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Elements related to the largest complete excursion of a

reflected BM stopped at a fixed time. Application to local score.

1 Introduction 1.1 The local score is a probabilistic tool which is often used by molecular biologists to study sequences of either amino-acids or nucleotides as DNA. In particular its statistical properties allow to determine the most significant segment in a given sequence, see for instance [START_REF] Karlin | Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes[END_REF] and [START_REF] Waterman | Introduction to Computational Biology: Maps, Sequences and Genomes[END_REF]. Any position i in the sequence is allocated a random value ǫ i . For example, ǫ i can measure either physical or chemical property of the i-th amino acid or nucleotide of the sequence. It can also code the similarity between two components of two sequences. It is assumed that (ǫ i ) i≥1 is a sequence of independent and identically distributed random variables. Rather than considering (ǫ i ) i≥1 , it is more usefull to deal with:

S n = ǫ 1 + • • • + ǫ n for n ≥ 1 ; S 0 = 0. (1.1)
Obviously, (S n ) is the random walk starting at 0, with independent increments (ǫ i ) i≥1 . Let us introduce:

S n = min 0≤i≤n S i , n ≥ 0. (1.
2)

The two following processes (U n ) and (U n ) play an important role in the study of biological sequences. The first one is called the Lindley process and is defined as:

U n = S n -S n = S n -min i≤n S i , n ≥ 0. (1.
3)

The process (U n ) is non negative and further properties can be found either in (Chap. III of [START_REF] Asmussen | Applied probability and queues[END_REF]) or Chap. I [START_REF] Borovkov | Stochastic processes in queueing theory[END_REF]). The local score U n is the supremum of the Lindley process up to time n.

Molecular biologists are interested in "unexpected" large values of (U n ), see [START_REF] Waterman | Introduction to Computational Biology: Maps, Sequences and Genomes[END_REF].

The exact distribution of U n has been determined in [START_REF] Mercier | Exact distribution for the local score of one i.i.d. random sequence[END_REF], using the exponentiation of a suitable matrix and classical tools related to Markov chains theory.

Although the given formula in [START_REF] Mercier | Exact distribution for the local score of one i.i.d. random sequence[END_REF] is efficient whatever the sign of E(ǫ i ), in practice, it can be only applied to short sequences. However, we are sometimes faced with long sequences and in these situations it is often assumed that they have a negative trend, i.e. E(ǫ i ) < 0. Then, the local score U n grows as ln(n) (see [START_REF] Waterman | Phase transition in sequence matched and nucleic acid structure[END_REF]) and an asymptotic approximation of the distribution of U n as n is large has been given in [START_REF] Karlin | Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes[END_REF], [START_REF] Dembo | Strong limit theorems of empirical functionals for large exceedances of partial sums of i.i.d. variables[END_REF], using the renewal theory. When E(ǫ n ) = 0, the asymptotic behavior of the tail distribution of U n has been determined in [START_REF] Daudin | Asymptotic behavior of the local score of independent and identically distributed random sequences[END_REF] and the rate of convergence is given in [START_REF] Etienne | Approximation of the supremum of a centered random walk. application to the local score[END_REF].

Although the study of biological sequences is the starting point of this paper, the remainder will only consider the probabilistic model.

Here we consider that the (ǫ i ) i 1 are centered with unit variance.

It is clear that the trajectory of (U n ) can be composed of a succession of 0 and excursions above 0. However, we only deal with complete excursions up to a fixed time. This leads us to introduce the maximum U * n of the heights of all the complete excursions up to time n. The second variable which will play an important role is θ * n , the time necessary to reach its maximum height U * n . See Section 3 for more informations and detailed definitions of the previous RVs.

We believe that the knowledge of the joint distribution of the pair (U * n , θ * n ) should permit the associated bi-dimensional statistical tests to be more powerful than the usual ones based on the first component. This program should be developed in a forthcoming paper. 

U k √ n , 0 ≤ k ≤ n can be approximated by ( U s , 0 ≤ s ≤ 1)
where:

U (t) := B(t) -inf 0≤s≤t B(s), t ≥ 0. (1.4) 
Recall that the process ( U (s), s ≥ 0) is distributed as the reflected Brownian motion, since:

|B(t)|, t ≥ 0 (d) = B(t) -min 0≤u≤t B(u), t ≥ 0 . (1.5)
It turns out that the asymptotic behavior of (U * n , θ * n ) for large n should be closely linked the distribution of U * (1), θ * (1) where U * (1) and θ * (1) are the analog in continuous time of U * n and θ * . Consequently, the knowledge of the distribution of (U * n , θ * n ) for large n reduces to U * (1), θ * (1) . Let us briefly define these RVs. As we proceed with the random walk (S n ), we introduce the following processes (see Section 2 for more explicit definitions):

(1) the local score U (t) which is the maximum of the heights of all the excursions of U (s) up to time t, i.e. U * (t) := sup 0≤s≤t U (s),

(2) the maximum U * (t) of the heights of all the complete excursions up to time t, (3) the time θ * (t) taken by U to reach U * (t) starting from the beginning of this highest excursion.

1.3 Let t be a fixed real number. The density function of U (t) is known (see either Subsection 2.11 in [START_REF] Billingsley | Convergence of probability measures[END_REF] or Lemma 3.2 in [START_REF] Roynette | Penalisations of Brownian motion with its maximum and minimum processes as weak forms of Skorokhod embedding[END_REF]). Although U * (t) = U g(t) and g(t) is not a stopping time it is however easy to calculate the density function of U * (t). Indeed, the process g(t) -1/2 B(g(t)s), 0 ≤ s ≤ 1 is distributed as b(s), 0 ≤ s ≤ 1 and is independent of g(t), where g(t)

is the last zero of U (s) before t and b is the Brownian bridge (see e.g. [START_REF] Bertoin | Lévy processes[END_REF]). Therefore:

U * (t) (d) = g(t) sup 0≤s≤1 |b(s)|. (1.6)
Finally, we conclude using the fact that g(t) is distributed as the arcsine law (see again [START_REF] Bertoin | Lévy processes[END_REF]) and the distribution of sup 0≤s≤1 |b(s)| is given by the Kolmogorov-Smirnov formula (see e.g. [START_REF] Pitman | On the distribution of ranked heights of excursions of a Brownian bridge[END_REF]). The final and explicit result is given in Theorem 2.6.

However, as far as we know, the distribution of U 2 Theoretical results

Notation

Let (B(t), t ≥ 0) be a standard Brownian motion started at 0 and U (t) is the reflected Brownian motion at time t:

U (t) := |B(t)|, t ≥ 0. (2.1)
The excursion (above 0) straddling t starts at g(t) and ends at d(t), namely

g(t) = sup{s ≤ t, U (s) = 0}, d(t) = inf{s ≥ t, U (s) = 0}, t ≥ 0. (2.2)
Let U (t) be the supremum of U over [0, t]

U (t) := sup 0≤s≤t U (s), t ≥ 0. (2.3)
Then, the highest height U * (t) of all the complete excursions of the process (U (r) ; 0 ≤ r ≤ t) equals

U * (t) := U (g(t)) = sup 0≤s≤g(t) U (s), t ≥ 0. (2.4) 
Let f * (t) be the unique time which achieves the maximum of U over [0, g(t)]:

f * (t) := sup{r ≤ g(t) ; U (r) = U * (t)}, t ≥ 0.

(2.5)

It is worth introducing the left end-point g * (t) of the excursion straddling f * (t):

g * (t) := g(f * (t)) = sup{r ≤ f * (t) ; U (r) = 0}, t ≥ 0 (2.6)
as well as the right end-point d * (t) of this excursion:

d * (t) := d(f * (t)) = inf{r ≥ f * (t) ; U (r) = 0}, t ≥ 0. (2.7)
It is convenient to visualize the different variables in Figure 1.

We are interested in the joint law of U * (t) and θ * (t) where the second variable is defined as

θ * (t) := f * (t) -g * (t), t ≥ 0. (2.8)
It is convenient to introduce the following notation which will be used extensively in the sequel. 

1) (ξ n ) n≥1 ∪ {ξ, ξ ′ }
ξ (d) = ξ ′ (d) = ξ n (d) = T 1 (R) (2.9) with T x (R) = inf{s ≥ 0 ; R(s) = x}, x > 0 (2.10)
and (R(s), s ≥ 0) stands for a 3-dimensional Bessel process started at 0. The density p ξ is explicitly known and is given by

p ξ (u) = 1 √ 2πu 3/2 k∈Z -1 + (1 + 2k) 2 u exp - (1 + 2k) 2 2u (2.11) = d du   k∈Z (-1) k exp - k 2 π 2 u 2  
(2.12)

(see for instance [START_REF] Biane | Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions[END_REF] p 8 and 24). In perspective of simulation, let us mention that an efficient algorithm to simulate very quickly the r.v. ξ is given in [START_REF] Deaconu | Hitting time for bessel processes -walk on moving spheres algorithm (woms)[END_REF].

2) e ′ 0 , (e n ) n≥0 is a sequence of i.i.d. exponential r.v.s.

3) (λ(x), x ≥ 0) is the process defined by

λ(x) := x 2 (ξ 1 + ξ 2 ) + k≥1 ξ 2k+1 + ξ 2k+2 1 x + e 1 + • • • + e k 2 , x ≥ 0. (2.13)
The sum converges a.s. and in L 1 (see Lemma 4.5). The Laplace transform of λ(x) has been calculated in (4.20).

4) α 1 and α 2 are two [0, 1] valued r.v.s; α 2 is uniformly distributed and the density function of

α 1 is 2 π 1 √ 1-s 2 1 [0,1] (s).
We always assume in the sequel that

e ′ 0 , (e n ) n≥0 , (ξ n ) n≥1 , ξ, ξ ′ , α 1 , α 2 and (U (t)) t≥0 are independent. (2.14) 2.2 Distribution of the pair (U * (t), θ * (t))
The main results are Theorems 2.3, 2.4, 2.5 and 2.6. All the proof of results stated in this section will be developed in Section 4. In Theorem 2.3, we determine the density function of (U * (t), θ * (t)). Its proofs is based on the theory of excursion related to the Brownian motion, see for instance Chap XII in [START_REF] Revuz | of Grundlehren der Mathematischen Wissenschaften[END_REF]. Let us briefly recall the ingredients which are needed. Let (L(t), t ≥ 0) be the local time process at 0 related to the Brownian motion (B(t), t ≥ 0). The random function t → L(t) is continuous and nondecreasing. Let (τ s , s ≥ 0) be its right inverse. The proof of Theorem 2.3 has two main steps. In Proposition 2.1 below we begin with expressing the distribution of U * (t), θ * (t) in terms of the one of U (τ 1 ), τ 1 .

Proposition 2.1 Let t be a fixed positive real number. Then, the density function of (U * (t), θ * (t)) is given by

p (U * (t),θ * (t)) = 2 π ρ(x, y)p ξ y x 2 1 x 4 , x > 0, 0 < y < t (2.15)
where p ξ is the density function of ξ (see (2.11)-(2.12)), (2.16) x + := sup{x, 0} and ρ 1 := t -y -x 2 u.

ρ(x, y) := +∞ 0 E   1 τ 1    (ρ 1 ) + - ρ 1 - x 2 τ 1 (U (τ 1 ) 2 +      p ξ (u)du,
We are then naturally lead to determine the distribution U (τ 1 ), τ 1 . Proposition 2.2 (1) For any x ≥ 0, the sum in (2.13) converges a.s. and in 

L 1 . (2) The r.v. U (τ 1 ) -1 is exponentially distributed and conditionally on U (τ 1 ) = x , x > 0, τ 1 (d) = λ(x). ( 2 
(x, y) = R 2 + E   1 λ(v)    (ρ 1 ) + - ρ 1 - x 2 v 2 λ(v) +      p ξ (u) e -1/v v 2 dudv
(2.18) and ρ 1 has been defined in Proposition 2.1. Formula (2.18) has the disadvantage to be not completely explicit and therefore it does not allow a direct calculation of E f U * (t), θ * (t) for a given bounded Borel function f . For instance, for our biological motivation explained in the Introduction, it would be interesting to calculate P U * (t) ≤ 

E (f (U * (t), θ * (t))) = π 2 E f α 1 √ t √ Z , tα 2 1 ξ Z α 2 e ′ 2 0 √ Z (2.

19)

where

Z = ξ + ξ ′ + e ′ 2 0 α 2 2 λ(1/e ′ 0 ).

Distributions of U * (t) and θ * (t)

We begin with the distribution of θ * (t).

Theorem 2.5 For any t > 0, θ * (t) admits the following density function

f θ * (t) (x) = 1 x k≥1 (-1) k+1 sinh πk x t-x cosh 2 πk x t-x 1 [0,t] (x).
(2.20)

We now consider the law of U * (t).

Theorem 2.6 Let t > 0.

(1) We have the following identity in law

U * (t) (d) = √ t g(1)b * , (2.21)
where g(1) and b * are two independent r.v.s such that

P(g(1) ∈ dx) = 1 π x(1 -x) 1 [0,1] (x) dx, (2.22) P(b * > x) = 2 k≥1 (-1) k-1 e -2k 2 x 2 , x > 0.
(2.23)

(2) U * (t) admits the following density function

f U * (t) (x) = 4 2 πt   k≥1 (-1) k-1 ke -2k 2 x 2 t   , x > 0.
(2.24)

The proof of item 1 in Theorem 2.6 is straightforward and has been developed in the Introduction. Note that this direct approach does not use the knowledge of the density function of (U * (t), θ * (t)). However, Lemma 4.1 permits to get another expression of the distribution of U * (t). 2πt 3 e -a 2 /2t 1 {t>0} and (see Lemma 3.2 in [START_REF] Vallois | Sur la loi conjointe du maximum et de l'inverse du temps local du mouvement brownien: application à un théorème de Knight[END_REF])

P (T U (a) > t) = 4 π k≥0 (-1) k 2k + 1 exp - (2k + 1) 2 π 2 8a 2 t , t > 0.
3 Application to the discrete case

Recall that the r.v. S n and the Lindley process U n are associated with the sequence (ǫ i ) i≥1 via (1.1) and (1.3) respectively. The process (U k ) is a non negative Markov chain. In the case where (ǫ i ) i≥1 are symmetric Bernoulli r.v.'s (i.e. P (ǫ i = ±1) = 1/2), then (U k ) takes its values in N and moves as a symmetric random walk in {1, 2, • • • } and being at 0, it either stays at this level with probability 1/2 or jumps to 1 with probability 1/2.

In general, the trajectory of (U k ) can be decomposed in a succession of 0 and excursions above 0. An excursion of (U k ) starting at g and ending at d is a process (e(k), 0 ≤ k ≤ ζ), where

e(0) = U (g) = 0, e(ζ) = U (d) = 0, ζ := d -g > 0
and e(k) := U (g + k) > 0, for any 0 < k < ζ. As mentioned in the Introduction, the local score U n is the maximum of (U k ) up to time n and can be interpreted as the maximum of all the heights of the excursions up to time n. Namely

U n := max 0≤k≤n U k , n ≥ 0. (3.1)
We are interested in the highest complete excursion up to time n. We proceed as in the continuous time setting introducing In Section 3.1, we define a continuous process (U M (t), t ≥ 0) as the classical linear interpolation of (U n , n ≥ 0). We naturally introduce the highest high U M, * (t) and length θ M, * (t) of the complete excursion until time t of (U M (t), t ≥ 0). We conclude linking (U M, * (1), θ M, * (1)) to (U * M , θ * M ). Then we prove in Section 3.2 the convergence of (U M, * (t), θ M, * (t)) to (U * (t), θ * (t)). Since the distribution of (U * (t), θ * (t)) has been computed in Section 2, we then get an approximation of the distribution of (U * M , θ * M ).

g n := max {k ≤ n ; U k = 0} , U * n := U gn = max 0≤k≤gn U k , f * n := max {k ≤ g n ; U k = U * n } , g * n := g f * n = max {k ≤ f * n ; U k = 0} , d * n := inf {k ≥ f * n ; U k = 0} , θ * n := f * n -g * n . ( 3 

The linear interpolation of (U k ) k

We keep notation given above and the one introduced in Section 2. Recall in particular that (B(t), t ≥ 0) stands for a standard Brownian motion started at 0 and (U (t), t ≥ 0) is the reflected Brownian motion defined by (2.1).

Let M > 0 be a scale parameter which allows to obtain the convergence of the normalized random walk to the Brownian motion (B(t)) as M → ∞ (see Section 3.2). The classical continuous process B M (t), t ≥ 0 associated with (S n ) and normalizing factor M is classically defined as

B M k M = 1 √ M S k and for any k such that k M ≤ t ≤ k+1 M B M (t) = B M k M + M t - k M B M k + 1 M -B M k M .
We are interested here by the process (U M (t), t ≥ 0)

U M (t) = B M (t) -min s≤t B M (s), t ≥ 0. (3.3)
Note that

U M k M = 1 √ M U k , k ≥ 0 (3.4)
where (U k ) is the Lindley process associated with (S k ) via (1.3).

We define the analog of r.v.s introduced in the discrete setting of Lindley process, see (3.2) and (3.1) in the continuous time setting of B M (t)

U M (t) := sup 0≤s≤t U M (s), g M (t) := sup s ≤ t ; U M (s) = 0 , U M, * (t) := U M (g M (t)) = sup 0≤s≤g M (t) U M (s), f M, * (t) := sup r ≤ g M (t); U M (r) = U M, * (t) , g M, * (t) := g M (f M, * (t)) = sup r ≤ f M, * (t) ; U M (r) = 0 , d M, * (t) := inf s ≥ f M, * (t) ; U (s) = 0 , θ M, * (t) := f M, * (t) -g M, * (t). (3.5)
Using the definition (3.2) of θ * M and U * M we deduce easily that these r.v.'s can be expressed in terms of their analog in continuous time.

Proposition 3.1 We have the following scaling properties

θ * M M = θ M, * (1) and U * M √ M = U M, * (1). 
(3.6)

3.2 Convergence of U M, * (t), θ M, * (t) to U * (t), θ * (t)
The key ingredient of our convergence results is the Donsker Theorem, see Section 2.10 in [START_REF] Billingsley | Convergence of probability measures[END_REF]: the processus B M (t), t ≥ 0 converges weakly to the Brownian motion B(t), t ≥ 0 when M → +∞. Using moreover (1.5) we get the following useful result.

Proposition 3.2 U M (t), t ≥ 0 converges weakly to U (t), t ≥ 0 .

Note that it is unclear that the map ω → g M, * (t), f M, * (t), d M, * (t), θ M, * (t) defined from U * (t) is continuous. Therefore the weak convergence of g M, * (t), f M, * (t), d M, * (t), θ M, * (t), U M, * (t) as M → ∞ is not a straightforward consequence of Proposition 3.2.

Theorem 3.3 Let t > 0. The 5-uplet g M, * (t), f M, * (t), d M, * (t), θ M, * (t), U M, * (t)
converges weakly to g * (t), f * (t), d * (t), θ * (t), U * (t) as M → ∞ where the r.v.s g * (t), f * (t), d * (t), θ * (t), U * (t)) have been defined by relations (2.4)-(2.8).

Proofs

We follow the notation introduced in Sections 2 and 3.

Proof of Proposition 2.1

We first link the distribution of (U * (t), θ * (t)) to that of (U (τ s ), θ * (τ s ), τ s ). 

E f (U * (t), θ * (t)) = 2 π +∞ 0 E f U (τ s ), θ * (τ s ) 1 √ t -τ s 1 {τs<t} ds. (4.1)
Proof The real number s = L(t) is the unique s such that τ s -< t < τ s . Thus,

f U * (t), θ * (t) = s≥0 1 {τs -<t<τs} f U (τ s -), θ * (τ s -) since B(τ s -) = 0 implies that U * (t) = U (τ s -) and θ * (t) = θ * (τ s -).
Denote e s the Brownian excursion

e s (v) : =    B(τ s -+ v), 0 ≤ v ≤ τ s -τ s -for τ s -τ s -> 0 [δ] otherwise and ζ(e s ) := τ s -τ s -its lifetime. Since τ s = τ s -+ ζ(e s ), E f (U * (t), θ * (t)) = E   s≥0 f U (τ s-), θ * (τ s-) 1 {τ s-<t<τ s-+ζ(es)}   .
Applying Proposition 2.6 in [START_REF] Revuz | of Grundlehren der Mathematischen Wissenschaften[END_REF] (consequence of the Master Formula stated in Proposition 1.10, Chapter XII), one gets Since for any a > 0, the process (U (sa)/ √ a; s ≥ 0) is distributed as (U (s); s ≥ 0), we deduce the following scaling property (U (τ s ), θ * (τ s ), τ s )

E f (U * (t), θ * (t)) = E +∞ 0 f U (τ s ), θ * (τ s ) 1 {τs<t<τs+ζ(w)} n(dw) ds , n (dw 
(d) = (sU (τ 1 ), s 2 θ * (τ 1 ), s 2 τ 1 ), s > 0. (4.2)
Now we express the distribution of U (τ 1 ), θ * (τ 1 ), τ 1 in terms of that of

U (τ 1 ), τ 1 . Lemma 4.2 Let h : R 3 + → R be a bounded Borel function. Then E h U (τ 1 ), θ * (τ 1 ), τ 1 = +∞ 0 E h x, x 2 ξ, x 2 (ξ + ξ ′ ) + τ 1 1 {U (τ 1 )<x} dx x 2 .
Proof It can be deduced from Theorem 1 of [START_REF] Vallois | Sur la loi conjointe du maximum et de l'inverse du temps local du mouvement brownien: application à un théorème de Knight[END_REF] that

P U (τ 1 ) < x = e -1/x x > 0. (4.3) Moreover conditionally on {U (τ 1 ) = x}, (1) the r.v. f * (τ 1 ) -g * (τ 1 ), d * (τ 1 ) -f * (τ 1 ) and τ 1 -d * (τ 1 ) + g * (τ 1 ) are inde- pendent; (2) f * (τ 1 ) -g * (τ 1 ) (d) = d * (τ 1 ) -f * (τ 1 ) (d) = T x (R); (3) τ 1 -d * (τ 1 ) + g * (τ 1 ) is distributed as τ 1 conditionally on {U (τ 1 ) < x}. Now assume that R is distributed as R such that (R, R) is independent of U .
By the definition of θ * (τ 1 ) and a wise decomposition of τ 1 , we get

E h(U (τ 1 ), θ * (τ 1 ), τ 1 ) = +∞ 0 e -1/x x 2 (4.4) E h x, T x (R), T x (R) + T x ( R) + τ 1 |U (τ 1 ) < x dx.
The result is a direct consequence of (2.9) and the scaling property

T x (R) (d) = x 2 T 1 (R). (4.5) Proof of Proposition 2.1 Denote ∆ := E [f (U * (t), θ * (t))], where f : [0, ∞[×[0, ∞[→ R is a bounded Borel function. According to Lemma 4.1, we have ∆ = 2 π R 2 + f (y, y 2 z)E ψ(y)1 {y 2 (ξ ′ +z)<t} 1 y 2 p ξ (z) dydz where ψ(y) := +∞ 0 s ds t -y 2 (z + ξ ′ ) -s 2 τ 1 1 {s<s * } (4.6) = 1 τ 1 t -y 2 (z + ξ ′ ) -t -y 2 (z + ξ ′ ) -s 2 * τ 1 (4.7) with s * = y U (τ 1 ) ∧ t-y 2 (z+ξ ′ ) τ 1
and a ∧ b = inf{a, b}.

It is easy to prove that on {s < s * },

ψ(y) = 1 τ 1     (t -y 2 (z + ξ ′ )) + -   t -y 2      z + ξ ′ - τ 1 U (τ 1 ) 2         +     .
Then (2.15) follows.

Proof of Proposition 2.2

Since the density function of U (τ 1 ) is explicit (see (4.3)), that of τ 1 , U (τ 1 ) will be determined once the conditional distribution of τ 1 given U (τ 1 ) will be known. Our proof is based on the study of the process ( λ(x), x > 0) such that conditionally on {U (τ 1 ) = x},

τ 1 (d) = λ(x). (4.8)
Obviously (4.8) is equivalent to

E f (τ 1 )g U (τ 1 ) = E f λ U (τ 1 ) g U (τ 1 ) (4.9)
for any bounded Borel functions f , g : [0, ∞[→ R. We will show that ( λ(x), x > 0) satisfies an equation which has a unique solution.

Lemma 4.3 Let x > 0 and n ≥ 0. Then,

λ(x) (d) = Λ n + λ 1 1 x + e 1 + • • • + e n+1 (4.10)
where

Λ n := x 2 (ξ 1 + ξ 2 ) + n k=1 ξ 2k+1 + ξ 2k+2 1 x + e 1 + • • • + e k 2 , n ≥ 0 with the classical convention 0 1 = 0.
Proof First we prove

λ(x) (d) = x 2 (ξ 1 + ξ 2 ) + λ 1 1 x + e 1 , x > 0. Let f 1 , f 2 : [0, +∞[→ [0,

+∞[ be two bounded Borel functions and

A := E f 1 (τ 1 )f 2 U (τ 1 ) = +∞ 0 e -1/x f 2 (x)E[f 1 ( λ(x))] dx x 2 (4.11)
by ( 4.3) and (4.8). Applying formula (4.4) to h(

x 1 , x 2 , x 3 ) = f 1 (x 3 )f 2 (x 1 ) leads to A = +∞ 0 e -1/x E f 1 T x (R) + T x ( R) + τ 1 U (τ 1 ) < x f 2 (x) dx x 2 = +∞ 0 x 0 e -1/y y 2 E f 1 x 2 (ξ 1 + ξ 2 ) + λ(y) dy f 2 (x) dx x 2
using (4.5), (4.3) (2.9) and (4.9). Identifying with (4.11) implies

E f 1 λ(x) = e 1/x x 0 e -1/y E f 1 x 2 (ξ 1 + ξ 2 ) + λ(y) dy y 2 .
Let Y be the r.v. defined by Y = 1 1

x + e 1 whose density is obviously given by e 1/x-1/y 1 [0,x] (y)/y 2 . Thus E f 1 λ(x) can be rewritten as

E f 1 x 2 (ξ 1 + ξ 2 ) + λ(Y ) which means that λ(x) (d) = x 2 (ξ 1 + ξ 2 ) + λ(Y ) = x 2 (ξ 1 + ξ 2 ) + λ 1 1 x + e 1 , x > 0.
Iterating this procedure leads to (4.10).

Lemma 4.4 For any x > 0, E λ(x) = 2 3 (x + x 2 ).
Proof Using for instance Exercise (4.9) Chap VI in [START_REF] Revuz | of Grundlehren der Mathematischen Wissenschaften[END_REF] we get that The process (M t∧τ 1 ∧σr ; t ≥ 0) being bounded, we can apply the stopping theorem to obtain

M (t) := cosh λ|B(t)| + b sinh λ|B(t)| exp - λ 2 2 t -bλL(t) is a local martingale for λ > 0. Let r > 0, b = - cosh (λr) sinh(λr) and 
E(M (τ 1 ∧ σ r )) = E(M (0)). It is clear that |B(σ r )| = U (σ r ) = r, B(τ 1 ) = 0 and L(τ 1 ) = 1. Our choice of b implies that M (σ r ) = 0. Conse- quently, M (τ 1 ∧ σ r ) = M (τ 1 ) 1 {τ 1 <σr} and e -bλ E e -λ 2 τ 1 /2 1 {τ 1 <σr} = 1. Since {τ 1 < σ r } = {U (τ 1 )
< r}, the previous identity can be rewritten as

E e -λ 2 τ 1 /2 1 {U (τ 1 )<r} = e bλ = exp -λ cosh(λr) sinh(λr) , (4.12) 
that leads to

E e -λτ 1 1 {U (τ 1 )<r} = exp - √ 2λ cosh(r √ 2λ) sinh(r √ 2λ) = e -1/r 1 - 2λr 3 + o(λ) .
(4.13) Taking the derivative at 0, we get

E τ 1 1 {U (τ 1 )<r} = 2r 3 e -1/r . (4.14) 
Let ϕ be the function defined by ϕ(x) := E λ(x) . Therefore, taking the conditional expectation with respect to U (τ 1 ) in (4.14) and using (4.3), we have r 0 e -1/x ϕ(x) dx/x 2 = 2r 3 e -1/r r > 0, which conduces to ϕ(x) = 2 3

x + x 2 .

Lemma 4.5 (1) Λ n converges a.s. and in L 1 while n → +∞.

(2) For any x > 0, λ

1 1 x +e 1 +•••+en converges to 0 in L 1 while n → +∞.
Proof 1) Since all the r.v.s under concern are positive, Λ n converges a.s. while n → ∞ to the positive r.v.

Λ ∞ := x 2 (ξ 1 + ξ 2 ) + k≥1 ξ 2k+1 + ξ 2k+2 1 x + e 1 + • • • + e k 2 . (4.15) 
One way to prove that Λ ∞ is a.s. finite is to show that its expectation is finite.

Note that (see [START_REF] Borodin | Handbook of Brownian motionfacts and formulae[END_REF] p 463)

E e -λξ 1 = E e -λT 1 (R) = √ 2λ sinh( √ 2λ) = 1 - λ 3 + o(λ), λ > 0.
that conduces by derivation to E(ξ 1 ) = 1 3 . Now using the fact that e 1 + • • • + e k is γ(k)-distributed, we have successively

E(Λ ∞ ) - 2 3 x 2 = E    k≥1 ξ 2k+1 + ξ 2k+2 1 x + e 1 + • • • + e k 2    = 2 3 k≥1 +∞ 0 1 1 x + y 2 y k-1 (k -1)! e -y dy = 2 3 +∞ 0 dy 1 x + y 2 < +∞
which proves item 1 of Lemma 4.5.

2) Since λ(y) ≥ 0, it is sufficient to check that lim n→+∞ E λ

1 1 x +e 1 +•••+en = 0. As 0 < 1 1 x +e 1 +•••+en ≤ x and lim n→+∞ 1 1 x +e 1 +•••+en = 0 a.s.
(by the Law of Large Numbers), the Lebesgue's dominated convergence theorem directly implies lim n→+∞ E 1

1 x + e 1 + • • • + e n = lim n→+∞ E    1 1 x + e 1 + • • • + e n 2    = 0.
It remains to use Lemma 4.4 to get E λ 1

1 x + e 1 + • • • + e n = 2 3      E 1 1 x + e 1 + • • • + e n + E    1 1 x + e 1 + • • • + e n 2        
. and conclude the proof.

Proof of Theorem 2.4

We revisit the results of Sections 4.1 and 4.2, keeping the notation introduced there. Interpreting the Lebesgue integral as an expectation in Lemma 4.1 gives:

E f (U * (t), θ * (t)) = π 2 E f t τ 1 α 1 U (τ 1 ), t τ 1 α 2 1 θ * (τ 1 ) 1 √ τ 1 .
By the same reasoning, Lemma 4.2 can be modified as:

E h U (τ 1 ), θ * (τ 1 ), τ 1 = E h U (τ 1 ) α 2 , U (τ 1 ) 2 α 2 2 ξ, U (τ 1 ) 2 α 2 2 (ξ + ξ ′ ) + τ 1 1 U (τ 1 )
.

Then the two previous equations and the following identity in law: U (τ 1 )

(d) = 1/e ′ 0 imply (2.19).

Proof of Theorem 2.5

For any a > 0, b and c ∈ R, we set

H(a, b) := E 1 √ b -aξ 1 {b-aξ>0} H(a, b, c) := E 1 (aξ -b) 3/2 exp - c aξ -b 1 {aξ-b>0} .
The proof of Theorem 2.5 is based on the following Lemma.

Lemma 4. [START_REF] Borovkov | Stochastic processes in queueing theory[END_REF] We have

H(a, b) = a b 3/2 k∈Z |1 + 2k| exp - (1 + 2k) 2 2 a b (4.16) H(a, b, c) = π 5/2 2a √ c k∈Z (-1) k+1 k 2 exp   - k 2 π 2 b 2a -|k|π 2c a   .
(4.17)

Proof 1) Since H(a, b) = 0 for b ≤ 0, we assume from now on b > 0. By (2.11)

H(a, b) = 1 √ 2π k∈Z -H 1,k + (1 + 2k) 2 H 2,k with H 1,k := b/a 0 1 u 3/2 1 √ b -au exp - (1 + 2k) 2 2u du, H 2,k := b/a 0 1 u 5/2 √ b -au exp - (1 + 2k) 2 2u du.
The change of variable z = 1/u -1/a in the above integrals gives

H 1,k = 2π b 1 |1 + 2k| exp - (1 + 2k) 2 2 a b , H 2,k = a √ 2π b 3/2 1 |1 + 2k| + √ 2π √ b 1 |1 + 2k| 3 exp - (1 + 2k) 2 2 a b .
From these relations we deduce the identity -H 2) Using (2.12) and an integration by parts lead to H(a, b, c) = a n∈Z (-1) n H n with

1,k + (1 + 2k) 2 H 2,k = a √ 2π b 3/2 |1 + 2k| exp -(1+2k)
H n = ∞ b/a 3 2(au -b) 5/2 - c (au -b) 7/2 exp - c au -b - n 2 π 2 u 2 du.
With the change of variable s = c/(au -b), we get

H n = 1 a H 1 n + H 2 n exp - n 2 π 2 2 b a
where

H 1 n = 3 2c 3/2 ∞ 0 √ s exp -s - n 2 π 2 c 2a 1 s ds, H 2 n = - 1 c 3/2 ∞ 0 s 3/2 exp -s - n 2 π 2 c 2a 1 s ds.
The Bessel functions K ν admits the following integral representation (see formula [START_REF] Roynette | Penalisations of Brownian motion with its maximum and minimum processes as weak forms of Skorokhod embedding[END_REF] p 183 in [START_REF] Watson | A treatise on the theory of Bessel functions[END_REF]):

K ν (z) = 1 2 z 2 ν ∞ 0 1 s ν+1 exp -s - z 2 4s
ds.

Since K -ν (z) = K ν (z) (see formula [START_REF] Deaconu | Hitting time for bessel processes -walk on moving spheres algorithm (woms)[END_REF] p 79 in [START_REF] Watson | A treatise on the theory of Bessel functions[END_REF], we obtain

H 1 n = 3 c 3/2 z 2 3/2 K 3/2 (z) and H 2 n = - 2 c 3/2 z 2 5/2 K 5/2 (z)
where z = |n|π 2c a . The functions K 3/2 and K 5/2 are explicit (see formula (12) p 80 in [START_REF] Watson | A treatise on the theory of Bessel functions[END_REF]):

K 3/2 (z) = π 2z e -z 1 + 1 z and K 5/2 (z) = π 2z e -z 1 + 3 z + 3 z 2 .
Then, we deduce

H 1 n + H 2 n = - √ π 4c 3/2
z 2 e -z and (4.17).

Proof of Theorem 2.5 Using Proposition 2.1 and (4.16), for 0 < x < t, we get

f θ * (t) (x) = 1 √ 2πtx R 3 + E   H x ty , 1 - x t - u 2 x ty λ 1 v 1 1-x t -u 2 x ty λ(1/v)>0   u √ y e -v 1 {u<v} p ξ (y) du dv dy = 1 √ 2πtx R 2 + ue -v 1 {0<u<v} f 1 (u, v) du dv (4.18) 
where

f 1 (u, v) := ∞ 0 E   H x ty , 1 - x t - u 2 x ty λ 1 v 1 1-x t -u 2 x ty λ( 1 v )>0   p ξ (y) √ y dy.
Using (4.16) with a = x ty and b = 1

-x t -u 2 x ty λ 1 v , we get H() √ y = x √ t [(t -x)y -u 2 xλ(1/v)] 3/2 k∈Z |1+2k| exp - (1 + 2k) 2 2 x (t -x)y -u 2 xλ(1/v) .
Using the definition of the function H, we have:

f 1 (u, v) = x √ t k∈Z |1 + 2k|E H t -x, u 2 xλ(1/v), (1 + 2k) 2 2 x .
Thus the density function of θ * (t) can be written as follows, for 0 < x < t,

f θ * (t) (x) = √ x √ 2π R 2 + ue -v 1 {0<u<v} (4.19)    k∈Z |1 + 2k|E H t -x, u 2 xλ(1/v), (1 + 2k) 2 2 x    du dv. Set a = t -x, b = u 2 xλ(1/v) and c = (1+2k) 2 2 
x. From (4.17), we get

E H t -x, u 2 xλ(1/v), (1 + 2k) 2 2 x = π 5/2 √ 2x(t -x)|1 + 2k| n∈Z (-1) n+1 n 2 exp -π|n||1 + 2k| x t -x E exp - n 2 π 2 2(t -x) u 2 xλ(1/v) .
Identity (4.12) and item 2 of Proposition 2.2 give r 0 E e -µλ(x) e -1/x dx x 2 = exp -2µ coth r 2µ and a derivation with respect to r leads to

E[exp {-µλ(r)}] = r 2 e 1/r 2µ sinh 2 (r √ 2µ) exp -2µ coth(r 2µ) . (4.20) Taking µ = n 2 π 2 2(t-x) u 2 x we get E H t -x, u 2 xλ(1/v), (1 + 2k) 2 2 x = π 9/2 u 2 e v √ x √ 2|1 + 2k|(t -x) 2 v 2 (4.21) n∈Z * (-1) n+1 n 4 exp -π|n| √ x √ t-x |1 + 2k| + u coth πu|n| v x t-x sinh 2 πu|n| v x t-x . Equations (4.19) and (4.21) imply that f θ * (t) (x) = k,n∈Z * f k,n (x) where f k,n (x) = x 2π |1 + 2k| π 9/2 √ x √ 2|1 + 2k|(t -x) 2 (-1) n+1 n 4 R 2 u 3 v 2 exp -π|n| √ x √ t-x |1 + 2k| + u coth ( πu|n| v x t-x ) sinh 2 πu|n| v x t-x 1 {u<v} du dv.
Letting u = vs (v being fixed) and integrating with respect to dv, we obtain

f k,n (x) = (-1) n+1 π|n| 1 x(t -x) exp -π|n||1 + 2k| x t -x × 1 0 sinh πs|n| x t-x cosh 2 π|n| x t-x ds = (-1) n+1 1 2x exp -π|n||1 + 2k| x t -x tanh 2 π|n| x t -x and straightforward computation leads to k∈Z * f k,n (x) = (-1) n+1 1 2x tanh 2 π|n| x t -x sinh π|n| x t -x -1
that finally conduces to (2.20).

Proof of (2.24) in Theorem 2.6

It is clear that (2.21)-(2.23) directly imply

P(U * (t) > x) = E   2 k≥1 (-1) k-1 e -2k 2 x 2 tg(1)   = 2 π k≥1 (-1) k-1 1 0 e -2k 2 x 2 ty dy y(1 -y) .
We take the x-derivative and we set u = 1/y -1. (2.24) follows easily.

Proof of Proposition 2.7

Let us introduce

d a := inf{t ≥ T U (a), U (t) = 0}. It is clear that {U * (t) > a} = {d a < t}. The process (U (s + T U (a)) -a, 0 ≤ s ≤ d a -T U (a)) is distributed as (B(s), 0 ≤ s ≤ T B (-a)
) and is independent of (U (s), s ≤ T U (a)), then

d a (d) 
= T U (a) + T B (a). This shows (2.25).

N 1 = S ′ (0, n ′ 4 ) > -U n 1 (4.29)

N 2 = S ′ (n ′ 2 , n ′ 3 ) ≥ -U n 1 + max U (0, n 1 ), b, S ′ (0, n ′ 2 ) + U n 1 (4.30)

N 3 = S ′ (n ′ 2 , n ′ 3 ) ≥ -U n 1 + U (n 3 , n) (4.31) N 4 = S ′ (n ′ 4 , n ′ 5 ) ≤ -U n 1 .
(4.32)

The above equalities can be directly read on Figure 4.7.2 (a dash line representing a level that could not be crossed by the process).

We want to express N 3 in terms of T ′ k := S t 3 +k -S t 3 . We have S(0, n 3 + k) = min S(0, n 3 ), S n 3 + T ′ (0, k) and U n 3 +k = S n 3 +k -S(0, n 3 + k) = T ′ k + max U n 3 , -T ′ (0, k) . As a result

N 3 = S ′ (n ′ 2 , n ′ 3 ) > -U n 1 + max 0≤k≤n-n 3
T ′ k + max U n 3 , -T ′ (0, k) .

Back to the continuous case

1) Let t 1 , t 2 , . . . , t 5 be positive real numbers such that 0 < t 1 < • • • < t 5 and b > 0. Let us introduce A 1 M = {g M, * (t) < t 1 , t 2 < f M, * (t) < t 3 , t 4 < d M, * (t) < t 5 , U M, * (t) > b} (4.33) where g M, * (t), f M, * (t), d M, * (t) and U M, * (t)) have been defined by (3.5) Since D is dense in R and D n ⊂ D m as soon as n ≤ m, we can choose without loss of generality positive integers L 0 , l and l i for i = 1 . . . 5 such as

t i = l i 2 L 0 , 1 ≤ i ≤ 5, t = l 2 L 0 .
Recall that U M (t), t ≥ 0 is the continuous process defined by (3.3) Following the procedure presented in the discrete case, the event A 1 M can be decomposed as

A 1 M = A 1,1 M ∩ A 1,2 M ∩ A 1,3 M ∩ A 1,4 M (4.37)
where for i = 1, . . . , 4 A 1,i M is the analog of N i obtained by replacing U (resp. U , n i , i = 1, . . . , 5) by U M (resp. U M , t i , i = 1, . . . , 5).

By Corollary 3.2, U M (t 4 , t 5 ) converges weakly to U (t 4 , t 5 ), as M → ∞. Thus we want to study the limit when M goes to infinity and apply the following lemma Unfortunately, the distribution of U (t 4 , t 5 ) (being bounded below by 0) has an atom at 0; therefore we cannot conclude directly that lim M →∞ P U M (t 4 , t 5 ) = 0 = P U (t 4 , t 5 ) = 0 . This is the reason why we will introduce the processes W and Z in the sequel.

4)

We follow now the procedure developed in section 4.7.1. It is worth intro-

  a, θ * (t) ≤ b for any a, b > 0. Rewriting the proof of Theorem 2.3 leads us to an equivalent formulation of Theorem 2.3 which gives rise to a more useful formula. Theorem 2.4 Let f : R 2 + → R be a bounded Borel function. Then

Proposition 2 . 7

 27 We define two other stopping times T U (a) = inf{t ≥ 0, U (t) = a} and T B (a) = inf{t ≥ 0, B(t) = a} where ( B(t), t ≥ 0) is a one dimensional Brownian motion independent of U . ThenP(U * (t) > a) = P T U (a) + T B (a) < t , t > 0, a > 0. (2.25) Remark 2.8 It is clear that (2.25) allows to compute the cumulative distribution function of U * (t) and gives a complement to (2.24). The distributions of T B (a) and T U (a) are explicitly known: the density function of T B (a) is a √

Figure 2 .

 2 Figure 2. Notation U n

Lemma 4 . 1

 41 Let f : R 2 + → R be a bounded Borel function. Then

  ) being a σ-finite measure on the set of all positive excursions. According to Proposition 2.8, Chapter XII in[START_REF] Revuz | of Grundlehren der Mathematischen Wissenschaften[END_REF], n ζ(ω) > ε = 2 πε . Identity (4.1) then follows.

σ

  r := inf{s ≥ 0 ; |B(s)| = r} = inf{s > 0 ; U (s) = r}.

2

 2 

2 ab

 2 and finally (4.16).

2 )

 2 In view of the discrete case, let us consider the sets of dyadic points D = m∈N D m where D m = k 2 m , k ∈ {0, 1, . . .} .

3 )

 3 For any continuous functionω : [0, ∞[→ R, we denote ω(u, v) := max u≤r≤v ω(r), ω(u, v) := min u≤r≤v ω(r), 0 ≤ u ≤ v.(4.36)

Lemma 4 . 8

 48 Let (ξ M ) be a sequence of r.v.'s valued in R d and converging weakly to ξ when M → ∞. Then the Porte-Manteau's lemma (see e.g.[START_REF] Billingsley | Convergence of probability measures[END_REF]) asserts that for any Borel Λ in R d , limM →∞ P(ξ M ∈ Λ) = P (ξ ∈ Λ) (4.38) if P(ξ ∈ ∂Λ) = 0.

  1.2 Unfortunately, it is difficult to determine explicitly the law of (U * n , θ * n ) for a fixed n. Bearing in mind applications with long biological sequences, it is relevant to study the distribution of (U * n , θ * n ) where n is large. The functional convergence theorem of Donsker tells us that the initial random walk (S k , 0 ≤ k ≤ n) normalized by the factor 1/

√ n converges in distribution as n → ∞ to the Brownian motion (B(s), 0 ≤ s ≤ 1), see Sections 3.1 and 3.2 for a more precise formulation. It is easy to deduce that the normalized Lindley process

such that t 0 Ū(t) d * (t) g*(t) f * (t) g(t) 0 U * (t) U(s) s ϴ * (t)

  is a family of i.i.d. r.v.s

	Figure 1. Notation U (t)

  := {g * (t) < t 1 , t 2 < f * (t) < t 3 , t 4 < d * (t) < t 5 , U * (t) > b} (4.35)and the r.v.'s U * (t), g * (t), f * (t) and d * (t) have been defined by (2.4)-(2.7).

				. The
	goal is to show			
	where	lim M →∞	P (A 1 M ) = P (A 1 )	(4.34)
	A 1			
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Proof of Theorem 3.3 4.7.1 Auxiliary results in the discrete setting

Let us go back to the random walk defined by (1.1) and introduce for any integer n 1 > 0,

(2) Let k be an integer such as k > 0. Then

In such a case

Now consider

The event D can be decomposed as

where

Now note that

Moreover by the definitions of the n j 's, one has U n j > 0 and S i+n j -S(0, n j ) > 0 ∀i = 1 . . . n 5 . Consequently, we successively have with

Recall that for any u > 0, the r.v.s max As done in the discrete setting, we deduce that A 2 = A 1 where A 1 has been defined by (4.35). It is now clear that (4.34) follows.