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a b s t r a c t

Tomato (Solanum lycopersicum) quality traits such as juice soluble solid content (Brix), juice pH, color

parameters (Hue and Chroma), firmness and water content, are critical factors for fruit quality assess-

ment. The need for screening very large numbers of fruit has led to the development of a high-

throughput method using visibleenear infrared (VISeNIR) spectrometry. We are reporting here a set

of results obtained with a portable spectrometer using the 350e2500 nm range, showing good pre-

diction of the quality traits cited above, over a wide range of developmental stages from immature green

to ripe tomato fruit, cv. Micro-Tom. This is a rather good set of quality traits compared to previous

publications predicting tomato quality with VIS-NIR spectrometry, and the prediction is robust, as it was

obtained by grouping sets of different operators. This would be a useful tool to phenotype hundreds of

Micro-Tom per day, making it possible to follow the dynamics of the described parameters on growing

fruits. Thus the method can be used to study the biochemistry and physiology of fruit development in

planta.

1. Introduction

Because sorting large numbers of fruit in aminimumof time and

efforts is a concern for breeders and wholesalers, non-destructive

techniques such as near infrared spectrometry (NIRS) have

received lots of attention in the two past decades [1]. A strong in-

terest for spectrometry (as a non-destructive technique), is that

information can be collected on the same fruit, at different times.

This means that it gives access, not only to punctual information,

but also to the dynamics of the measured characteristics. Regarding

tomatoes, nice sets of data have been obtained that allowed to

predict color and pigment content with good accuracy, as well as

firmness to a lesser extent using the 400e1500 nm range [2]. These

outcomes have obvious postharvest applications as correlating a

spectral signature to tomato quality has a great importance for

wholesalers or processors. However, Clément et al. [2] had less

accurate results for the soluble solid content (SSC) and the pH.

Using a larger wavelength range, 400e2350 nm, He et al. [3] ob-

tained good predictions for these two latter parameters, but the

color and the water content were not tested. Interesting works also

focused on fruit absorption and diffusion, using time-resolved [4],

or spatially resolved [5] spectroscopy to predict fruit properties.

Here we report a set of data and calibrations allowing a good

prediction of color main descriptors, Hue and Chroma [6], SSC, pH,

firmness and water content using a portable VIS-NIR spectrometer.

Those calibrations aim at being robust and accurate. To reach the

first goal, it is primordial that the calibration set has a large variety

of samples in order to include as many sample types as possible. As

for the precision, full visible-NIR rangewas available, and the use of

appropriate pretreatments enhanced it.

We developed the method using the Micro-Tom tomato cultivar,

which is widely used in laboratories as a fruit model. This is a dwarf

tomato plant developed to perform genomics approaches in the

Solanaceae family [7], and a great number of laboratories world-

wide are looking for tools for its rapid phenotyping.

2. Results and discussion

The tomatoes were sampled at various stages of development,

corresponding tomature green to fully ripe [8], thus offering a large

range of values for the quality parameters, also called reference

data in the modeling process. Results of predicted values in the

whole calibration set versus the measured (reference) values are

shown in Fig. 1. Hue angle varied from 110!, mature green-breaker
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tomatoes, to 37!, red tomatoes. On Fig. 1a, it is clear to see the three

sampling groups: mature green-breaker tomatoes with Hue angle

ranging from 90 to more than 110, tomatoes turning to yellow-

orange with a Hue angle ranging from 60 to 80 and red tomatoes

with Hue angle ranging from less than 40 to 50. While chroma data

varied from 24, small pigment concentration common in the

mature green tomatoes that are turning from green to pale-green,

to 69, fully red tomatoes with a higher pigment concentration.

The chroma data were splitted into two groups only, the first one

ranging from 30 to 40, corresponding to mature green and breaker

fruit and the second one from 45 to 60 corresponding to fruit from

turning to red. These wide ranges are very important in getting a

good potential for correlating the reference data and the VIS/NIR

spectra, as previously obtained by Clément et al. [2].

Fig. 1. Calibration plots for major quality descriptors of Micro-Tom fruit, (a) Hue angle characterizing the color on a chromatic circle, (b) Chroma characterizing the color saturation,

(c) Soluble solid content of the juice expressed in Brix degrees, (d) pH of the juice, (e) firmness of whole fruit in N mm"1 and (f) water content in %. The R2 is the coefficient of

determination of calibration, Npoints is the number of measurements used to build the model, SEC is the root mean square error of calibration (see Table 2 for all coefficients).



The soluble solid content (SSC) varied from 3.2 to 10 !Brix, with

a coefficient of variation around 20% (Table 1). The latter value is

rare on Micro-Tom tomatoes and represents a fully ripe fruit. Most

of the tomatoes chosen for these experiments had SSC ranging

between 4 and 6 !Brix (Fig. 1c), which were the mature green,

yellow and pale red tomatoes, with only the fully ripe fruit showing

an SSC from 7 to 10 !Brix. This trend of values grouped in the first

part of the range was also observed for the pH and the firmness

(Fig. 1d and e). On the contrary the water content values of unripe

and ripe fruit were sprayed quite evenly over the full range from 87

to 94% of water (w/w), and it may be linked to slight differences in

plant water status in various areas of the growth chamber, that are

known to influence fruit development [9]. However the coefficient

of variation of this water content was rather small, below 2%, and

this might have limited the chances to get big differences in the

spectral signatures in the water absorption range (primarily 1450

and 1950 nm).

Typical spectra of green, yellow-orange and red tomatoes are

shown in Fig. 2. The 3 spectra are clearly different in the visible part

(350e750 nm), but look similar in the infrared (750e2500 nm)

part. The green tomato spectrum is characterized by a valley near

670 nm which is due to chlorophyll absorption. Over the ripening,

the chlorophyll valley disappears, and an absorption valley forms in

the 400e550 nm, showing the presence of carotenoids.

For the different reference data, spectrum pretreatment was

optimized in order to minimize the latent variables and maximize

the cross-validation R2. For all data we used the multiplicative

scatter correction (MSC), to correct additive and multiplicative ef-

fects in the spectra, as it was shown to give interesting results in

tomato quality prediction [3]. For all the calibrations, MSC was

carried out after wavelength reduction (see remaining wavelength

on Table 2). Indeed, the wavelength reduction is also useful for

removing noisy parts of the spectrum, thus improving the effect of

MSC. All spectrawere derived (1st order) and smoothed using a 2nd

order polynomial and 9 points of moving window (7 points for

water calibration). The 1st order derivation is indeed a good

compromise between making appear absorption peaks, and

limiting noise generation (as with 2nd order derivation).

The quality of the calibration processes can be assessed by

looking at the calibration coefficients of determination listed in

Table 2. For all six quality parameters (reference data), the R2 values

are bigger than 0.8. The smallest R2 obtained for firmness is 0.82,

corresponding to an R-value of 0.91. These calibration processes are

as good as the best series published so far for tomatoes by He et al.

[3], but we added the data on color prediction and water content

that were not tested before in their work.

To quantify the prediction quality, the calibration was tested on

the validation set. Plots of predicted values by cross-validation

versus measured values are presented in Supplementary data. We

observed that the R2 of the validation was nearly as good as for

calibration in the case of color parameters, Hue and Chroma

(Table 2 and Fig.1). This is logical as color is a surface parameter and

the spectra are highly related to surface properties, and confirms

the good results obtained by a Canadian team [2]. In our study, we

obtained better results for the SSC prediction, probably because of

the extension of the spectra up to 2500 nm, as the Chinese team

obtained quite good results on the SSC prediction with a similar

range of wavelengths [3]. The validation results were also very good

for prediction of the pH with an R2 of 0.90. This confirms that pH

prediction by VIS/NIR spectroscopy is working well, as former

studies succeeded in this approach on tomatoes [3] and on apples

[10]. The results obtained for validation of the SSC were satisfactory

(Table 2 and Fig. 1), with a cross-validation R-value of 0.91

(R2 ¼ 0.82) equaling the one published previously for tomato SSC

[3], but we used a data set that was 10-fold larger than this latter

study, and it was obtained with two different operators and

different batches of fruit, with a 10-month interval. This allows us

to describe this SSC prediction as quite robust, as described previ-

ously [1]. A previous work had comparable data sets [16], with

weaker precision (validation R ¼ 0.69, SEV ¼ 0.52), but only 780e

980 nm range was available. For the firmness, the validation R2 was

slightly less good that for the other parameters, and there was a

higher number of outliers (Tables 1 and 2). This may also be due to a

reference method that is more delicate to use, as Harpenden cali-

pers are a hand-held tool with some variation between users. The

use of a slower and more expensive tool such as a bench-top

firmness tester, with the probes operated by an electric engine,

would have probably given better results. However our results are

quite similar to those obtained by He et al. [3] and Clément et al. [2]

Table 1

Descriptive statistics of the data set, Hue represents the color on a chromatic circle

and is expressed in degrees, Chroma represents the color saturation and is a vector

norm, the soluble solid content (SSC) is in degrees Brix, pH in pH units, firmness in

N mm"1, and the water content is in %. “n” is the total number of reference data,

“out” is the number of outliers.

Mean Std Dev CV Range n Out

Hue 71.7 24.7 34.5 37e110 367 1

Chroma 45.6 8.4 18.4 24e69 367 1

SSC 5.4 1.0 19.4 3.2e10 319 3

pH 3.9 0.3 7.4 3.6e4.9 142 3

Firmness 0.83 0.65 78 0.05e3 332 6

Water content 90.7 1.7 1.9 87e95 198 4

Fig. 2. Light reflectance of Micro-Tom tomatoes of various ripening stages in the 350e

2500 nm spectral regions.

Table 2

Variables of the predictive models for reference data (detailed in Table 1). R2Ctot and

SECtot are variables of the calibration with entire set (R2 is the determination

coefficient SEC is the standard error of calibration), R2CV and SECV are coefficients of

the leave-one-out cross-validation, R2V and SEV are coefficients of the 2/3e1/3

validation, RPD is the residual predictive deviation, and LV is the number of latent

variables.

R2Ctot SECtot R2CV SECV R2V SEV RPD Wavelength

range (nm)

LV

Hue 0.99 2.15 0.99 2.46 0.99 2.32 10.7 450e1300 13

Chroma 0.91 2.49 0.91 2.58 0.90 2.75 3.24 450e2100 12

SSC 0.87 0.38 0.82 0.45 0.82 0.45 2.42 1150e2300 13

pH 0.94 0.07 0.91 0.08 0.90 0.089 3.45 450e1900 14

Firmness 0.82 0.27 0.78 0.30 0.76 0.30 2.14 450e2300 13

Water

content

0.84 0.64 0.77 0.77 0.73 0.83 2.08 1350e2100 12



on smaller batches of tomatoes, as their cross-validation R2 values

for firmness were 0.67 and 0.75, respectively. We also obtained

interesting results for predicting the water content, a parameter

that was not tested in the two previous papers on tomatoes [2,3].

The calibration R2 of 0.84 was fairly high (Table 2), however the

cross-validation R2 obtained by the leave-one-out method was only

of 0.77. This can be firstly explained by the very low variability of

the water content in tomatoes. Nevertheless, the prediction of

water content is economically very important, as the fruit weight is

the critical parameter impacting postharvest prices and also yield

estimation. It is also strongly linked to dry matter, which could be

predicted as well using similar methods.

The SECV represent 3.4%, 5.7%, 6.6%, 6.1%, 10.2% and 9.6% of the

full calibration set of Hue, Chroma, SSC, pH, firmness and water

content, respectively (calculated from Tables 1 and 2). These values

give also some good indication of the precision of the prediction.

Obviously the firmness and the water content were the two pa-

rameters predicted with slightly less accuracy, even if for some

rapid and non-destructive screening of fruit batches in postharvest

handling or breeding programs, such a precision may be sufficient

to be economically interesting.

In conclusion, we are presenting here the most comprehensive

set of data up-to-date to assess six very important quality traits of

tomato, by using a rapid and non-destructive VIS/NIR method, in

association with PLS calibration and leave-one-out cross-valida-

tion. The robustness of this set of data, is quite good, as it has been

compiledwith different operators and different batches of fruit. The

speed at which the method runs would allow testing around 200

tomatoes per hour.

The tool that is presented here makes it possible to assess to-

mato biochemical changes throughout fruit ripening. Thus, this

non-destructive technique with a portable spectrometer, can be

used in planta. The dynamics of these changes could help to better

understand the physiological and biochemical processes during

fruit development and ripening.

This set of data has been validatedwith one tomato cultivar only,

Micro-Tom, as it is going to be a very important tool in Solanaceae

genomics in the coming years [7]. But applications to other tomato

cultivars and small berries would be worth further studies. The

models established with Micro-Tom cannot be applied to the to-

mato cv. Ailsa Kraig (data not shown), but performing a different

calibration set is possible. Furthermore the prediction of SSC or

water content should be possible in tomatoes with different

pigment content (like never-ripe or high-pigment) as the visible

part of the spectra has been removed from the data set in calibra-

tions for such quality traits.

3. Materials and methods

3.1. Plant material

Tomatoes (Solanum lycopersicum) cv. Micro-Tom, were grown in

culture rooms under controlled conditions set as follows: 14-h-day/

10-h-night cycle, 25/20 !C day/night temperature, 80% relative

humidity, 250 lmol m"2 s"1 intense light. Tomatoes were harvested

at different stages of development from 30 to 55 days after full

bloom, to ensure a wide range of color and maturity stages.

3.2. Spectral measurements

Two reflection spectra (350e2500 nm) were taken at two oppo-

site positions around the equator (approximately 180!) of each to-

mato with a field spectrometer (LabSpec 5000, Analytical Spectral

Devices, Inc.). Two spectra per fruit were shown to be an acceptable

number of data acquisition, even if 3e6 spectra per fruit gave even

greater precision [11]. For each reflectance spectrum, the scan

number was set at 50. Thus, the total scan number for each example

was 2 $ 50 (50 on each opposite side). The spectrometer was

equippedwitha 6mmdiameter reflectanceprobe (catnumb135680,

Analytical Spectral Devices, Inc.) powered by an external light supply

located in the spectrometer box. To some extent this probe is a device

close to what some authors call interactance probe, as the emitted

light goes to the fruit target using glass fibers that are parallel to the

fibers conducting the reflected light back in the analyzer [1]. To limit

the collection of external light signals, the probe extremity was

inserted into a black rubber stopper,whichwas adjusted so the probe

touched the fruit surface, and was surrounded by this “black collar”.

The reflectance base linewas set with the use of awhite Spectralon!

standard (Labsphere, Inc., New Hampshire, USA).

3.3. Physico-chemical measurements

Surface color was assessed with a chromameter (CR400, Konica

Minolta), using the D65 illuminant and the L*, a*, b* space, and the

data were processed to obtain Hue and Chroma as previously

described [6]. Hue represents the color on a chromatic circle and is

equal to tan "1 (b*/a*) expressed in degrees, note that there is aþ180

correction added when a < 0. Chroma is the Euclidean norm of the

a*, b* vector and represents the color saturation. The firmness was

assessed using Harpenden calipers (British Indicators Ltd.), and the

fruit deformability was transformed to firmness using the formulae

described previously [12]. The firmness values obtained here were

within a similar range than those obtained by latter authors on a

different cultivar. Then quarters of tomatoeswere cut andweighted,

before being dried in a 60 !Coven for three days, andweighted again

to get thewater content. The remaining fresh tissueswere grounded

in an Eppendorf tube using a glass rod, the tube was centrifuged for

2min at 16,000g and the juicewas used to determine the SSCwith a

hand-held refractometer (Master 20T, Atago) and the pH using a

mini-probe (HI1330B, Hanna) in a 1.5 ml Eppendorf tube.

3.4. Data processing

Pretreatment and calibration were developed thanks to

SAISIR chemometrics package (http://www.chimiometrie.fr/saisir_

webpage.html) and GNU Octave software (http://www.gnu.org/

software/octave).

For each quality parameters to predict, PLS regression [13] was

used to develop calibrations. The number of latent variables was

determined with the lower standard error (SE) of leave-one-out

(LOO) cross-validation (CV): with n samples, calibration was built

on n " 1 samples and validated on the remaining one. The whole

set was then randomly divided into a calibration set (2/3) and a

validation set (1/3) (“2/3e1/3”). Coefficient of correlation (R2) and

SE were computed from full set calibration (R2Ctot and SECtot), and

“2/3e1/3” validation (R2V and SEV) sets. “2/3e1/3” calibration and

validation was repeated 10 times, and then R2V and SEV were

averaged. Residual predictive deviation (RPD), defined as the ratio

between the standard deviation of the whole set and the standard

error of cross-validation (SECV) was computed.

Pretreatments were applied on the spectra before carrying out

the regression.

The first correction applied to the spectra is to remove the gap

generated by the switch from one detector to the other (1000 and

1830 nm). The five points before the switch were linearly fitted in

order to estimate the first point after this switch. The gap between

the measured and estimated values for this point was then sub-

tracted from all subsequent points. A Multi Scatter Correction

(MSC) [14] was then applied to remove light scattering effects that

can be different from one sample to the other. The total reflectance



spectra are reduced in order to keep only wavelength that are

correlated to the parameter to predict. For this purpose, several

wavelength reductions are tested, and the best one is retained.

Finally, absorption peaks are enhanced thanks to a SavitzkyeGolay

spectrum derivation [15].

Those pretreatment were tested with different parameters

(wavelength reduction, parameters in derivation) and the best

combination was kept, on the basis of the higher cross-validation

determination coefficient (R2CV). R2C the outliers were defined

with a filter set at &30% of the full range of the errors in the pre-

dicted vs measured cross-validation.
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