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Postreproductive life span remains a puzzle for evolutionary biologists. The explanation of increased inclusive fitness through

parental care after reproduction that applies for humans is unrealistic for many species. We propose a new selective mechanism,

independent of parental care, which relies on the hypothesis that postreproductive life span can evolve as an insurance against

indeterminacy: longer life expectancy reduces the risk of dying by chance before the cessation of reproductive activity. We demon-

strate numerically that the duration of evolved postreproductive life span is indeed expected to increase with variability in life span

duration. An unprecedented assay of 11 strains of the collembola Folsomia candida shows the existence of (1) postreproductive

life span in the absence of parental care; (2) genetic variability in mean postreproductive life span and postreproductive life span

variability itself; (3) strong genetic correlation between latter traits. This new explanation brings along the novel idea that loose

canalization of a trait (here, somatic life span) can itself act as a selective pressure on other traits.

KEY WORDS: Canalization, developmental variability, insurance, longevity, menopause.

Life-history theory predicts that selection for living beyond the

end of reproductive activity is either weak or null (Medawar

1952; Williams 1957). Although for many species, no evidence of

postreproductive life span has been documented, survival after the

end of reproduction is not unusual in nature. Humans are known

for their unusually prolonged postreproductive life span (Austad

1997; Cohen 2004). But menopause and postreproductive life

span are not unique to humans and have been observed in the

wild and in captivity (Austad 1994, 1997): some nonhuman

primates exhibit menopause (Hodgen et al. 1977; Pavelka and

Fedigan 1991) and postreproductive life span has also been

found in other mammals (Marsh and Kasuya 1984, 1986; Cohen

2004). In those species, postreproductive life span is usually

relatively shorter than in humans but, in some cases such as in the

killer whale, it can be longer than in humans (Foote 2008; Ward

et al. 2009). Postreproductive life span has also been documented

in few species with short parental care such as birds raised in cap-

tivity (Holmes and Ottinger 2003), or even with no parental care

such as nematodes (Klass 1977), guppies (Reznick et al. 2006),

or collembola. Two questions arise: (1) why menopause? and (2)

given menopause, why live past it? First, menopause—the ces-

sation of the ability to reproduce—might have been selected for

instance in humans to protect women from the risk of giving birth

after a certain age (Williams 1957; Rogers 1993; Peccei 1995). In

its large sense, it can result from the senescence of the reproduc-

tive functions such as ovarian exhaustion (Wu et al. 2005; Rashidi

and Shanley 2009). In this article, we assume that reproductive

cessation exists and we are only addressing the second question.
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Given reproductive cessation, several evolutionary forces can

select for a prolonged postreproductive life span. In species with

strong social structure such as humans, mothers can help their

daughters raise their own children during their postreproductive

life span. By providing care to their kin, menopaused mothers

and grandmothers can thus increase their inclusive fitness (Rogers

1993; Hawkes et al. 1998; Shanley and Kirkwood 2001; Hawkes

2003; Lahdenperä et al. 2004; Shanley et al. 2007; Sear and Mace

2008).

In those species with no direct parental care but with postre-

productive life span, various explanations have been given for

gains in inclusive fitness, including benefits of grouping, spite-

ful behavior against nonrelatives, improving foraging efficiency

or serving as targets for predators (Bourke 2007). But few ex-

planations have been proposed outside the inclusive fitness argu-

ment that is unlikely to apply generally outside some particular

species with social behavior. Such explanations include for in-

stance the fact that indirect selection for postmenopausal survival

in female human may follow selection for late-survival in males

(Tuljapurkar et al. 2007). Finally, other approaches based on opti-

mization models have shown that pleiotropic mutations could also

explain moderate late life mortality rates and then some postrepro-

ductive life span (Charlesworth 2001; Novoseltsev et al. 2002).

Here, we aim to propose conditions where a prolonged postrepro-

ductive life span can evolve in species with no parental or grand-

parental care, and more generally without calling upon inclusive

fitness arguments. We propose the hypothesis that postreproduc-

tive life span can evolve as an insurance against life span indeter-

minacy. We derive clear verbal predictions from this hypothesis

and support them with a simple mathematical model (described

in Supporting information). As a last step, we confront those pre-

dictions to an empirical case study of the collembola Folsomia

candida, a small wingless arthropod featuring no known parental

care but with prolonged postreproductive life span. This kind of

organism is particularly suitable for addressing this question be-

cause clonal reproduction allows direct measurement of genetic

differences in mean postreproductive life span and in the level of

life span indeterminacy. Our data show that these two traits are,

as we predict, strongly genetically correlated.

Starting from sexual maturity, let us first define two types of

life spans: the “reproductive life span” (gray segment in Fig. 1)

during which an individual is able to reproduce and the “somatic

life span” that terminates at death. An individual will enjoy a

“postreproductive life span” (black end arrow in Fig. 1) if its

somatic life span is longer than its reproductive life span (Fig. 1,

genotype). If one assumes that reproductive life span is fixed,

fitness will only depend on the somatic life span, which can

vary. The crux here is that the effect of the somatic life span

indeterminacy is asymmetrical: the fitness is not modified if the

somatic life span is longer than the reproductive life span (Fig. 1,

phenotype 1) but it is reduced when the somatic life span is

shorter than the potential reproductive life span (then there is

no postreproductive life span, Fig. 1 phenotype 2). Hence, if

somatic life span varies, it pays to have an average somatic life

span larger than reproductive life span so that variation around

this mean does not encroach on reproductive life span. Similarly,

when reproductive life span varies it pays to hedge by increasing

somatic life span beyond the average reproductive life span.

Two predictions can be made from this verbal model:

- When there is no variance in the realization of reproductive

and somatic life spans, somatic life span should evolve to

a length slightly smaller than reproductive life span, due to

mutation–selection balance.

- Postreproductive longevity should evolve as a consequence

of variance in reproductive and/or somatic life span. The

duration of the evolved mean predicted postreproductive

longevity should increase with increasing level of life span

variance.

We have verified these predictions in a theoretical model

described in the Supporting information as well as through the

analysis of an empirical example based on the collembola F. can-

dida where postreproductive life span has been observed.

Material and Methods
BIOLOGICAL MODEL

We used 11 clonal strains of the parthenogenetic collembola (com-

monly called “springtail”) F. candida (Isotomidae, Willem, 1902)

to measure and compare their postreproductive life spans and to

study possible association between mean duration of their postre-

productive life span and their variability. This species can be eas-

ily reared in the laboratory and is commonly used as a standard

model for soil arthropods (Fountain and Hopkin 2005). For each

of the 11 clones (Tully et al. 2006), 20 individuals were isolated at

birth and placed individually in standard rearing boxes under con-

trolled conditions: 21◦C and 100% relative humidity (see Tully

and Ferrière 2008 for methodological details). To study whether

a potential correlation between mean postreproductive longevity

and longevity variance was stable across different environments,

we raised our collembola under two contrasted food regimes: for

each clone, food (dried pellets of agar and yeast) was provided ad

libitum for 10 individuals (later referred as the “ad libitum food

treatment”), whereas the other 10 individuals had access to food

only one day per week (dietary restriction treatment). The rearing

boxes were checked at least twice a week. The eggs that were laid

were counted at the same time and then removed from the boxes.

We define the reproductive life span as age at last egg laying

and somatic life span as age at death. These definitions provide

a simple, straightforward measurement of postreproductive life
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Figure 1. Diagram representing the model and its parameters. Each genotype is defined by a genetically fixed predicted somatic and

reproductive life span (PSL and PRL). Due to some trait indeterminacy (variance on the somatic and reproductive life span), it can

produce different phenotypes, which will differ by the realized values of their somatic and reproductive life span (RSL and RRL). The

fitness of each phenotype is a function of its effective reproductive life span (ERL) that equals reproductive life span if somatic life span

extends beyond reproductive cessation (Phenotype1) or somatic life span if the individual dies before the end of its reproductive life

(Phenotype 2).

span (difference between somatic and reproductive life span). We

kept in our analyses those individuals that may have died during

an interclutch interval that lasts on average 9.3 days under ad

libitum food and 18 days under dietary restriction. But overall

mean postreproductive life span was longer than these interclutch

intervals (26 days and 66 days under ad libitum food and dietary

restriction, respectively). During this experiment, eight individu-

als were accidentally killed and were therefore removed from the

analysis.

STATISTICAL ANALYSIS

In our verbal and mathematical models, the somatic life span

(S) evolves whereas reproductive life span (R) is supposed to

be fixed. In the biological model, reproductive life span varies

between individuals, clones, and food regimes (Fig. 2). Therefore,

to make any meaningful comparison, one needs to take the genetic

and environmental variance of mean reproductive life span into

account. We have done it in two ways for both the measurement

of mean postreproductive life span and the life span variance.

Mean postreproductive life span
For postreproductive life span, we either used the raw measure-

ments of postreproductive life span (S-R) or used a measurement

adjusted for generation time. Using data on survival and reproduc-

tion through life, generation time (T) was computed for each clone

and environment and used to built up this adjusted measurement,

(S-R)/T (see Supporting information). Generation time—the av-

erage age of reproduction—has indeed been shown to be a reliable

metric to assess the relative importance of life-history variables

between populations (Gaillard et al. 2005). In both cases, the

measurements of postreproductive life span—computed for each

individual—were analyzed with a linear model using general-

ized least squares (gls function from the software R, Ihaka and

Gentleman. 1996) with interaction between clone and food ra-

tion (high food vs. dietary restriction) as fixed effect. We took

into account the heteroscedasticity by using the variance function

varIdent to model the variance structure between the different

clones under each food ration (Pinheiro and Bates 2002).

Life span variance
Life span variance was measured either on the raw data of postre-

productive life span (S-R) or on somatic life span adjusted for

reproductive life span (S/R). To have an estimate of the life span

indeterminacy, we ran another model in which postreproductive

life span was analyzed with a linear model (gls) with clone × food

ration as fixed effect. As before, we used the varIdent function to

model under each food ration, the clone differences in variance.

This variance part of the model was used as a measure of genetic

differences in life span indeterminacy.

Genetic correlation
We then studied within each food regime, the genetic correlation

between these different measurements of postreproductive life

span and of life span variance (Figs. 3B and S2).

Results
THEORETICAL MODEL

When there is no developmental variance on life span, the so-

matic life span evolves to a mean length slightly smaller than

EVOLUTION 2011 3
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Figure 2. Reproductive and postreproductive life span in the collembola. (A) To illustrate the diversity of individual and clonal reproduc-

tive and postreproductive life span, we have plotted the curves of cumulated fecundity for four clones (AP, BR, DK, and TO). Each curve

represents the reproductive trajectory of a single individual from hatching to natural death. The collembola were raised either under

ad libitum food regime (gray) or under dietary restriction (black). Postreproductive life spans are highlighted with a bold line. (B) Mean

genetic reproductive life span (dark gray) and mean genetic postreproductive life span (light gray) are represented for each clone in the

ad libitum food treatment (left) or under dietary restriction (right, 10 individuals per clone per treatment). The percentages express the

mean proportion of total life span an individual spends in postreproductive state according to its clone and to the food treatment. It is

on average only slightly shorter under ad libitum food ration (24% vs. 28% on average, F1,196 = 4.2, P = 0.04) but varies between clones.

Clone labels are the same as in Tully et al. 2006.

reproductive life span (see Table S1 and Figs. 3A and S1, where

mean evolved predicted somatic life span equals 38.8 vs. 40 for

reproductive life span). In the presence of developmental variance

on life span, a postreproductive life span emerges. The duration

of the mean evolved postreproductive life span increases with in-

creasing levels of somatic and reproductive life span variances

(Table S1 and Figs. S1 and 3A), both sources of variance having

almost additive effects (Fig. 3A, difference between the gray and

black line).

BIOLOGICAL MODEL

Most individuals were found to live for quite a long time after

laying their last clutch (Fig. 2A): depending on the food regime

and the clone identity, springtails lived on average between about

50 days (clone “GM” in high food regime) and about 320 days

(clone “BR” under dietary restriction, Fig. 2B). The individu-

als spent on average between 12% strain ad libitum food ration

than under the restricted one (36 vs. 47 days F1,196 = 14.3, P <

0.001, Figs. 2B and S2) but the adjusted postreproductive life span

(S-R)/T did not differ between food regimes (F1,196 = 1.41, P =
0.23, Fig. 3B, see also Fig. 2B). These traits varied between

clones (F10,196>5.7, P< 0.001). We also found a significant differ-

ence between clones in the variance of postreproductive life span

(S-R) and of relative somatic life span (S/R, χ2
1>245, P<

0.0001). These latter effects were used as a surrogate of the ge-

netic somatic life span variances. Finally, and most importantly,

we found as predicted that the postreproductive life span, genetic

means were positively associated with the genetic levels of postre-

productive life span variances. This is the case under both food

rations (Figs. 3B and S2).
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Figure 3. Mean postreproductive life span and life span vari-

ance. (A) Mathematical model. Mean evolved postreproductive

life spans are plotted as a function of somatic life span develop-

mental variances σS2 (x-axis) and reproductive life span develop-

mental variance σR2 (white circles, σR2 = 0; gray circles, σR2 = 5).

The black and gray lines are nonlinear functions adjusted to the

two groups of data. Each point is the mean evolved life span of

a simulated population between 1000 and 3000 generations. (B)

Biological model. The mean postreproductive life spans (adjusted

for differences in generation time) are plotted against the cor-

responding variance of relative postreproductive life span for the

11 clones raised under two food treatments (ad libitum, gray disks;

dietary restriction, white disks). Each point is the mean genetic val-

ues of one of the 11 clones under one of the two food treatments

(see Statistical methods). The light gray lines show the bivariate

reaction norms. Variances are scaled to the clone AP in low food

treatment. The two regression lines show that the traits are genet-

ically correlated in both environments (gray line and filled circles:

ad libitum, R2 = 0.95 [0.81–0.98], t9 = 9.2, P<0.001; black line and

open circle: dietary restriction, R2 = 0.90 [0.64;0.93], t9 = 6.1, P <

0.001). The left axis represents the scaled genetic means in each

environment for a 60 days long generation (i.e., the overall mean

generation time). The right axis express the adjusted postrepro-

ductive life span as a percentage of the measured generation time

for each clone and food ration.

Discussion
MODEL PREDICTIONS

We verified that indeterminacy on the realization of genetically

programmed life span is sufficient to drive the evolution of natural

selection will therefore favor individuals with a sufficiently long

predicted postreproductive life period that functions as a buffer to

developmental variance. The length of the evolved postreproduc-

tive life span is proportional to the level of this indeterminacy that

can affect either the somatic life span, the reproductive life span

or both of them.

In our model, mutation load was the only evolutionary force

that tends to decrease postreproductive life span or to slow down

its increase. No trade-off was involved between longevity and re-

production based, for instance, on allocation in maintenance when

available resources are limited (Flatt and Schmidt 2009). Includ-

ing such trade-off would have probably shortened the evolved

postreproductive life span. But the overall effect of life span

indeterminacy on mean postreproductive life span would prob-

ably have remained qualitatively the same. Moreover, it has been

shown that resource allocation based trade-offs need not to occur

systematically (Mukhopadhyay and Tissenbaum 2007) and that,

as in our model, the evolution of reproduction and survival can be

uncoupled (Barnes and Partridge 2003).

CONFRONTATION WITH THE BIOLOGICAL MODEL

In the real living world, is it possible that postreproductive life

span has evolved to provide such an insurance against life span

indeterminacy? It is difficult to provide a clear answer to this

question.

First, the real cost of life span indeterminacy is probably

much smaller in nature than in our model simply because most

individuals never live until the end of their potential reproduc-

tive life span, due to external causes (e.g., injury, disease, preda-

tion). Moreover, reproduction is supposed to terminate abruptly

in our model whereas in the real world a progressive—also some-

times quite rapid—reduction of the reproductive performance

can usually be observed before an eventual complete cessation

(Packer et al. 1998; Holmes et al. 2003; Ricklefs et al. 2003).

Most real populations are age-structured and generations are

overlapping, which is not the case in our model. Therefore, the

model does not take into account the decline of marginal fit-

ness gains of survival with age. Then selective force that drives

the evolution of postreproductive life span in our study is prob-

ably much weaker for most organisms in nature. More work is

needed to study the joint evolution of a progressive reduction

of the reproductive activity with the evolution of abruptly termi-

nated somatic life. Using a classical age-structured aging model

would enable to take into account a more realistic progressive

decrease of fertility and survival over age classes late in life.

Such a life table modeling approach would also enable to relax
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our model assumptions of asexuality and stable population

size.

Second, it is not easy to demonstrate such an effect because

one has to measure the intrinsic genetic mean and variance of the

reproductive and somatic life span in a constant and controlled

experiment. Yet, the collembola provides a good experimental

system for such measurements. They first illustrate the possibil-

ity of a quite long postreproductive life span (about 25% of the

total life span on average) even in species with no known parental

care. This first result contradicts the claim that prolonged postre-

productive life span is almost unique to humans and quite rare in

other species (Pavelka and Fedigan 1991; Hill and Kaplan 1999).

In the light of this example, which reinforces other recent ob-

servations (Reznick et al. 2006; Ward et al. 2009), we think that

postreproductive life span is probably more common than usually

expected. Its rarity in the literature may be due to the difficulty of

observing patterns of senescence in nature (Nussey et al. 2008)

and of conducting long-term longitudinal follow-up of identifiable

individuals (Carey 2003; Monaghan et al. 2008).

Our experiment also shows strong genetic differences be-

tween our clones in reproductive life span, somatic life span,

and also in the level of life span indeterminacy. The clones

come from several geographical origins (Tully et al. 2006) where

they might have evolved under diverse environments selecting

for contrasted reproductive strategies (Tully and Ferrière 2008).

Such within-species variability in reproductive and somatic life

span has been observed already in natural populations (Fox

et al. 2004; Tatar 2001) and on individuals maintained in the

laboratory (Carey 2003). These variations can result from genetic

differences between individuals and from differences in envi-

ronmental conditions (Horiuchi 2003). Even when genetic and

environmental sources of variation are kept minimal—by raising

clonal individuals in the laboratory for example, as in our case

study below—the duration of both reproductive and somatic life

span can remain largely variable (de Haan et al. 1998; Roark and

Bjorndal 2009). This indeterminacy can result from epigenetic

effects, from noise in gene expression (instability of develop-

mental processes), from fluctuations in population dynamics, or

from micro-environmental noise (DeWitt et al. 1998; Flatt 2005;

Fraga 2009; Landry 2009). Dietary restriction was found to ex-

tend both reproductive and postreproductive life span in similar

proportion, the percentage of time spent in postreproductive state

remaining about the same for each clone in the two environments

(Fig. 2B).

Finally, and more importantly, the observed genetic diversity

is not randomly organized: under both diets, the genetic levels

of life span indeterminacy are positively correlated with the ge-

netic levels of mean postreproductive life span (Figs. 3B and S2).

This genetic correlation is in a perfect agreement with our model

prediction—the higher the life span indeterminacy, the longer the

expected postreproductive life span—even though our biological

model does not fit all our theoretical model hypotheses. The mean

reproductive life span varies substantially within clones, whereas

it is supposed to be genetically fixed in our model. One could

argue that this correlation reflects a classical correlation between

the mean and the variance of a trait without resulting from a spe-

cific selective process. But then one would expect to observe a

similar correlation between the mean and variance of somatic life

span (S), which is not the case: the genetic correlation between

mean and variance almost vanishes when one does not correct for

variance in reproductive life span (Fig. S3). The genetic correla-

tion indicates that life span indeterminacy and postreproductive

life span do at least partly coevolve. Although this correlation

comforts the biological validity of our model, it is nevertheless

not a real proof of its validity. The causal relationship could be

reversed—the life span indeterminacy being a secondary conse-

quence of a prolonged postreproductive life span—or could be

due to a third hidden factor. Nevertheless, whatever the direction

of the causal relationship, there is a genetic link between life span

indeterminacy and mean postreproductive life span.

CONCLUSION

Our framework provides a simple mechanism to explain the evo-

lution of postreproductive life span. This mechanism does not rely

on any kind of mother or grandmother helping or on any other

kind of inclusive fitness. It can therefore be applied to species with

absolutely no parental or grand-parental care. In this framework,

postreproductive life span can be understood as a byproduct of the

insurance of being able to benefit from one’s whole reproductive

life span despite individual variability in somatic life span. In a

way, selection has favored the evolution of grandmothers with

better quality than apparently needed. This compares with the

design of airplanes, which are built in such a way to have a mean

durability that is longer than their expected service life (Saunders,

1968). This generates a safety period, which reduces the risk of a

catastrophic failure during the service life.

Our study brings to the fore the importance of developmental

variability as an evolutionary force. This evolutionary force has

a very specific feature: as the developmental variance increases,

the average effect of selection on the whole population intensi-

fies, but the pressure exerted on individuals gets more variable.

A same genotype can produce individuals with long or short life

span, the latter only being subject to purifying selection. The in-

tensity of this selection varies within individuals even though they

share the same genotype and live in the same environment. This

work stresses the importance of sources of phenotypic indetermi-

nacy in shaping life histories. However, the origins and adaptive

significances of these sources of variability largely remain to be

addressed.
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