Foundations of Garside Theory
Patrick Dehornoy, Francois Digne, Eddy Godelle, Daan Krammer, Jean Michel

To cite this version:
Patrick Dehornoy, Francois Digne, Eddy Godelle, Daan Krammer, Jean Michel. Foundations of Garside Theory. 2013. hal-00857685

HAL Id: hal-00857685
https://hal.science/hal-00857685
Preprint submitted on 3 Sep 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
This text consists of the introduction, table of contents, and bibliography of a long manuscript (703 pages) that is currently submitted for publication. This manuscript develops an extension of Garside’s approach to braid groups and provides a unified treatment for the various algebraic structures that appear in this context. The complete text can be found at
Comments are welcome.

Introduction

A natural, but slowly emerging program. In his PhD thesis prepared under the supervision of Graham Higman and defended in 1965 [113], and in the article that followed [114], Frank A. Garside (1915–1988) solved the Conjugacy Problem of Artin’s braid group B_n by introducing a submonoid B_n^+ of B_n and a distinguished element Δ_n of B_n^+ that he called fundamental and showing that every element of B_n can be expressed as a fraction of the form $\Delta_n^m g$ with m an integer and g an element of B_n^+. Moreover, he proved that any two elements of the monoid B_n^+ admit a least common multiple, thus somehow extending to the non-Abelian groups B_n some of the standard tools available in a torsion-free Abelian group \mathbb{Z}^n.

In the beginning of the 1970’s, it was soon realized by Brieskorn and Saito [32] using an algebraic approach and by Deligne [91] using a more geometric approach that Garside’s results extend to all generalized braid groups associated with finite Coxeter groups, that is, all Artin (or, better, Artin–Tits) groups of spherical type.

The next step forward was the possibility of defining, for every element of the braid monoid B_n^+ (and, more generally, of every spherical Artin–Tits monoid) a distinguished decomposition in terms of the divisors of the fundamental element Δ_n: the point is that, if g is an element of B_n^+, then there exists a (unique) greatest common divisor g_1 for g and Δ_n and, moreover $g \neq 1$ implies $g_1 \neq 1$: then g_1 is a distinguished fragment of g (the “head” of g) and, if we repeat the operation with the element $g’$ that satisfies $g = g_1 g’$, we extract the head g_2 of $g’$ and, iterating, we end up with an expression $g_1 \cdots g_p$ of g in terms of divisors of Δ_n. Although Garside was very close to such a decomposition when he proved that greatest common divisors exist in B_n^+, the result does not appear in his work explicitly, and it seems that the first explicit occurrences of such distinguished decompositions, or normal forms, goes back to the 1980’s in independent work by Adjan [2], El Rifai and Morton [106], and Thurston (circulated notes [207], later appearing as Chapter IX...
in the book [108] by Epstein et al.). The normal form was soon used to improve Garside’s solution of the Conjugacy Problem [106] and, extended from the monoid to the group, to serve as a paradigmatic example in the then emerging theory of automatic groups of Cannon, Thurston, and others. Sometimes called the greedy normal form—or Garside’s normal form, or Thurston’s normal form—it became a standard tool in the investigation of braids and Artin–Tits monoids and groups from a viewpoint of geometric group theory and representation, essential in particular in Krammer’s algebraic proof of the linearity of braid groups [149, 150].

In the beginning of the 1990’s, it was realized by one of us that some ideas from Garside’s approach to braid monoids can be applied in a different context to analyze a certain “geometry monoid” M_{LD} that appears in the study of the so-called left-selfdistributivity law $x(yz) = (xy)(xz)$. In particular, the criterion used by Garside to establish that the braid monoid B_n^+ is left-cancellative (that is, $gh = gh'$ implies $h = h'$) can be adapted to M_{LD} and a normal form reminiscent of the greedy normal form exists—with the main difference that the pieces of the normal decompositions are not the divisors of some unique element similar to Garside’s fundamental braid Δ_n, but they are divisors of elements Δ_t that depend on some object t (actually a tree) attached to the element one wishes to decompose. The approach led to results about the exotic left-selfdistributivity law [67] and, more unexpectedly, about braids and their orderability when it turned out that the monoid M_{LD} naturally projects to the (infinite) braid monoid B_∞^+ [66, 69, 71].

At the end of the 1990’s, following a suggestion by Luis Paris, the idea arose of listing the abstract properties of the monoid B_n^+ and of Garside’s fundamental braid Δ_n that make the algebraic theory of B_n possible. This resulted in introducing the notions of a Garside monoid and a Garside element [89]. In a sense, this is just a sort of reverse engineering, and proving results about the existence and the properties of the normal form essentially means checking that no assumption has been forgotten in the definition. However, it soon appeared that a number of new examples were eligible, and, specially after some cleaning of the definitions was completed [74], that the new framework was really more general than the original braid framework. The main benefit was that extending the results often resulted in discovering new improved arguments no longer relying on superfluous assumptions or on specific properties. This program turned out to be rather successful and it led to many developments by a number of different authors [8, 11, 12, 16, 18, 17, 48, 47, 59, 111, 118, 127, 128, 158, 157, 165, 181, 192, ...]. Today the study of Garside monoids is still far from complete, and many questions remain open.

However, in the meanwhile, it soon appeared that, although efficient, the framework of Garside monoids as stabilized in the 1990’s is far from optimal. Essentially, several assumptions, in particular Noetherianity conditions, are superfluous and they just discard further natural examples. Also, excluding nontrivial invertible elements appears as an artificial limiting assumption. More importantly, one of us (DK) in a 2005 preprint subsequently published as [152] and two of us (FD, JM) [99], as well as David Bessis in an independent research [10], realized that normal forms similar to those involved in Garside monoids can be developed and usefully applied in a context of categories, leading to what they naturally called Garside categories. By the way, similar structures are already implicit in the 1976 paper [93] by Deligne–Lusztig, as well as in the above mentioned example of M_{LD} [69, 71], and in EG’s PhD thesis [123].
It was therefore time around 2007 for the development of a new, unifying framework that would include all the previously defined notions, remove all unneeded assumptions, and allow for optimized arguments. This program was developed in particular during a series of workshops and meetings between 2007 and 2012, and it resulted in the current text. As suggested in the above account, the emphasis is put on the normal form and its mechanism, and the framework is that of a general category with only one assumption, namely left-cancellativity. Then the central notion is that of a Garside family, defined to be any family that gives rise to a normal form of the expected type. Then, of course, every Garside element Δ in a Garside monoid provides an example of a Garside family, namely the set of all divisors of Δ, but many more Garside families may exist—and they do, as we shall see in the text. Note as, in a sense, our current generalization is the ultimate one since, by definition, no further extension may preserve the existence of a greedy normal form. However, different approaches might be developed, either by relaxing the definition of a greedy decomposition (see the Notes at the end of Chapter III) or, more radically, by putting the emphasis on other aspects of Garside groups rather than on normal forms. Typically, several authors, including J. Crisp, J. McCammond and one of us (DK) proposed to view a Garside group mainly as a group acting on a lattice in which certain intervals of the form $[1, \Delta]$ play a distinguished role, thus paving the way for other types of extensions.

Our hope—and our claim—is that the new framework so constructed is quite satisfactory. By this, we mean that most of the properties previously established in more particular contexts can be extended to larger contexts. It is not true that all properties of, say, Garside monoids extend to arbitrary categories equipped with a Garside family but, in most cases, addressing the question in an extended framework helps improving the arguments and really capturing the essential features. Typically, almost all known properties of Garside monoids do extend to categories that admit what we call a bounded Garside family, and the proofs cover for free all previously considered notions of Garside categories.

It is clear that a number future developments will continue to involve particular types of monoids or categories only: we do not claim that our approach is universal... However, we would be happy if the new framework—and the associated terminology—could become a natural reference for further works.

About this text. The aim of the current text is to give a state-of-the-art presentation of this approach. Finding a proper name turned out to be not so obvious. On the one hand, “Garside calculus” would be a natural title, as the greedy normal form and its variations are central in this text: although algorithmic questions are not emphasized, most constructions are effective and the mechanism of the normal form is indeed a sort of calculus. On the other hand however, many results, in particular those of structural nature, exploit the normal form but are not reducible to it, making a title like “Garside structures” or “Garside theory” more appropriate. But such a title is certainly too ambitious for what we can offer: no genuine structure theory or no exhaustive classification of, say, Garside families is to be expected at the moment. What we do here is to develop a framework that, we think and hope, can become a good base for a still-to-come theory. Another option could have been “Garside categories”, but it will be soon observed that no notion with that name is introduced here: in view of the subsequent developments, a reasonable meaning could be “a cancellative category that admits a Garside map”, but a
number of variations are still possible, and any particular choice could become obsolete soon—as is, in some sense, the notion of a Garside group. So, finally, our current title, “Foundations of Garside Theory”, may be the one that reflects the current content in the best way: the current text should be seen as an invitation for further research, and does not aim at being exhaustive—reporting about all previous results involving Garside structures would already be very difficult—but concentrates on what seems to be the core of the subject.

There are two parts. Part A is devoted to general results, and it offers a very careful treatment of the bases. Here complete proofs are given, and the results are illustrated with a few basic examples. By contrast, Part B consists of essentially independent chapters explaining further examples or families of examples that are in general more elaborate. Here some proofs may be omitted, and the discussion is centered around what can be called the Garside aspects in the considered structures.

Our general scheme will be to start from an analysis of normal decompositions and then to introduce Garside families as the framework guaranteeing the existence of normal decompositions. Then the three main questions we shall address and a chart of the corresponding chapters looks as follows:

- **How** do Garside structures work? (mechanism of normal decomposition)
 - Chapter III (domino rules, geometric aspects)
 - Chapter VII (compatibility with subcategories)
 - Chapter VIII (connection with conjugacy)

- **When** do Garside structures exist? (existence of normal decomposition)
 - Chapter IV (recognizing Garside families)
 - Chapter VI (recognizing Garside germs)
 - Chapter V (recognizing Garside maps)

- **Why** consider Garside structures? (examples and applications)
 - Chapter I (basic examples)
 - Chapter IX (Deligne–Lusztig varieties)
 - Chapter XI (selfdistributivity)
 - Chapter XII (ordered groups)
 - Chapter XIII (Yang–Baxter equation)
 - Chapter XIV (four more examples)

Above, and in various places, we use “Garside structure” as a generic and informal way to refer to the various objects occurring with the name “Garside”: Garside families, Garside groups, Garside maps, etc.

The chapters. To make further reference easy, each chapter in Part A begins with a summary of the main results. At the end of each chapter, exercises are proposed, and a note section provides historical references, comments, and questions for further research.

Chapter I is introductory and lists a few examples. The chapter starts with some classical examples of Garside monoids, such as free Abelian monoids or classical and dual braid monoids, and it continues with some examples of structures that are not Garside monoids but nevertheless possess a normal form similar to that
of Garside monoids, thus providing a motivation for the construction of a new, extended framework.

Chapter II is another introductory chapter in which we fix some terminology and basic results about categories and derived notions, in particular connected with divisibility relations that play an important rôle in the sequel. A few general results about Noetherian categories and groupoids of fractions are established. The final section describes an general method called reversing for investigating a presented category. As the question is not central in our current approach (and although it owes much to Garside’s methods), some proofs of this section are deferred to an appendix at the end of the book.

Chapter III is the one where the theory really starts. Here the notion of a normal decomposition is introduced, as well as the notion of a Garside family, abstractly introduced as a family that guarantees the existence of an associated normal form. The mechanism of the normal form is analyzed, both in the case of a category (“positive case”) and in the case of its enveloping groupoid (“signed case”): some simple diagrammatic patterns, the domino rules, are crucial, and their local character directly implies various geometric consequences, in particular a form of automaticity and the Grid Property, a strong convexity statement.

Chapter IV is devoted to obtaining concrete characterizations of Garside families, hence, in other words, to describing assumptions that guarantee the existence of normal decompositions. In this chapter, one establishes external characterizations, meaning that we start with a category C and look for conditions ensuring that a given subfamily S of C is a Garside family. Various answers are given, in a general context first, and then in particular contexts where some conditions come for free: typically, if the ambient category C is Noetherian and admits unique least common right-multiples, then a subfamily S of C is a Garside family if and only if it generates C is is closed under least common right-multiple and right-divisor.

Chapter V investigates particular Garside families that are called bounded. Essentially, a Garside family S is bounded is there exists a map Δ (an element in the case of a monoid) such that S consists of the divisors of Δ (in some convenient sense). Not all Garside families are bounded, and, contrary to the existence of a Garside family, the existence of a bounded Garside family is not guaranteed in every category. Here we show that a bounded Garside family is sufficient to prove most of the results previously established for a Garside monoid, including the construction of Δ-normal decompositions, a variant of the symmetric normal decompositions used in groupoids of fractions.

Chapter VI provides what can be called internal (or intrinsic) characterizations of Garside families: here we start with a family S equipped with a partial product, and we wonder whether there exists a category C in which S embeds as a Garside family. The good news is that such characterizations do exist, meaning that, when the conditions are satisfied, all properties of the generated category can be read inside the initial family S. This local approach turns to be very useful to construct examples and, in particular, it can be used to construct a sort of unfolded, torsion-free version of convenient groups, typically braid groups starting from Coxeter groups.

Chapter VII is devoted to subcategories. Here one investigates natural questions such as the following: if S is a Garside family in a category C and C_1 is a subcategory of C, then is $S \cap C_1$ a Garside family in C_1 and, if so, what is the connection
between the associated normal decompositions? Of particular interest are the results involving subgerms, which somehow provide a possibility of reading inside a given Garside family S the potential properties of the subcategories generated by the subfamilies of S.

Chapter VIII addresses conjugacy, first in the case of a category equipped with an arbitrary Garside family, and then, mainly, in the case of a category equipped with a bounded Garside family. Here again, most of the results previously established for Garside monoids can be extended, including the cycling, decycling, and sliding transformations which provide a decidability result for the Conjugacy Problem whenever convenient finiteness assumptions are satisfied. We also extend the geometric methods of Bestvina to describe periodic elements in this context.

Part B begins with Chapter IX devoted to (generalized) braid groups. Here we show how both the reversing approach of Chapter II and the germ approach of Chapter VI can be applied to construct and analyze classical and dual Artin–Tits monoids. We also briefly mention the braid groups associated with complex reflection groups, as well as several exotic Garside structures on B_n. The applications of Garside structures in the context of braid groups are too many to be described exhaustively, and we just list some of them in the Notes section.

Chapter X is a direct continuation of Chapter IX. It reports about the use of Garside-type methods in the study of Deligne–Lusztig varieties, an ongoing program that aims at establishing by a direct proof some of the consequences of the Broué Conjectures about finite reductive groups. Several questions in this approach directly involve conjugacy in generalized braid groups, and the results of Chapter VIII are then crucial.

Chapter XI is an introduction to the Garside structure hidden in the above mentioned algebraic law $x(yz) = (xy)(xz)$, a typical example where a categorical framework is needed (or, at the least, the framework of Garside monoids is not sufficient). Here a promising contribution of the Garside approach is a natural program possibly leading to the so-called Embedding Conjecture, a deep structural result that resisted all attempts so far.

Chapter XII develops an approach to ordered groups based on divisibility properties and Garside elements, resulting in the construction of groups with the property that the associated space of orderings contains isolated points, which answers one of the natural questions of the area. Braid groups are typical examples, but considering what we call triangular presentations leads to a number of different examples.

Chapter XIII is a self-contained introduction to set-theoretic solutions of the Yang–Baxter equation and the associated structure groups, which make an important family of Garside groups. The exposition is centered on the connection between the RC-law $(xy)(xz) = (yx)(yz)$ and the right-complement operation on the one hand, and what is called the geometric I-structure on the other hand. Here the Garside approach both provides a specially efficient framework, in particular for reproving results about the RC-law, and leads to new results.

Chapter XIV presents four unrelated topics involving interesting Garside families: divided categories and decompositions categories with two applications, then an extension of the framework of Chapter XIII to more general RC-systems, then what is called the braid group of \mathbb{Z}^n, a sort of analog of Artin’s braid group in which permutations of $\{1, \ldots, n\}$ are replaced with linear orderings of \mathbb{Z}^n, and, finally, an introduction to groupoids of cell decompositions that arise when the mapping class
group approach to braid groups is extended by introducing sort of roots of the generators σ_i.

The final Appendix contains the postponed proofs of some technical statements from Chapter II for which no complete reference exists in literature.

Thanks. We primarily wish to thank David Bessis, who was part of the crew at an early stage of the project, but then quitted it for personal reasons.

Next, we thank all the colleagues and students who participated in the various meetings dedicated to the project and who contributed by their questions and suggestions to this text. A (certainly non-exhaustive) list includes Marc Autord, Serge Bouc, Michel Broué, Matthieu Calvez, Ruth Corran, Jean Fromentin, Volker Gebhardt, Tomas Gobet, Juan González-Meneses, Tatiana Ivanova-Gateva, Jean-Yves Hée, Eric Jespers, Eon-Kyung Lee, Sang-Jin Lee, Jon McCammond, Ivan Marin, Jan Okniński, Luis Paris, Matthieu Picantin, Maya Van Campenhout, Bert West. Also, special thoughts for Joan Birman and Hugh Morton, whose support and interest in the subject has always been strong.

Let us mention that the project was supported partly by the ANR grant TheoGar ANR-08-BLAN-0269-02.

Caen, Amiens, Warwick, Paris, June 2013
Patrick Dehornoy
François Digne
Eddy Godelle
Daan Krammer
Jean Michel

What remains to be done?

- Add a few more examples in the text, typically involving the wreathed free Abelian monoid $\tilde{\mathbb{N}}_n$ in addition to the standard ones involving the braid group B_n in order to show how the results and algorithms look like when there are nontrivial invertible elements.
- Uniformize the visual aspect of all pictures (same style of arrows, same linewidth, etc.);
- Post the solutions of the exercises (which are written but not printed here) on a dedicated website;
- Maybe : transform some secondary statements that are not subsequently referred to into exercises.
III. Normal decompositions .. 93
 1. Greedy decompositions .. 95
 1.1. The notion of an \S-greedy path 96
 1.2. The notion of an \S-normal path 100
 1.3. The notion of a Garside family 105
 1.4. Recognizing Garside families 107
 1.5. The second domino rule 114
 2. Symmetric normal decompositions 118
 2.1. Left-disjoint elements 118
 2.2. Symmetric normal decompositions 121
 2.3. Uniqueness of symmetric normal decompositions 126
 2.4. Existence of symmetric normal decompositions 123
 2.5. More domino rules 132
 Appendix: existence of symmetric normal decompositions,
 general case of a left-cancellative category 136
 3. Geometric and algorithmic properties 139
 3.1. Geodesics .. 140
 3.2. The Grid Property 141
 3.3. The Fellow Traveller Property 146
 3.4. The Garside resolution 152
 3.5. Word Problem .. 161
 Exercises ... 164
 Notes .. 165

IV. Garside families ... 169
 1. The general case ... 172
 1.1. Closure properties 172
 1.2. Characterizations of Garside families 180
 1.3. Special Garside families 183
 1.4. Head functions ... 187
 2. Special contexts ... 191
 2.1. Solid families .. 191
 2.2. Right-Noetherian categories 194
 2.3. Categories that admit right-mcms 200
 2.4. Categories with unique right-lcms 207
 2.5. Finite height ... 209
 3. Geometric and algorithmic applications 211
 3.1. Presentations .. 211
 3.2. Isoperimetric inequalities 215
 3.3. Word Problem .. 216
 3.4. Case of categories that admit lcm 219
 Exercises ... 225
 Notes .. 227

V. Bounded Garside families .. 231
 1. Right-bounded Garside families 234
 1.1. The notion of a right-bounded Garside family 234
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.</td>
<td>Right-Garside maps</td>
<td>237</td>
</tr>
<tr>
<td>1.3.</td>
<td>The Garside functor ϕ_{Δ}</td>
<td>240</td>
</tr>
<tr>
<td>1.4.</td>
<td>Powers of a right-bounded Garside family</td>
<td>244</td>
</tr>
<tr>
<td>1.5.</td>
<td>Preservation of normality</td>
<td>247</td>
</tr>
<tr>
<td>2.</td>
<td>Bounded Garside families</td>
<td>250</td>
</tr>
<tr>
<td>2.1.</td>
<td>The notion of a bounded Garside family</td>
<td>251</td>
</tr>
<tr>
<td>2.2.</td>
<td>Powers of a bounded Garside family</td>
<td>254</td>
</tr>
<tr>
<td>2.3.</td>
<td>The case of a cancellative category</td>
<td>256</td>
</tr>
<tr>
<td>2.4.</td>
<td>Garside maps</td>
<td>259</td>
</tr>
<tr>
<td>2.5.</td>
<td>Existence of lcm's and gcd's</td>
<td>262</td>
</tr>
<tr>
<td>3.</td>
<td>Delta-normal decompositions</td>
<td>266</td>
</tr>
<tr>
<td>3.1.</td>
<td>The positive case</td>
<td>266</td>
</tr>
<tr>
<td>3.2.</td>
<td>The general case</td>
<td>270</td>
</tr>
<tr>
<td>3.3.</td>
<td>Symmetric normal decompositions</td>
<td>277</td>
</tr>
<tr>
<td>3.4.</td>
<td>Co-normal decompositions</td>
<td>279</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>282</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td>283</td>
</tr>
</tbody>
</table>

VI. Germs .. 287

1. Germs .. 290
| 1.1. | The notion of a germ | 290 |
| 1.2. | The embedding problem | 292 |
| 1.3. | Atoms in a germ | 295 |
| 1.4. | Garside germs | 297 |

2. Recognizing Garside germs 300
| 2.1. | The families I_S and J_S | 300 |
| 2.2. | Greatest I-functions | 307 |
| 2.3. | Noetherian germs | 310 |
| 2.4. | An application: germs derived from a groupoid | 313 |

3. Bounded germs .. 319
| 3.1. | Right-bounded germs | 319 |
| 3.2. | Bounded germs | 321 |
| 3.3. | An application: germs from lattices | 324 |

Exercises .. 326
| Notes| | 327 |

VII. Subcategories 329

1. Subcategories .. 332
| 1.1. | Closure under quotient | 332 |
| 1.2. | Subcategories that are closed under $=^x$ | 336 |
| 1.3. | Head-subcategories | 338 |
| 1.4. | Parabolic subcategories | 344 |

2. Compatibility with a Garside family 345
| 2.1. | Greedy paths | 346 |
| 2.2. | Compatibility with a Garside family | 347 |
| 2.3. | Compatibility, special subcategories | 351 |
| 2.4. | Compatibility with symmetric decompositions | 354 |
3. Subfamilies of a Garside family .. 357
 3.1. Subgerms .. 358
 3.2. Transfer results ... 361
 3.3. Garside subgerms .. 365
 3.4. Head-subgerms ... 371
4. Subcategories associated with functors 372
 4.1. Subcategories of fixed points 372
 4.2. Image subcategory .. 374
Exercises .. 379
Notes .. 381

VIII. Conjugacy .. 385
1. Conjugacy categories ... 387
 1.1. General conjugacy ... 387
 1.2. Cyclic conjugacy .. 392
 1.3. Twisted conjugacy ... 396
 1.4. An example: ribbon categories 400
2. Cycling, sliding, summit sets 409
 2.1. Cycling and decycling 409
 2.2. Sliding circuits ... 417
3. Conjugacy classes of periodic elements 429
 3.1. Periodic elements .. 429
 3.2. Geometric methods .. 431
 3.3. Conjugates of periodic elements 438
Exercises .. 443
Notes .. 443

PART B. Specific examples ... 447

IX. Braids .. 449
1. The classical Garside structure on Artin–Tits groups 449
 1.1. Coxeter groups .. 450
 1.2. Artin–Tits groups, reversing approach 455
 1.3. Artin–Tits groups, germ approach 461
2. More Garside structures on Artin–Tits groups 463
 2.1. The dual braid monoid 463
 2.2. The case of the symmetric group 465
 2.3. The case of finite Coxeter groups 469
 2.4. Exotic Garside structures on B_n 470
3. Braid groups of well-generated complex reflection groups 473
 3.1. Complex reflection groups 473
 3.2. Braid groups of complex reflection groups 475
 3.3. Well-generated complex reflection groups 476
 3.4. Tunnels ... 477
 3.5. The Lyashko–Looijenga covering and Hurwitz action
 on decompositions of $δ$ 479
Exercises .. 482
X. Deligne–Lusztig varieties .. 487
1. Finite linear groups as reductive groups 487
 1.1. Reductive groups ... 487
 1.2. Some important subgroups 488
 1.3. G^F-conjugacy ... 489
2. Representations .. 491
 2.1. Complex representations of G^F 491
 2.2. Deligne–Lusztig varieties 492
 2.3. Modular representation theory 493
3. Geometric Broué Conjecture, torus case 494
 3.1. The geometric approach 495
 3.2. Endomorphisms of Deligne–Lusztig varieties 496
4. Geometric Broué Conjecture, the general case 499
 3.1. The parabolic case 500
 3.2. The really general case 503
Notes .. 506

XI. Left self-distributivity .. 509
1. Garside sequences ... 510
 1.1. Partial actions ... 510
 1.2. Right-Garside sequences 513
 1.3. Derived notions ... 515
2. LD-expansions and the category \mathcal{LD}_0 518
 2.1. Free LD-systems .. 518
 2.2. LD-expansions .. 520
 2.3. The category \mathcal{LD}_0 522
 2.4. Simple LD-expansions 524
3. Labelled LD-expansions and the category \mathcal{LD} 524
 3.1. The operators Σ_α 525
 3.2. The monoid $M_{\mathcal{LD}}$ 526
 3.3. The category \mathcal{LD} 529
 3.4. The Embedding Conjecture 532
4. Connection with braids .. 536
 4.1. The main projection 536
 4.2. Reproving braid properties 538
 4.2. Hurwitz action of braids on LD-systems 542
Exercises .. 544
Notes .. 545

XII. Ordered groups .. 549
1. Ordered groups and monoids of O-type 549
 1.1. Orderable and bi-orderable groups 550
 1.2. The space of orderings on a group 553
 1.3. Two examples ... 556
2. Construction of isolated orderings 558
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Triangular presentations</td>
<td>558</td>
</tr>
<tr>
<td>2.2. Existence of common multiples</td>
<td>561</td>
</tr>
<tr>
<td>2.3. More examples</td>
<td>564</td>
</tr>
<tr>
<td>2.4. Effectivity questions</td>
<td>566</td>
</tr>
<tr>
<td>3. Further results</td>
<td>568</td>
</tr>
<tr>
<td>3.1. Dominating elements</td>
<td>569</td>
</tr>
<tr>
<td>3.2. Right-ceiling</td>
<td>570</td>
</tr>
<tr>
<td>3.3. The specific case of braids</td>
<td>571</td>
</tr>
<tr>
<td>Exercises</td>
<td>574</td>
</tr>
<tr>
<td>Notes</td>
<td>575</td>
</tr>
<tr>
<td>XIII. Set-theoretic solutions of YBE</td>
<td>579</td>
</tr>
<tr>
<td>1. Several equivalent frameworks</td>
<td>579</td>
</tr>
<tr>
<td>1.1. Set-theoretic solutions of the Yang–Baxter equation</td>
<td>580</td>
</tr>
<tr>
<td>1.2. Involutive biracks</td>
<td>582</td>
</tr>
<tr>
<td>1.3. RC- and RLC-quasigroups</td>
<td>584</td>
</tr>
<tr>
<td>2. Structure monoids and groups</td>
<td>589</td>
</tr>
<tr>
<td>2.1. Structure monoids and groups</td>
<td>590</td>
</tr>
<tr>
<td>2.2. RC-calculus</td>
<td>593</td>
</tr>
<tr>
<td>2.3. Every structure monoid is a Garside monoid</td>
<td>598</td>
</tr>
<tr>
<td>2.4. A converse connection</td>
<td>600</td>
</tr>
<tr>
<td>3. Monoids of I-type</td>
<td>603</td>
</tr>
<tr>
<td>3.1. The I-structure</td>
<td>603</td>
</tr>
<tr>
<td>3.2. Monoids of I-type</td>
<td>606</td>
</tr>
<tr>
<td>3.3. Coxeter-like groups</td>
<td>610</td>
</tr>
<tr>
<td>Exercises</td>
<td>615</td>
</tr>
<tr>
<td>Notes</td>
<td>615</td>
</tr>
<tr>
<td>XIV. More examples</td>
<td>619</td>
</tr>
<tr>
<td>1. Divided and decomposition categories</td>
<td>619</td>
</tr>
<tr>
<td>1.1. Divided categories</td>
<td>620</td>
</tr>
<tr>
<td>1.2. Decomposition categories</td>
<td>625</td>
</tr>
<tr>
<td>2. Cyclic systems</td>
<td>632</td>
</tr>
<tr>
<td>2.1. Weak RC-systems</td>
<td>632</td>
</tr>
<tr>
<td>2.2. Units and ideals</td>
<td>635</td>
</tr>
<tr>
<td>2.3. The structure category of a weak RC-system</td>
<td>638</td>
</tr>
<tr>
<td>3. The braid group of (\mathbb{Z}^n)</td>
<td>644</td>
</tr>
<tr>
<td>3.1. Ordering orders</td>
<td>644</td>
</tr>
<tr>
<td>3.2. Lexicographic orders of (\mathbb{Z}^n)</td>
<td>645</td>
</tr>
<tr>
<td>3.3. A lattice ordering on (GL(n, \mathbb{Z}))</td>
<td>647</td>
</tr>
<tr>
<td>4. Cell decompositions of a punctured disk</td>
<td>649</td>
</tr>
<tr>
<td>4.1. Braid groups as mapping class groups</td>
<td>649</td>
</tr>
<tr>
<td>4.2. Cell decompositions</td>
<td>651</td>
</tr>
<tr>
<td>4.3. The group (B_\ell) and the category (B_\ell)</td>
<td>652</td>
</tr>
<tr>
<td>4.4. Flips</td>
<td>654</td>
</tr>
<tr>
<td>4.5. A bounded Garside family</td>
<td>658</td>
</tr>
<tr>
<td>Exercises</td>
<td>659</td>
</tr>
</tbody>
</table>
Appendix: Some missing proofs for Chapter II 663
1. Groupoid of fractions 663
 1.1. Ore’s theorem 663
 1.2. Ore subcategories 668
2. Working with presented categories 669
 2.1. Right-reversing: termination 669
 2.2. Right-reversing: completeness 670
Exercises 676

Bibliography 677

Index 685
References

[70], Groups with a complemented presentation, J. Pure Appl. Algebra 116 (1997), 115–137.
[79], Geometric presentations of Thompson’s groups, J. Pure Appl. Algebra 203 (2005), 1–44.
[92], Présentations duales pour les groupes de tresses de type affiné \(\hat{A}\), Comm. Math. Helvetici 8 (2008), 23–47.
[94], Representations of reductive groups over finite fields, Ann. of Math. 103 (1976), 103–161.
[95], Palindromes and orderings in Artin groups, J. Knot Theory Ramifications 19 (2010), no. 2, 145162.
18

X. He and S. Nie, Minimal length elements of finite coxeter groups, arXiv:1108.0282 [math.RT].

J.E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, no. 21, Springer Verlag, 1975.

E. Jespers and J. Okninski, Monoids and groups of I-type, Algebra and Represent. Th. 8 (2005), 709–728.

D. Krammer, Garside theory, homepages.warwick.ac.uk/~masbal/index_files/gt080128.pdf.

Braid groups are linear, Ann. of Math. 155 (2002), no. 1, 131–156.

S. Mac Lane, Categories for the working mathematician, Grad. Texts in Math., Springer Verlag, 1998.

Addresses of the authors:

P.D: LABORATOIRE DE MATHEMATIQUES NICOLAS ORESME, CNRS UMR 6139, UNIVERSITÉ DE CAEN, 14032 CAEN, FRANCE
patrick.dehornoy@unicaen.fr www.math.unicaen.fr/~dehornoy

FD: LABORATOIRE AMIÉNOS DE MATHEMATIQUE FONDAMENTALE ET APPLIQUÉE, CNRS UMR 7352, UNIVERSITÉ DE PICARDIE JULIUS-VERNE, 80039 AMIENS, FRANCE
digne@u-picardie.fr www.mathinfo.u-picardie.fr/digne/

EG: LABORATOIRE DE MATHEMATIQUES NICOLAS ORESME, CNRS UMR 6139, UNIVERSITÉ DE CAEN, 14032 CAEN, FRANCE
godelle@math.unicaen.fr www.math.unicaen.fr/~godelle

DK: MATHEMATICS INSTITUTE, UNIVERSITY OF WARWICK, COVENTRY CV4 7AL, UNITED KINGDOM
D.Krammer@warwick.ac.uk www.warwick.ac.uk/~masbal/

JM: INSTITUT DE MATHEMATIQUES DE JUSSEIU, CNRS UMR 7586, UNIVERSITÉ DENIS DIDIEROT PARIS 7, 75205 PARIS 13, FRANCE
jmichel@math.jussieu.fr www.math.jussieu.fr/~jmichel/