basic
Definition (BD):

Let S(n) an internal formula depending on n ∈ N. If S(n) is
true for almost n ∈ N , then S(Ω) is true.
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We specify that here and in all what follows, the expression ”almost n ∈
N” means ”for all n ∈ N from some level”, i.e. ”(∃N ∈ N) such that (∀n ∈ N)
with n > N”. Deriving from (BD), we can verify that Ω is an infinitely large
integer, i.e. greater than every element of N. Indeed, for p ∈ N, we apply
(BD) to the statement p < n which is true for almost n ∈ N; thus p < Ω for
each p ∈ N.

2.2. The sets of Ω-numbers

The second step is to describe a world of mathematical objects which is
a realization of the extended theory T 〈Ω〉. For this purpose, we consider the
set of sequences of integer or rational numbers. On this set, we introduce the
equivalence relation R such that, for a = (an) and b = (bn)1, we have aRb if
and only if an = bn for almost n ∈ N.

Definition 2. Each equivalence class for the relation R is called an Ω-
number.

In the general case, an Ω-number is also called an Ω-rational number. We
agree to identify each sequence of numbers a = (an) with the Ω-number equal
to the equivalence class of a. Given a sequence a = (an) such that an ∈ Z for
all n ∈ N, we can say that a = (an) is an Ω-integer. Finally, we decide that
the symbol Ω is the name of the particular Ω-number (n)n∈N. The following
development will show that these choices are coherent.

Let ZΩ be the set of Ω-integers, NΩ be the set of Ω-integers c = (cn) such
that cn > 0 for almost n ∈ N and QΩ be the set of Ω-rational numbers.
We consider the embedding i : Z → ZΩ which associates to each p ∈ Z the
constant sequence of value p. We distinguish two classes of elements in ZΩ :
the first deriving from the map i and the second characterizing the infinitely
large.

Definition 3. An Ω-integer a = (an) is said to be standard if a belongs to
the image of the preceding embedding, i.e. if there exists p ∈ Z such that
an = p for almost n ∈ N.

Definition 4. An Ω-integer a = (an) is infinitely large when (∀p ∈ N)(∃n ∈
N)(∀n > N)(p < |an|).

1Although this is not always indicated, in our sequences, the index n takes all the values
0, 1, . . . in N.
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This is equivalent to say that a = (an) is infinitely large when lim
n→+∞

|an| = +∞.

Any sequence of integers f = (f(n)) is a map f : N → Z which has a
natural extension f : NΩ → ZΩ defined by f(a) =def (f(an))n∈N for a = (an).
For each Ω-integer b = (bn), we can extend the underlying sequence to NΩ

and we obtain in particular bΩ = (bn) = b. Applying this property to (n)n∈N,
we find again Ω = (n)n∈N, which partly shows the consistency of our previous
choice. We do the same for the Ω-rational numbers.

Any operation or relation defined on Z (or Q) naturally extends to ZΩ (or
QΩ). For instance, the following definition give the definitions of operations,
relations and the absolute value the for Ω-numbers.

Definition 5. For every a = (an) and b = (bn) ∈ ZΩ let us set :

• a+ b =def (an + bn) and −a =def (−an) and a× b =def (an × bn);

• a > b =def [(∃N∀n > N) an > bn] and a > b =def [(∃N∀n > N) an >
bn];

• |a| =def (|an|).

It is easy to check that (ZΩ,+,×) is a commutative ring with the constant
sequence of value 0 as zero and the constant sequence of value 1 as unit. The
previous map i : Z→ ZΩ is an injective ring homomorphism which allows to
identify Z with the subring of standard elements of ZΩ. From now on, we
identify any integer p ∈ Z with the Ω-integer i(p) equal to the sequence of
constant value p.

For the implementation of an arithmetization process based on Ω-integers,
we need an extension of the Euclidean division to the Ω-integers and of the
floor and the fractional part functions to the Ω-rational numbers.

• Given two Ω-integers a = (an) and b = (bn) verifying b > 0, there is an
unique (q, r) ∈ Z2

Ω such that a = bq + r and 0 6 r < b. Indeed, since
bn > 0 from some level N ∈ N, we can set q = (qn) and r = (rn) where,
for n > N , qn is the quotient of an by bn and rn is the remainder of this
Euclidean division. For n < N the values of qn and rn are arbitrary
(for instance 0). We will use the usual notations a÷ b for the quotient
q and amod b for the remainder r.

• Given an Ω-rational number r = (rn), there is a unique brc ∈ ZΩ and
a unique {r} ∈ QΩ such that (0 6 {r} < 1) ∧ (r = brc+ {r}). Indeed,
we can choose brc = (brnc) and similarly {r} = ({rn}).
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Regarding the order relation, the usual properties that are true on Z are
not always verified on ZΩ. For instance

(∀a, b ∈ ZΩ) (a > b) ∨ (b > a) (1)

is not valid as we can see for the particular Ω-integers a = ((−1)n)n∈N and
b = ((−1)n+1)n∈N. Nevertheless, given two arbitrary Ω-integers a = (an) and
b = (bn), we have

(∀n ∈ N) (an > bn) ∨ (bn > an). (2)

Using (BD), we obtain (aΩ > bΩ) ∨ (bΩ > aΩ) and thus (1) since aΩ = a
and bΩ = b. There is a contradiction. To avoid it, we may admit that the
application of (BD) leads to a notion of truth weaker than the usual notion.
Hence, we introduce an important logical distinction :

Definition 6. Let P (x1, x2, ..., xn) an internal formula with x1, x2, ..., xn free
variables in Z. For ai = (ai,m)m∈N ∈ ZΩ i = 1, ..., n if

(∃M ∈ N)(∀m > M)(P (a1,m, a2,m, ..., an,m)) is true,

then the formula P (a1, a2, ..., an) is said weakly true.

In contrast to the weak truth, we may use the terms of strong truth for the
usual truth. For instance, (1) is weakly true but not strongly true, and the
weak truth of (1) means exactly that (2) is (strongly) true. In the sequel, we
will use the following properties.

Proposition 1. The following formulas are weakly true on ZΩ:
(1) ∀(x, y) ∈ Z2

Ω (x < y) ∨ (x ≥ y);
(2) ∀(x, y, z) ∈ Z3

Ω (x+ y > z)⇒ (2x > z) ∨ (2y > z).

Proof. Let x = (xn), y = (yn) and z = (zn). For each n ∈ N, we have

(xn < yn) ∨ (xn ≥ yn) and (xn + yn > zn)⇒ (2xn > zn) ∨ (2yn > zn)

Thus, we can apply (BD) and we get the two formulas.

Let us remark that the first formula says that the order relation on ZΩ is
(weakly) decidable.
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2.3. Some details about Ω-rational numbers

Returning to the Ω-rational numbers, we can check that (QΩ,+,×,>) is a
commutative ordered field for the weak truth. Given two Ω-integers a = (an)
and b = (bn), if b 6= 0 in the weak meaning, then b has an inverse b−1 in
QΩ and a/b =def a × b−1 is an Ω-rational number. Conversely, if r ∈ QΩ is
weakly different from 0, then there is a unique pair (a, b) ∈ Z2

Ω with b > 0
such that r = a/b; then, it is easy to check that we have the usual relations
brc = a÷ b and {r} = (amod b).

An Ω-rational number a = (an) is said to be limited in case there is a
standard p ∈ N such that |a| 6 p where |a| = (|an|); this means that |an| 6 p
for almost n ∈ N. Let Qlim

Ω be the set of limited Ω-rational numbers. In
the same way, we say that a is infinitely small and we write a ' 0 in case
p|a| 6 1 for every p ∈ N. For a, b ∈ QΩ, we write a ' b when a − b ' 0
and a . b when p(a − b) ≤ 1 for every p ∈ N. It is easy to check that
' is an equivalence relation and that . is an order relation on QΩ. This
leads to the numerical system (Qlim

Ω ,',.,+,×) which is, for Laugwitz and
Schmieden [14], an equivalent of the classical system of the real numbers
(R,=,6,+,×).

3. Arithmetization with Ω-integers

In the preceding section, we have seen that the concept of Ω-integer num-
bers provides a relatively constructive version of nonstandard arithmetic.
Now, we are going to use this framework to define an arithmetization method
in the spirit of what has been done in a less constructive context [5].

Let us recall what is the general principle of the arithmetization method.
It is a process which provides discrete equivalents to continuous functions
or curves. This method is based on a new perspective on the continuous
line. For this purpose, we use an infinitely large integer number ω which is
interpreted as the new unit of the integer numerical system; in other words,
the distance between two successive integers is assumed to be equal to 1/ω.
With this interpretation, we get a discrete system R which looks like the
continuous one. Then, given a function h with real variables and real values,
we call arithmetization of h a process which transfers in R a numerical char-
acterization of h. In our context, this process involves two steps: firstly the
arithmetization at a global scale, secondly the translation at an intermediate
scale.
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Our arithmetization method is based on the Euler scheme usually used for
the numeric integration of a common differential equation. Before describing
in detail our approach, it is interesting to compare it to other methods which
also use this integration scheme in a nonstandard context. Taking up with the
intuition of the creators of the infinitesimal calculation, nonstandard analysis
uses the Euler scheme based on an infinitesimal step to prove the existence of
a solution for a Cauchy problem [8]. The same is true for certain constructive
approaches of nonstandard analysis as E. Palmgren showed it [24]. What we
do with the Euler scheme is of different nature which, actually, requires new
developments: we do not want to integrate a differential equation but to give
a discrete multiscale representation of a given real function which is already
solution of some Cauchy problem.

Following up on the ideas of G. Reeb and JP. Reveillès [28] and our own
previous work, our method starts by introducing a kind of translation of the
Euler scheme into the discrete world of Ω-integers. The solution of this new
scheme appears as a discrete representation of the initial continuous function.
Because this translation carries errors, in particular rounding errors, we then
have to show that the obtained discrete solution is, in a certain sense, an
exact representative of the initial real function.

3.1. Ω-arithmetization at the global scale

Our method applies to functions which are solutions of some differential
equations2. More precisely, we consider a real function X : T 7→ X(T )
defined on an interval of R with values in R. We suppose that X is the
solution of the Cauchy problem

X ′ = F (T,X) X(A) = B (3)

where F is a continuously differentiable function ; for simplicity, we assume
that F is defined on the whole plane R2. To this differential problem is
associated the Euler scheme with integration step 1

S
and real variables Tk

and Xk: 
T0 = A ; X0 = B
Tk+1 = Tk + 1

S
× 1

Xk+1 = Xk + 1
S
× F (Tk, Xk)

(4)

2The set R of real numbers and the differential equation that follows are supposed
defined in the framework of classical analysis.
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The scheme (4) provides a sequence of points (Tk, Xk)k≥0 such that each
Xk is an approximation of X(Tk). It is well know that the error of the
approximation |X(Tk)−Xk| converges to 0 when S → +∞.

Now, we want to transfer this scheme in the arithmetical system ZΩ of
Ω-relative numbers. To this end, we choose a scale, that is to say a number

ω = (ωm)m∈N ∈ NΩ such that ω ' +∞. (5)

We want to consider that ZΩ is a kind of continuous line in which ω is the
unit. In this perspective, we introduce a function Ψω : R → ZΩ: for each
U ∈ R, we define Ψω(U) = (bωmUc)m∈N ∈ ZΩ. The element Ψω(U) is the
representative of U at the scale ω in ZΩ. We note that Ψω(1) = ω so that
ω is the representative of the real number 1. Although the map Ψω is far
from being bijective, we can consider it as a kind of change of variables. For
instance, we consider that the representative of a function Φ : R→ R is the
function φ : ZΩ → ZΩ given by

∀t = (tm)m∈N ∈ ZΩ φ(t) = (bωmΦ(tm/ωm)c)m∈N (6)

Similarly, the representative of the function F : R2 → R in the differential
equation (3) is the function f : Z2

Ω 7→ ZΩ given by

∀(t, x) ∈ Z2
Ω f(t, x) = (bωmF (tm/ωm, xm/ωm)c)m∈N (7)

where t = (tm)m∈N and x = (xm)m∈N. In the following, we will focus on the
case where this function f has a purely arithmetic expression3.

Now, we consider the step 1
S

and its involvement in (4). Through the
change of variables (6), the real multiplication U 7→ 1

S
× U is represented

in ZΩ by the map u = (um)m∈N 7→ (b 1
S
umc)m∈N. Since we also want to

represent the condition S → +∞, we can replace S by 1/βk for each k ∈ N
where β = (βk)k∈N is a given Ω-natural number such that β ' +∞. Finally,
we can represent both the parameter S and the condition S → +∞ by
deciding that the real multiplication U 7→ 1

S
× U is replaced in ZΩ by the

map u = (um)m∈N 7→ (bum/βmc)m∈N = u ÷ β (where ÷ is the Euclidean
division). For instance, the term 1

S
× 1 is represented by ω ÷ β; in order

to get a non trivial term, it is better to suppose that ω converges to +∞

3We intend to define algorithms using only arithmetic operations on integer numbers.
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more quickly than β. Finally, to avoid the multiplicity of parameters and
conditions, we assume the simplifying hypothesis

ω = β2 where β ∈ NΩ such that β ' +∞. (8)

so that ωm = β2
m for all m ∈ N and limm→+∞ βm = +∞. From now on,

we suppose that ω and β are fixed Ω-integers subject to the condition (8).
Then, working term by term according to the above principle, we are able to
define an arithmetic analogue of the Euler Scheme (4).

Definition 7. The Ω-arithmetization of the Euler scheme (4) at the global
scale ω is the following scheme with variables xk, tk ∈ ZΩ

t0 = a ; x0 = b
tk+1 = tk + β
xk+1 = xk + f(tk, xk)÷ β

(9)

where a = bωAc, b = bωBc and f is defined by (6).

Note that there is some arbitrariness in this definition since we had to make
some choices for going from (4) to the new scheme. Nevertheless, (9) has a
strong analogy with (4) and moreover, we will show that this scheme leads
to interesting results. Using (9) iteratively, we obtain a sequence of points
(tk, xk) which is the graph of a discrete function t 7→ x(t) which is called the
Ω-arithmetization at the scale ω of the initial real function T 7→ X(T ).

3.2. The convergence of the arithmetized scheme

Since the last definition results of reasonable but somewhat arbitrary
choices, it is natural to wonder about the existence of a precise link between
(9) and the original Euler scheme (4). We will show that this new scheme
contains enough information to reconstruct asymptotically the original Euler
scheme. For this purpose, we remark that the variables tk and xk represent
sequences (tk,m)m∈N and (xk,m)m∈N of integers subject to the following scheme
depending on m ∈ N with variables tk,m, xk,m ∈ Z

t0,m = am ; x0,m = bm
tk+1,m = tk,m + βm
xk+1,m = xk,m + fm(tk,m, xk,m)÷ βm

(10)

where
am = bωmAc, bm = bωmBc and fm(tk,m, xk,m) = bωmF (tk,m/ωm, xk,m/ωm)c.
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If each line of (10) is divided by ωm, then we obtain a scheme depending on
m ∈ N with real variables T ′k = tk,m/ωm and X ′k = xk,m/ωm

T ′0 = Am ; X ′0 = Bm

T ′k+1 = T ′k + 1/βm
X ′k+1 = X ′k + (1/βm)Fm(T ′k, X

′
k)

(11)

We remark that (11) is the Euler scheme with integration step 1/βm for the
new Cauchy problem X ′ = Fm(T,X) with X(Am) = Bm. When m → +∞,
the step 1/βm tends to 0 and the next result shows that, is some sense, the
scheme (11) converges to (4).

Proposition 2. The sequence of functions (Fm)m∈N converges uniformly to
F and limm→+∞Am = A, limm→+∞Bm = B. More precisely

|A−Am| <
1

ωm
, |B−Bm| <

1

ωm
, |F (T,X)−Fm(T,X)| < 1

ωm
+

1

βm
(12)

for all m ∈ N and all (T,X) ∈ R2.

Proof. All the proof is based on the decomposition U = bUc+ {U} of any
real number U where bUc ∈ Z and 0 ≤ {U} < 1. For instance

Am =
1

ωm
bωmAc =

1

ωm
(ωmA− {ωmA}) = A− 1

ωm
{ωmA}

so that |A−Am| <
1

ωm
and ditto for Bm and B. From the definition of (11),

we see that Fm is such that

1

βm
Fm(T,X) =

1

ωm
(bωmF (T,X)c ÷ βm) =

1

ωm
bbωmF (T,X)c/βmc

which gives

Fm(T,X) = F (T,X)− {ωmF (T,X)}
ωm

− 1

βm

{
ωmF (T,X)− {ωmF (T,X)}

βm

}

Hence |F (T,X)− Fm(T,X)| < 1

ωm
+

1

βm
.
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3.3. Ω-arithmetization at the intermediate scale β

Now, we return to the the Ω-arithmetization at the scale ω of the initial
real function T 7→ X(T ), that is to say, the discrete function t 7→ x(t) given
by the scheme (9). This function suffers from a major imperfection: its
domain is far from being connected, since tk+1 − tk = β � 1 . In order to
correct this defect, we perform the following arithmetic scaling:

ZΩ −→ ZΩ

x 7−→ bxβ/ωc = x÷ β.

which sends β to 1. With this transformation, we move from ZΩ equipped
with the unit ω to ZΩ equipped with the unit β. This will allow us to observe
the arithmetized solution at the intermediate scale β.

In order to compute the effect of this scaling, it is convenient to introduce
the following decomposition: for every x ∈ ZΩ, we write x = x̃β + x̂, where
x̃ =def x ÷ β and x̂ =def xmod β. Thus, x̃ is the result of the scaling on
x ∈ ZΩ. Using this decomposition in (9), we obtain the following scheme.

Definition 8. The Ω-arithmetization of the Euler Scheme (4) at the inter-
mediary scale β is the following scheme with variables t̃k, x̃k, x̂k ∈ ZΩ

t̃0 = a÷ β, x̃0 = b÷ β and x̂0 = bmod β

t̃k+1 = t̃k + 1

x̃k+1 = x̃k + (x̂k + f̃k)÷ β
x̂k+1 = (x̂k + f̃k) mod β

(13)

where f̃k = f(t̃kβ+amod β, x̃kβ+ x̂k)÷β, f is defined by (7) and a = bωAc,
b = bωBc.

Now, the relevant variables are t̃k and x̃k while the x̂k are auxiliary variables
that manage the remainder coming from the Euclidean division.

The important outcome of this scaling is that the discrete function t̃ 7→
x̃(t̃) whose graph is the set of points (t̃k, x̃k) is now defined over a connected
domain, because t̃k+1 − t̃k = 1 for each k. This discrete function is the
arithmetization of the initial real function X : T 7→ X(T ) at the intermediate
scale β.
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3.4. Ω-iteration

Let us now examine how we can compute the values of the discrete func-
tion t̃ 7→ x̃

(
t̃
)

that we have just obtained. Since (13) is an iterative scheme,
the usual procedure is to choose a number of iteration N ∈ N and to use the
scheme to compute the successive values (t̃k, x̃k) for k = 0, ..., N . Hence, we
obtain a description of the function on the discrete interval {t̃0, . . . , t̃N}. The
problem is that this interval is very small at the scale β since N is standard
and β ' +∞. We would like to generalized this procedure in order to obtain
a function defined on an interval whose length is of the same order as the
unit β. This will be done by giving the definition of a number of iterations
which is an arbitrary Ω-natural number.

To this end, we consider the very general framework of a function Φ :
ZpΩ → ZpΩ with p ∈ N. Every element u ∈ ZΩ may be put into the form of
a sequence u = (um)m∈N where um ∈ Zp for all m ∈ N. We suppose that
there is a sequence (Φm)m∈N of function Φm : Zp → Zp such that, for all
u = (um)m∈N ∈ ZpΩ, we have Φ(u) = (Φm(um))m∈N. Given α ∈ ZpΩ, we know
what is ΦN(α) for N ∈ N; we want to generalize to an exponent which is an
Ω-natural number.

Definition 9. For α = (αm)m∈N ∈ ZpΩ and ν = (νm)m∈N ∈ NΩ we define

Φν(α) =def (Φνm
m (αm))m∈N

This definition may be applied to any scheme of the form z0 = α ; zk+1 =
Φ(zk) provided Φ is a function as above. This is the case of the scheme
(9) since this scheme is decomposed into the sequence of schemes (10). For
similar reasons, this is also the case for the scheme (13).

With the help of this definition, we are now able to compute the value
x(t) for each t ∈ ZΩ of the form t0 + νβ where ν ∈ NΩ. Indeed, this value is
obtained through ν iterations of the scheme (9). Similarly, we can compute
the value x̃

(
t̃
)

for each t̃ ∈ ZΩ of the form t̃0 + ν where ν ∈ NΩ is again the
number of iterations applied now to the scheme (13).

3.5. Ω-arithmetization is an exact representation

Now, we claim that the arithmetization of the real function T 7→ X(T )
is an exact representation of this function. This statement means that the
information contained in the function t 7→ x(t) (or in the function t̃ 7→
x̃(t̃)) is sufficient to reconstruct T 7→ X(T ). At the first glance, this claim

16



is surprising since the functions x and x̃ are obtained from X via the use
of a numerical approximation method with additional truncation rounding.
Nevertheless, we will show that this property of exact representability follows
ultimately the very nature of nonstandard entities that encapsulate in a single
object an entire process of convergence.

In order to simplify the proof of the next result, we suppose that the
function F satisfies the following global Lipschitz condition4: there is a real
constant C > 0 such that for all (T1, X1), (T2, X2) ∈ R2

|F (T1, X1)− F (T2, X2)| ≤ C(|T1 − T2|+ |X1 −X2|) (14)

Theorem 1. We suppose that the solution T 7→ X(T ) of the initial Cauchy
problem (3) is defined on the real interval [A,D] with A < D. Given a real
number T such T ∈ [A,D], we consider an Ω-natural number ν = (νm)m∈N
such that

∀m ∈ N
νm
βm
≤ D − A and lim

m→+∞

νm
βm

= T − A (15)

Then

X(T ) = lim
m→+∞

(x(t0 + νβ))m
ωm

= lim
m→+∞

(x̃(t̃0 + ν))m
βm

(16)

where ((x(t0+νβ))m)m∈N and ((x̃(t̃0+ν))m)m∈N are the sequences representing
respectively the Ω-numbers x(t0 + νβ) and x̃(t̃0 + ν).

Before giving the proof, let us examine the meaning of condition (15). For a
fixed m ∈ N, we consider the following subdivision of the interval [A,D]

A < A+
1

βm
< A+

2

βm
< · · · < A+

bβm(D − A)c
βm

≤ D (17)

that defines a family of intervals of length 1/βm except for the length of the
last interval that may be less. Then, A + νm/βm is a point of (17) and,
when m → +∞, the sequence (A + νm/βm) converges to T while the step
1/βm converges to 0. An example of such an Ω-number ν = (νm) is given by
νm =def bωm(T − A)c ÷ βm for all m ∈ N; indeed

bωm(T − A)c
ωm

=
νm
βm

+ ρm with 0 ≤ ρm <
1

βm

4This simplifying assumption could be avoided by the means of some technical compli-
cations in the proof.
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from which follows condition (15).

Proof (of theorem 1). The main idea of the proof is to give an estimate
of the difference between the solutions of the schemes (4) and (11) both
provided with the same step 1/βm.

According to proposition 2, the difference between the initial data is such
that |T0 − T ′0| = |A− Am| < 1/ωm and |X0 −X ′0| = |B −Bm| < 1/ωm.

Regarding the temporal variables, we have |Tk+1 − T ′k+1| = |Tk − T ′k| =
|T0 − T ′0| < 1/ωm.

For the difference between the spatial variables, we have

Xk+1 −X ′k+1 = (Xk −X ′k) +
1

βm
(F (Tk, Xk)− Fm(T ′k, X

′
k)) (18)

Since we may write

F (Tk, Xk)−Fm(T ′k, X
′
k) = (F (Tk, Xk)− F (T ′k, X

′
k))+(F (T ′k, X

′
k)− Fm(T ′k, X

′
k))

we obtain from proposition 2 and condition (14)

|F (Tk, Xk)− Fm(T ′k, X
′
k)| ≤

1

βm
+
C + 1

ωm
+ C|Xk −X ′k|

and thus (18) gives

|Xk+1 −X ′k+1| ≤
(

1 +
C

βm

)
|Xk −X ′k|+

1

ωm
+
C + 1

βmωm

It is easy to check that, given a sequence of inequalities ek+1 ≤ aek + b with
a 6= 1 and b 6= 0, we have ek ≤ ake0 + b(ak − 1)/(a− 1) for all k ∈ N. Hence

|Xk −X ′k| ≤
(

1 +
C

βm

)k
|X0 −X ′0|+

βm + C + 1

Cωm

((
1 +

C

βm

)k
− 1

)

Since |X0 −X ′0| < 1/ωm and (1 + u)k ≤ eku for all u ≥ 0 and k ∈ N, we get

|Xk −X ′k| ≤
ekC/βm

ωm
+
βm + C + 1

Cωm

(
ekC/βm − 1

)
Now, if we choose νm for value of k, then we obtain the fundamental estima-
tion

|Xνm −X ′νm| ≤
eC(D−A)

ωm
+
βm + C + 1

Cωm

(
eC(D−A) − 1

)
(19)
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The first part of the conclusion follows since:
a) the right member of inequality (19) converges to 0 when m→ +∞,
b) by the definition, X ′νm = (x(t0 + νβ))m/ωm,
c) Xνm is the value in the point νm/βm of the Euler approximation given by
the initial scheme (4) with the step 1/βm,
d) it is well known that this Euler approximation converges to X(T ) when
m→ +∞.

For the second part of the conclusion, we note that

(x(t0 + νβ))m = (x̃(t̃0 + ν))m βm + rm with 0 ≤ rm < βm

since (x̃(t̃0 + ν))m is the euclidean quotient of (x(t0 + νβ))m by βm. Dividing
both side of the equation by ωm, we see at once that (x(t0 + νβ))m/ωm and
(x̃(t̃0 + ν))m/βm have the same limit when m→ +∞.

4. Illustration of Ω-arithmetization

In order to plot the results of our computations, we have to give a mean-
ingful geometric representation of the Ω-objects given by the final algorithm
(13). Since the output of this algorithm is the sequence (t̃k, x̃k)0≤k where
t̃k, x̃k ∈ HRβ, it is sufficient to explain how we can represent an element
(a, b) ∈ HR2

β by taking account two aspects : first the multiplicity of scale
in the algorithm (ω and β) and secondly the nature of Ω-numbers which are
sequences.

Let us consider such a pair (a, b) where a = (am)m∈N and b = (bm)m∈N
are two elements of HRβ and that our graphic plane is R2. If we were
only interested by the level m, we plunge (am, bm) in R2 via the function

ϕm : (x, y) 7→
(
x

βm
,
y

βm

)
and we chose to represent (am, bm) by the unit

square (at the scale βm) Cm(a, b) =def [am/βm, (am + 1)/βm]× [bm/βm, (bm +
1)/βm]. With this choice, each square Cm is a pixel of size 1/βm Taking into
account all the levels m ∈ N, the Ω-point (a, b) is represented by the infinite
sequence of pixels (Cm)m≥0 of globally decreasing sizes. We can summarize
the representation of an Ω-point in the definition of an Ω-pixel.

Definition 10. An Ω-pixel C=(Cm)m>0 representing an Ω-point (a, b) ∈
HR2

β is defined by the sequence of squares

Cm(a, b) =def [am/βm, (am + 1)/βm]× [bm/βm, (bm + 1)/βm].
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Each square Cm is associated to a grid which divided the plan into squares
of length 1/βm. In general, when m varies, these grids are randomly overlap-
ping. But, if we choose β such that for all m, βm is a factor of βm+1, each grid
is obtained by subdivision of the previous. In the following plots, our choice
is β = (2m)m≥0, consequently each square at a level m is regularly decom-
posed in four squares at the level m+ 1 which leads possible, with the choice
of different colors assigned for each level, an unified graphical representation
of Ω-numbers. Hence, for instance, the Ω-point (1, 1) in HR2

β is represented
in the figure (2) where the origin (0, 0) is for each level the square at the
bottom right.

Figure 2: Some scale of the point (1,1).

Let us now show two examples of Ω-arithmetization : a polynomial func-
tion and a line. Let the function x1 : t → t2/6. Hence, the function fn
in the scheme (13) is tn/3 and the initial conditions are t̃0 = 0, x̃0 = 0
and x̂0 = 0. The figures (3(a)) and (3(b)) give two representations of the
Ω-arithmetization of the function x1 at the scale β = (2m)m≥0 and for two
different numbers of iterations. When the number of iteration N is an integer
factor of β like in (3(a)) where N = (5.2m)m∈N, the domain of definition of
the function has the same length in each scale. When N � β, like in (3(b))
where N = (2.3m)m∈N more the level is high, more the domain of definition
is long.

The line on the figure (1) in the introduction is x2 : t→ 3t/5, hence, the
function fn in the corresponding algorithm is the constant 3/5 and the initial
conditions are (0, 0, 0). N = (2.3m)m∈N iterations are made.

The aspect multi-scale of the representation is intrinsic to the structure
of the Ω-numbers. In fact, work with sequences allows to consider that each
level represents one scale of lecture. Each scale represents one approxima-
tion of the real initial function and more the scale is large, better the discrete
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(a) (b)

Figure 3: Arithmetization of x1 : t→ t2/6 with two differents Ω-iterations.

approximation of the initial function is. With the notion of Ω-iteration, we
control the link between these approximations and their length of represen-
tation.

5. Foundational aspects

In this last section, we first present the Harthong-Reeb line noted HRω,
then, we prove that, in the intuitionnistic logic, the HRω line partly verifies
the Bridges’ axioms [2]. And, in a third part, we explain the work [17] of
Magaud and some of the authors about a formalization with the Coq proof
assistant [1, 7] of the Harthong-Reeb line HRω and the Ω-number system.
Some hints about the payoff of such a formalization are also given.

5.1. The Harthong-Reeb line

The Harthong-Reeb line is a numerical line which is, in some meaning,
both discrete and continuous. To obtain such a paradoxical space, the basic
idea is to make a strong contraction on the set Z such that the prescribed
infinitely large ω ∈ N becomes the new unit; the result of this scaling is a
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line which looks like the real line (See figure 4). Historically, this system

ℤ

ℝ
≃

HR

1

10

0

ω

1ω0

ω

Figure 4: An intuitive representation of the Harthong-Reeb line.

is at the origin of the definition of the analytic discrete line proposed by
J.P. Reveillès [26, 27] in discrete geometry. For a rigorous implementation of
this idea, we must have a mathematical concept of infinitely large numbers.
In previous works [9, 11, 5] on this subject, this was done with the help of
an axiomatic version of nonstandard analysis in the spirit of the Internal Set
Theory [21]. Our purpose in the present section is to define a Harthong-Reeb
line based on the notion of Ω-integers introduced in the previous section. Our
main motivation is to obtain a more constructive version of the Harthong-
Reeb line allowing an exact translation of the arithmetization process into
computer programs.

5.1.1. Formalization of the Harthong-Reeb line

Although the definition has already been stated in the section (2.2), we
recall that an Ω-number a is infinitely large if, for all p ∈ N, we have p ≤ |a|.
If a is infinitely large and a > 0 we note a ' +∞. We already know that
Ω = (n)n∈N ' +∞. More generally, for a = (an), it is easy to check that
a ' +∞ if and only if limn→+∞ an = +∞.

Notation 1. The symbol ω denotes a fixed Ω-integer such that ω ' +∞.

Let us remark that ω may be different from Ω. We only know that there
is a sequence (ωn) of natural numbers such that ω = (ωn) and limn→+∞ ωn =
+∞. Now, we are going to give the definition of the Harthong-Reeb line
which results in the scaling on ZΩ such that ω becomes the new unit.
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Definition 11. We consider the following set

HRω = {x ∈ ZΩ, ∃p ∈ N, |x| ≤ p ω}

and the relations, operations and constants on HRω described by the follow-
ing definitional equalities: for all (x, y) ∈ HR2

ω, we set

• (x =ω y) =def (∀p ∈ N) (p|x− y| ≤ ω);

• (x >ω y) =def (∃p ∈ N) (p(x− y) ≥ ω) ;

• (x 6=ω y) =def (x >ω y) ∨ (x <ω y);

• (x ≤ω y) =def (∀z ∈ HRω) (z <ω x⇒ z <ω y);

• (x+ω y) =def (x+ y) and 0ω =def 0 and −ω x =def −x;

• (x×ω y) =def ((x× y)÷ ω) and 1ω =def ω and x(−1)ω =def (ω2 ÷ x) for
x 6=ω 0.

Then, the Harthong-Reeb line is the numerical system (HRω,=ω,≤ω,+ω,×ω).

We can say thatHRω is the set of Ω-integers which are limited at the scale ω.
Note that the way of introducing separately the two order relations and the
non-equality relation is quite traditional from a constructive point of view.

Proposition 3. For every x = (xn) and y = (yn) in HRω, we have the
following equivalences:

(1) x =ω y ⇐⇒ ∀p ∈ N ∃Mp ∈ N ∀n ≥Mp p|xn − yn| ≤ ωn

(2) x >ω y ⇐⇒ ∃p ∈ N ∃Mp ∈ N ∀n ≥Mp p(xn − yn) ≥ ωn

(3) x ≤ω y ⇐⇒ ∀p ∈ N, p(x− y) ≤ ω

Proof. The points (1) and (2) result of the definition of the order relation
≤ on ZΩ. We will only give the outline of a proof for (3).
Let us suppose that x ≤ω y. For every p ∈ N \ {0}, we consider zp =def

x−bω/pc. Since zp <ω x, we obtain zp <ω y. Thus, there is k ∈ N such that
k (y − x+ bω/pc) ≥ ω. Hence, for every p ∈ N

p(x− y) ≤ pbω/pc − pω/k = p (ω/p− {ω/p})− pω/k ≤ ω

Let us suppose now that p(x − y) ≤ ω for each p ∈ N. We consider an
arbitrary z ∈ HRω such that z <ω x. Thus, there is k ∈ N such that
k(x− z) ≥ ω. We obtain k(y − z) ≥ k(y − x) + ω and since 2k(y − x) ≥ −ω
we get 2k(y − z) ≥ ω and thus z <ω y.
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5.1.2. Isomorphism with a model of the real line

Now, we want to show that the Harthong-Reeb line is equivalent to the
system of real numbers. In this context, the appropriate model for the real
line is the system (Qlim

Ω ,',.,+,×) of limited Ω-rational numbers of Laug-
witz and Schmieden described in the section (2.3). To this end, we introduce
the two following maps:{

ϕω : HRω → Qlim
Ω

x 7→ x/ω

}
and

{
ψω : Qlim

Ω → HRω

u 7→ (bωuc)

}
The proof of the following properties is straightforward.

Proposition 4. For every x, y ∈ HRω and u ∈ Qlim
Ω , we have :

• x ≤ω y ⇒ ϕω(x) . ϕω(y);

• ϕω(x+ω y) ' ϕω(x) + ϕω(y);

• ϕω(x×ω y) ' ϕω(x)× ϕω(y);

• ϕω(0ω) ' 0 and ϕω(1ω) ' 1;

• x =ω y ⇔ ϕω(x) ' ϕω(y);

• ψω ◦ ϕω(x) =ω x and ϕω ◦ ψω(u) ' u.

We can summarize these properties by saying that ϕω is an isomorphism
from (HRω,=ω,≤ω,+ω,×ω) to (Qlim

Ω ,',.,+,×) and that ψω is the inverse
isomorphism.

5.2. Theoretical analysis of the conctructive content of HRω

We know that the Harthong-Reeb line HRω is a model of the real line
and it was also argued that the presented construction fits into a constructive
framework.

We now analyze how the construction of the Harthong-Reeb line over
the Ω-number system is consistent with the specific constraints of construc-
tive mathematics. With regards to the constructivism, we only recall that
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these mathematics are characterized by the BHK-interpretation of the logi-
cal constants5. For more precisions the reader should refer to the excellent
description given in [2].

Our method is to analyse to what extent the system HRω fits with the
constructive axiomatic of R proposed by Bridges [2, 3]. We call this axiomatic
structure a Bridges-Heyting ordered field (abbreviated as BH-ordered field).

5.2.1. Presentation of a Bridges-Heyting ordered field

Definition 12. A BH-ordered field is a system of the form

(R,>,+,×, 0, 1,Op, Inv)

where R is a set, > is a binary relation on R, + and × are two operations
(x, y) 7→ x+ y and (x, y) 7→ xy on R, 0 and 1 are two distinguished elements
of R, Op is a function x 7→ −x from R to R, Inv is a map x 7→ x−1 from
a subset R∗ of R to R. Then, we define a non-equality relation 6= on R by
x 6= y if and only if (x > y or y > x), a binary relation ≥ by x ≥ y if and
only if ∀z(y > z ⇒ x > z), an equivalence relation = by x = y if and only if
(x ≥ y and y ≥ x), the subset R∗ =def {x ∈ R ; x 6= 0}. We suppose that all
the preceding relations, operations and functions are extensional relatively
to = and that the three following groups of axioms are satisfied:

BH1. R is a Heyting field: BH2. Basic properties of >:
∀x, y, z ∈ R, ∀x, y ∈ R,
(1) x+ y = y + x, (1) ¬ (x > y ∧ y > x),
(2) (x+ y) + z = x+ (y + z), (2) (x > y)⇒ ∀z (x > z ∨ z > y),
(3) 0 + x = x, (3) ¬(x 6= y)⇒ x = y,
(4) x+ (−x) = 0, (4) (x > y)⇒ ∀z (x+ z > y + z),
(5) x× y = y × x, (5) (x > 0 ∧ y > 0)⇒ x× y > 0.
(6) (x× y)× z = x× (y × z),
(7) 1× x = x,
(8) x× x−1 = 1 for x ∈ R∗,
(9) x× (y + z) = x× y + x× z.

BH3. Special properties of >:
(1) Axiom of Archimedes: ∀x ∈ R ∃p ∈ N p > x (we identify every p ∈ N

5The interpretation of Brouwer, Heyting and Kolmogorov which defines the intuition-
nistic logic.
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with p1 ∈ R where p1 =def 1 + · · ·+ 1 the sum of p terms 1 ∈ R).
(2) The constructive least-upper-bound principle: Let S be a nonempty sub-
set of R that is bounded above relative to the relation ≥, such that the
following property P(S,R,>):

for all a, b ∈ R with b > a, either b is an upper bound
of S or else there exists s ∈ S with s > a

is true. Then S has a least upper bound.

Let us recall the classical definition of a least upper bound of S: it is an
element τ ∈ R such that
(I) (∀µ < τ, ∃s ∈ S such that µ < s) and (II) (∀s ∈ S, s 6 τ) .

5.2.2. Is HRω a Bridges-Heyting ordered field ?

In order to state our main result about the constructive content of HRω,
let us introduce the functions Opω : x 7→ −ωx and Invω : x 7→ x(−1)ω .
Moreover, we have to introduce a new binary relation: two elements x = (xn)
and y = (yn) of HRω are congruent and we note x4 y if

(∀r ∈ N)(∃K ∈ N)(∀k ≥ K)(∀l ≥ K)

∣∣∣∣xk − ykωk
− xl − yl

ωl

∣∣∣∣ ≤ 1

r

In other words, x4 y when the sequence of rational numbers ((xn− yn)/ωn)
is a Cauchy sequence6. This means that the difference x − y is a relatively
regular element of HRω. These regular elements correspond to the Cauchy
numbers mentioned in the article of P. Schuster[31]. This last work aims
to study the fine properties of the rational Ω-number system as model of a
constructive and nonstandard real line. Schuster shows in particular that
a rational Ω-number is a Cauchy number if and only if, according to his
terminology, it is located and bounded. Our work is appreciably different
because our objective in this part is, according to the strategy of our previous
researches, to investigate to what extent the Harthong-Reeb line is a Bridges-
Heyting ordered field.

The next result indicates to what extent this system satisfies the axioms
of a BH-ordered field.

6It is easy to verify that the relation 4 is extensional in HRω.
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Theorem 2. The system HRω
7 has the following properties:

(a) All the axioms of a BH-ordered field except BH2.(2), BH2.(3) and BH3.(2).
(b) BH2.(2)’ If x, y ∈ HRω are such that x <ω y, then for each z ∈ HRω,
there is a q ∈ N such that (q(y − z) ≥ ω) ∨ (q(z − x) ≥ ω) is weakly true.
(c) BH2.(3)’ If x, y ∈ HRω are such that x4 y and ¬(x 6=ω y), then x =ω y.
(d) BH3.(2)’ If S is a nonempty subset of HRω that is bounded above relative
to the relation ≥ω and such that for all (α, β) ∈ HR2

ω where β is an upper
bound of S and α ∈ S and for (a, b) ∈ HR2

ω such that α ≤ω a ≤ω b ≤ω β,
either b is an upper bound of S or else there exists s ∈ S with s >ω a.

Then there exists an element τ ∈ HRω which is a least upper bound of S
in the following weak meaning:
(I’) ∀µ <ω τ, ∃s ∈ S such that µ <ω s (identical to (I))
(II’) (∀ν ∈ HRω such that τ <ω ν)(∃b upper bound of S) τ ≤ω b <ω ν

Why does HRω not exactly satisfy all the axioms of a BH-ordered field? The
main reason is that there is in this system a lot of very irregular elements,
contrary to the usual system of constructive numbers. Thus, it is easy to
find, for instance, a counter-example to BH2.(3): let us consider x = (xn) ∈
HRω defined by xn = 1 if n is even and xn = ωn if n is odd; then, it
is clear that ¬(x 6=ω 0) and ¬(x =ω 0). It is likely that the presence of
these irregular elements is the price to pay for having a constructive and
nonstandard arithmetic. Let us precise without any proof that, in a BH-
ordered field, the notion of weak least upper bound defined by (I’) and (II’)
in BH3.(2)’ is equivalent to the classical one. In the case of the system HRω

which is not exactly a BH-ordered field, it is not clear that this equivalence
is true.

Proof (of the theorem). (a) The verification of the axioms of the group
(BH1) is almost straightforward. As an example, we give the proof of (8):
x ×ω x(−1)ω =ω 1ω for x 6=ω 0ω. Thus, we consider x ∈ HRω such that
x 6=ω 0ω. Then, x ×ω x(−1)ω = (x × (ω2 ÷ x)) ÷ ω. Using twice the identity
a = (a÷ b)× b+ amod b, we find:

x×ω x(−1)ω = ω − (ω2 modx)/ω − ((ω2 − ω2 modx) modω)/ω.

Since x ∈ HRω, we know there is k ∈ N such that |x| ≤ kω. Hence,
|(ω2 modx)/ω| ≤ |x|/ω ≤ k and |((ω2 − ω2 modx) modω)|/ω ≤ 1, we find

7Let us noteHRω the complete numerical system (HRω, >ω,+ω,×ω, 0ω, 1ω,Opω, Invω)
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that |x ×ω x(−1)ω − ω| ≤ k + 1. The result follows since ω = 1ω, k + 1 is
standard and thus k + 1 =ω 0. In the group (BH2), only the axioms (2)
and (3) present a real difficulty; these two properties will be discussed later.
Finally, the axiom (1) of the group (BH3) is trivial since, for every x ∈ HRω,
there is p ∈ N such that x ≤ |x| ≤ pω = p1ω.

(b) BH2.(2)’ We consider x, y ∈ HRω such that x <ω y. Hence, there is
p ∈ N such that p(y−x) ≥ ω. Thus, for all z ∈ HRω, we have p(y−z)+p(z−
x) ≥ ω. From the proposition 1, we get that (2p(y−z) ≥ ω)∨(2p(z−x) ≥ ω)
is weakly true.

(c) BH2.(3)’. We consider x, y ∈ HRω such that x4 y and ¬(x 6=ω y).
For each n ∈ N, let un =def (xn − yn)/ωn. Then the property x =ω y results
from the following lemma8.

Lemma 1. Let (un) be a sequence of rational numbers such that

(1) ¬[(∃q)(∃N)((∀n ≥ N) un ≥ 1/q) ∨ ((∀n ≥ N) un ≤ −1/q)],

(2) (∀p)(∃K)(∀k ≥ K)(∀l ≥ K) |uk − ul| ≤ 1/p,

Then, (∀r)(∃M)(∀m ≥M) |um| ≤ 1/r.
(All the quantified variables are assumed to take their values in N.)

Proof (of the lemma). Let us consider an arbitrary r ∈ N and let p =def

3r. From the assumption (2), we deduce that there is a number K ∈ N such
that

(∀k ≥ K)(∀l ≥ K) |uk − ul| ≤ 1/(2p).

In particular

(∀l ≥ K) uK − 1/(2p) ≤ ul ≤ uK + 1/(2p) (20)

Otherwise, since uK is a rational number, the property (uK ≥ 1/p) ∨ (uK <
1/p) is decidable. Let us suppose that uK ≥ 1/p. From (20) we obtain that
1/(2p) ≤ ul for all l ≥ K. The assumption (1) of the lemma asserts that
this is impossible. Consequently, we are sure that uK < 1/p. Again, from
(20) we obtain that ul ≤ 1/p + 1/(2p) = 3/(2p) for every l ≥ K. Since
3/(2p) = 1/(2r) ≤ 1/r, we get that (∀l ≥ K) ul ≤ 1/r. Proceeding similarly,
we can show that (∀l ≥ K) ul ≥ −1/r, which gives the expected result.

8Actually, this lemma shows that the system of constructive real numbers satisfies the
axiom BH.2(3).
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(d) BH3.(2)’ From now, we identify every rational number r = p/q where
(p, q) ∈ Z × N∗ with the element pω ×ω (qω)(−1)ω ∈ HRω; moreover, we
omit to mention the symbol ×ω of the multiplication in HRω. The proof
(BH3.(2)’) is rather long and is presented in three steps.

Step 1: construction of two auxiliary sequences (sn) and (bn). By induc-
tion, we are going to construct a monotone nondecreasing sequence (sn) of
elements of S and a sequence (bn) of strict upper bounds of S such that
bn − sn =ω (n + 1)

(
2
3

)n
(b0 − s0) for every n ∈ N. For each n ∈ N, we have

sn, bn ∈ ZΩ; thus, we introduce the notation sn = (snm)m∈N and bn = (bnm)m∈N
where snm, b

n
m ∈ Z for every m ∈ Z. Firstly, we choose a strict upper bound

b0 of S and s0 ∈ S such that b0 >ω s0 ∈ HRω. Now, we consider the
general case: we suppose that we have already defined two finite sequences
(sk)0≤k≤n of elements of S and (bk)0≤k≤n of strict upper bounds of S such that

s0 6ω · · · 6ω s
n and for each k = 0, . . . , n bk − sk =ω (k + 1)

(
2
3

)k
(b0 − s0).

Then, we introduce αn =def
2
3
sn+ 1

3
bn and βn =def

1
3
sn+ 2

3
bn. Since αn <ω β

n,
the property of S leads to the two following cases where εn denotes the de-

creasing to 0 term
(

2
3

)n+1
(b0 − s0):

1. βn is an upper bound of S in which case we define bn+1 =def β
n + εn

and sn+1 =def s
n;

2. ∃s ∈ S such that s >ω α
n; hence, s >ω s

n in Zω and we can suppose
that s = (sm)m∈N with snm 6 sm for every m ∈ N; then, we define
bn+1 =def b

n + s− αn + εn and sn+1 =def s.

In each case, bn+1 is a strict upper bound of S , sn+1 ∈ S, sn ≤ω sn+1 and it

is easy to check that bn+1 − sn+1 =ω (n+ 2)
(

2
3

)n+1
(b0 − s0).

Step 2: construction of the candidate τ . For every n ∈ N and for each
k = 0, . . . , n, we have sn <ω bk and thus sn < bk in Zω. Hence, there
is Mk

n ∈ N such that for every m > Mk
n , snm < bkm in Z. Now, we con-

sider the sequence (Mn) of natural numbers such that, M0 = M0
0 and

Mn+1 = max(M0
n+1, . . . ,M

n+1
n+1 ,Mn + 1) for each n ∈ N. Finally, we de-

fine the sequence τ = (tm) such that

∀m <M0 tm =def 0,
∀n ∈ N ∀m ∈ N such that Mn 6 m <Mn+1 tm =def s

n
m

Step 3. Thus, we have construct an element τ of HRω, a monotone
nondecreasing sequence (sn) of elements of S and a sequence (bn) of strict
upper bounds of S such that, for every n ∈ N, sn 6ω τ 6ω b

n and bn− sn =ω

(n+ 1)
(

2
3

)n
(b0 − s0). Then, (I’) and (II’) can be deduced.
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5.3. Formalisation in Coq

The development by P. Martin-Löf of a nonstandard type theory [20]
suggests that constructive nonstandard analysis can be effectively represented
and treated within the framework of the COQ language. For what concerns
us, we are convinced that a treatment in this language of the Harthong-Reeb
line is possible and interesting; the following development outlines the first
elements of it.

Moreover as it can be seen in the previous section, the verification of
the Bridges’ axioms is not so easy. The difficulty is mainly induced by the
unconventional mathematical framework. The handled arithmetic is in a
nonstandard framework and the axioms are in a constructive framework. So,
it was not clear that handwritten proofs did not contain subtle mistakes or
imprecisions.

In order to settle down this confidence problem into handwritten proofs,
we have used the Coq proof assistant [1, 7] to formalize our proofs. The Coq
proof assistant implements a higher constructive logic and is also a program-
ming language equipped with inductive definitions and recursive functions.
Therefore, it is a very interesting tool to carry out a constructive formal-
ization. Moreover, as a byproduct, the formalization has entailed a better
understanding of how concepts and proofs are related to each other.

The formalization we have developed is realized in a wider perspective
than Ω-numbers. In [17] N. Magaud and some of the authors have formalized
the axiomatic construction of the Harthong-Reeb line presented in [5] and
all the handwritten proofs showing that this construction satisfies the 17
Bridges’ axioms have been rewritten using the Coq proof assistant. To do
so, a parametrized module has been defined in order to be useful to explore
different possible constructions of the Harthong-Reeb line.

The parameter module of this parametrized module is a formalization
of a nonstandard arithmetic based over five axioms in the spirit of Internal
Set Theory [21]. Then using different constructions that satisfy these ax-
ioms, different constructions of the Harthong-Reeb line are obtained simply
by a module instantiation mechanism. A first attempt to instantiate the
parametrized module has been proposed based on the Ω-numbers theory.

A short overview of the formalization is presented here. A complete
development and all the proofs can be found at http://galapagos.gforge.
inria.fr/developments.html.

Following the developments presented in section 2, Ω-numbers are defined
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in Coq as sequences indexed by natural numbers (nat) whose values are
integers (Z) by the following Coq instruction:

Definition A := nat->Z.

This means that A is a function type from natural numbers to integer num-
bers. These functions can be interpreted as sequences. With this definition,
the numbers 0 (denoted by a0) and 1 (denoted by a1) are defined by:

Definition a0 : A := fun (n:nat) => 0%Z.

Definition a1 : A := fun (n:nat) => 1%Z.

This means that a0 is of type A (i.e. of type nat -> Z) and is a constant func-
tion that associate to each natural number n the integer constant zero, 0%Z.
The constant function a1 that associates the constant 1%Z to each natural
number is defined in a similar manner.

Hence, the Ω-number Ω = (n)n∈N (denoted by w) is defined by

Definition w :A := fun (n:nat) => (Z_of_nat n).

Where the function Z of nat is the injection of natural numbers to integer
numbers.

The equivalence relation R detailed in section 2 is captured by the defi-
nition ext almost everywhere.

Definition ext_almost_everywhere (u v:A) :=

exists N:nat, forall n:nat, n>N -> u n=v n.

This expresses that for two elements in A, it exists a natural number N such
that for all natural numbers n greater than N the two sequences are equal.

Actually, in our proofs it is usually sufficient to use the axiom ext which
expresses the extensionally principle for functions:

Axiom ext : forall u v:A, (forall n:nat, (u n)=(v n)) -> u = v.

And the easily proved lemma equal implies ext:

Lemma equal_implies_ext :

forall u v , u = v -> ext_almost_everywhere u v.

To directly prove that two Ω-numbers are equal.
Arithmetic operations are defined as expected, for example here is the

definition of the addition:
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Definition plusA (u v:A) := fun (n:nat) => Zplus (u n) (v n).

Where Zplus denotes the addition of two integer numbers. Then we obtain
the definition of a type A that represents the Ω-numbers.

Now the construction of HRω over the type A of Ω-numbers is as follows.
First, the property P that characterizes the elements belonging to HRω is
defined9:

Definition P :=

fun (x:A) => exists n:A, (lim n /\ 0 ?< n /\ (|x| ?<= n*w)).

Where lim represents the predicate limited and the relations ?< and ?<= are
comparison relations in A. After what HRω (denoted by HRw) is defined as
the elements of A that satisfy P:

Definition HRw := {x:A | P x}.

Hence, the elements of HRω are those of the type A for which we can have
a proof that they satisfy the property P. They are represented in Coq by a
pair of an element a of type A and a proof h that a satisfies P.

The arithmetic operations forHRω are defined on the Ω-numbers. There-
fore it is necessary to verify that, for example, given two elements of HRω

the sum and the product is also in HRω. This is done with the following two
lemmas10 using the property P:

Lemma Pplus : forall x y, P x -> P y -> P (x + y).

Lemma Pmult : forall x y, P x -> P y -> P (( x * y) / w).

The proofs of these lemmas explicitly use nonstandard concepts.
Now, arithmetic operations are defined using a matching that decomposes

an element of HRω as an element of the type A and a proof that this element
belongs to HRω (i.e. satisfies the property P). Here is the definition of the
addition in HRω:

9The wedge sign /\ stands for the logical and.
10The lemmas are presented in a “Curryfied” form where tuples are viewed as successive

implications, here the couple (P x, P y) is replaced by P x -> P y.
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Definition HRwplus (x y: HRw) : HRw :=

match x with exist xx Hxx => match y with exist yy Hyy =>

exist P (xx + yy) (Pplus xx yy Hxx Hyy)

end end.

The given elements x and y of HRω are decomposed into two elements xx

and yy of A and proofs Hxx and Hyy that respectively show that xx and yy

belong to HRω. Then, the addition of xx and yy is computed and we know
by lemma Pplus that the result satisfies the property P and hence belongs to
HRω. The multiplication is defined in the same way using the lemma Pmult:

Definition HRwmult (x y: HRw) : HRw :=

match x with exist xx Hxx => match y with exist yy Hyy =>

exist P ((xx * yy) / w) (Pmult xx yy Hxx Hyy)

end end.

Comparison relations (≥ω, ω, 6=ω) are directly translated in Coq sentences
from their definitions given in section 2 using the same decomposition process
as for arithmetic operations11:

Definition HRwgt (y x : HRw) : Prop :=

match y with exist yy Hyy => match x with exist xx Hxx =>

(exists n, lim n /\ 0 ?< n /\ (w ?<= (n*(yy+ (-xx)))))

end end.

Definition HRwge (a b : HRw) : Prop :=

(proj1_sig b) ?<= (proj1_sig a) \/ HRwequal a b.

Definition HRwdiff (x y : HRw) : Prop := HRwgt x y \/ HRwgt y x.

Where (proj1 sig a) denotes the element aa of the type A for which we
have of proof that it satisfies P.

A satisfying result is that we did not find any mistakes in the proofs
showing that the axiomatic construction of the Harthong-Reeb line presented
in [5] satisfies the 17 Bridges’ axioms.

An other formalization of the Harthong-Reeb line in an axiomatic non
standard way was done on the assistant proof Isabelle by J. Fleuriot [10].

11The wee sign \/ stands for the logical or.
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6. Conclusion

The work presented in this paper focused on the Ω-arithmetization. In
our context, an arithmetization process is a method which gives an exact
and discrete representation of real functions which are solutions of some dif-
ferential equations. This method requires a theoretical background which
provides a notion of infinitely large integer number. In the previous works
on this subject, this notion resulted of the introduction of an axiomatic ver-
sion of nonstandard analysis. The main drawback of this approach was a lack
of constructivity. As a consequence, it was impossible to have an exact com-
puter implementation of the arithmetization process. This failing is clearly
related to the axiomatic status of the infinitely large parameters which occur
in the algorithms.

In the present paper, we have introduced an arithmetization method
based on the notion of Ω-numbers introduced by Laugwitz and Schmieden.
This theoretical framework seems weaker than the usual approach of non-
standard analysis but it has the great advantage of being more construc-
tive. Actually, we have shown that the resulting Ω-arithmetization leads
to constructive algorithms which can be exactly translated into functional
computer programs. An important point resulting of the constructivity of
this approach is that these programs do not generate any numerical error.
Moreover, the result of the application of the Ω-arithmetization on a real
function is a discrete multi-resolution representation of this function. This
very interesting multi-resolution aspect comes from the intrinsic nature of
the infinitely large Ω-numbers which is a function that encodes an infinity of
increasing scales.

In future works on this subject, we plan to study systematically this form
of multi-resolution analysis and its applications to discrete geometry. This
work has already been done in the case of an arc of ellipse[4]. More generally,
it would be interesting to develop, on the basis of the present approach, a
theoretical and systematic bridge between the continuous and discrete worlds
for classical concepts of differential geometry.

Nevertheless, it appears that the logical foundations of the theory of Ω-
numbers are not entirely satisfactory and natural. On the one hand, the
semantic and syntactic levels are not clearly distinguished (as it is often
the case in usual mathematics). On the other hand, the use by Laugwitz
and Schmieden of classical logic conflicts with the constructive content of
the concept of Ω-number and adds some theoretical confusions. Finally,
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the notion of weak truth is artificially imposed by the rules without any
explanation about the reason and the meaning of this strange constraint.

For these last reasons, in a work in progress on the Harthong-Reeb line, we
are changing our general theoretical framework by moving to the formalism
of constructive type theory of P. Martin-Löf [18, 19] also called intuitionnistic
type theory which will be denoted T in what follows.

The first reason for this change is that this stark approach of mathe-
matics and computer science is well suited for both developing constructive
mathematics and writing programs. At the theoretical level, T appears as a
constructive foundation of mathematics which is an alternative to usual ax-
iomatic set theories like ZFC (Zermelo-Fraenkel with the axiom of Choice).
In T , there is no preexisting universe; the sets are introduced in a controlled
way using rules which are deeply inductive. Moreover, T does not depend
on a preexisting logic; actually, the logical propositions are also objects of T
through the Curry-Howard isomorphism which identifies a proposition with
the set of its proofs. Finally, each formal rule is preceded by a semantic
explanation which gives its meaning. Accordingly, T is a semantic and syn-
tactic theory. Of course, we have in T a set N of natural numbers and it is
easy to introduce a set Z of integer numbers.

The second reason for adopting T is that Martin-Löf has defined[20] a
nonstandard extension T∞ of T . This extension provides an infinitely large
natural number ∞. The semantic of this nonstandard number is given by a
choice sequence and Martin-Löf has shown that the formal theory T∞ have a
natural model M∞ which is built inside the standard model M of T . Since
M is a domain of constructive mathematic entities, we can use the model
M∞ to develop a deeply constructive approach of the Harthong-Reeb line
and of the arithmetization method. Furthermore, this line appears as a new
version of the constructive continuum probably related to the intuitionistic
continuum of Brouwer.
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109/110:235–244, 1983.
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