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Résumé

We determine the distribution and the density functions of
(
U∗(t), θ∗(t)

)
, where

U∗(t) is the maximum over [0, g(t)] of a reflected Brownian motion (Us), θ∗(t) the
unique time where this maximum is achieved and g(t) stands for the last zero of (Us)
before t. Let U∗

n and θ∗n be the analog of U∗(t) and θ∗(t) where the underlying process
is the Lindley process, i.e. the difference between a centered real random walk and

its minimum. We prove that
( U∗

n√
n

,
θ∗n
n

)
converges in distribution to

(
U∗(1), θ∗(1)

)

as n → ∞. This result can be applied to compare long biological sequences.

Key words: Lindley process, local score, Donsker’s invariance theorem, reflected
Brownian motion, inverse of the local time, Brownian excursions.
MSC : 60 F 17, 60 G 17, 60 G 40, 60 G 44, 60 G 50, 60 G 52, 60 J 55, 60 J 65.

1 Introduction

1.1 Statistical properties of the distribution of the local score is largely used
by molecular biologists to extract important features in biological sequences
and in particular to determine the most significant one among a collection of
biological sequences, see for instance [13] and [18]. The probabilistic model
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which is commonly used is the following. Associated with a sequence (ǫi)i≥1

of independent, centered and reduced random variables, consider

Sn = ǫ1 + · · · + ǫn for n ≥ 1 ; S0 = 0. (1.1)

Sn = min
0≤i≤n

Si, n ≥ 0. (1.2)

and
Un = Sn − Sn = Sn − min

i≤n
Si, n ≥ 0. (1.3)

In biological sequence analysis, (ǫi) can for example correspond to the physical
or chemical properties of the i-th amino acid or nucleotid of the sequence ;
it can also reflect the similarity between components of two sequences. The
process (Un) is non negative and is called the Lindley process (see e.g. ChapIII
of [3] for more details and references therein or Chap I [6]). The local score
Un is the supremum of the Lindley process up to time n. Molecular biologists
are interested by this supremum as it highlights the best part of the studied
sequence, the eventual segment of DNA transmitted by a common ancestor
for sequence comparison or the best hydrophobic segment of a protein that
would thus naturally move in a transmembrane place.

The exact distribution of Un have been determined in [9] using the exponen-
tiation of a suitable matrix and classical tools of Markov chain theory. The
given formula in [9] is efficient and accurate for small sequences.

However in practice we often face to long sequences and it is supposed that
the sequence (ǫn) has a negative trend, which actually means that E(ǫn) <
0. The case E(ǫn) < 0 is called the logarithmic case (see [19]) as the local
score Ūn grows with ln(n) and thus this hypothesis force into focusing on
small segment compared to the sequence length. Under this assumption, an
asymptotic approximation of the distribution of Un has been established with
n growing to infinity (see [13], [11]) using renewal theory. This approximation
have given rise to a lot of computational developments and in particular taking
the form of the BLAST software which is used by million of biologists everyday
( [1], [2], [16]). In the case where E(ǫn) = 0, the authors have determined in [8],
the asymptotic behavior of the tail distribution of Un when n goes to infinity
and in [12] the rate of convergence is given.

Here, we would like to go further. It is clear that the trajectory of (Un) can
be decomposed in a succession of 0 and excursions above 0. These excursions
have an important biological interpretation and in particular the highest one
corresponds to the best segment due to the physico chemical property or
similarity scores that have been chosen. Note that the local score Un can be
viewed as the maximum of the heights of all the excursions up to time n.
However, as said above, we are interested here in complete excursions up to
a fixed time. This leads us to introduce the maximum U∗

n of the heights of all
the complete excursions up to time n. The second variable which will play an
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important role is θ∗n the time necessary to reach its maximal height U∗
n. See

Section 3 for more details and rigorous definitions of the previous r.v.’s.

We believe that the knowledge of the joint distribution of the pair (U∗
n, θ

∗
n)

would permit to get more efficient statistical tests than the ones only based
on the local score. This point should be developed in a forthcoming paper.

1.2 However, it seems difficult to determine explicitly the law of (U∗
n, θ

∗
n)

for a fixed n. This difficulty can be overcome considering biological sequences
which have a large number of bases. This important feature actually means
that in our probabilistic model, it is legitimate to approximate the initial
random walk (Sn) by a Brownian motion (Bt) started at 0. See Sections 3.1
and 3.2 for details. Using the functional theorem of convergence of Donsker,
the Lindley process (Uk) defined by (1.3) can be compared to

Û(t) := B(t) − inf
0≤s≤t

B(s), t ≥ 0. (1.4)

Recall that one has the following classical identity in law :

(
|B(t)|, t ≥ 0

)
(d)
=

(
B(t) − min

0≤u≤t
B(u), t ≥ 0

)
. (1.5)

Then, we proceed similarly as for the discrete case, i.e. the setting of Lindley’s
process. We introduce (see Section 2 for more explicit definitions) :

(1) the local score U(t) which is the maximum of the heights of all the ex-
cursions of U(s) up to time t,

(2) the maximum U∗(t) of the heights of all the complete excursions up to
time t,

(3) the time θ∗(t) taken by U(s) starting from the beginning of the largest
excursion to hit the maximal level U∗(t).

The approximation of (Un) by (Ût) permits to prove that the asymptotic dis-

tribution of
(
U∗

n√
n
,
θ∗n
n

)
as n→ ∞ is the one of

(
U∗(1), θ∗(1)

)
. Consequently,

our initial problem in the discrete setting reduces to determine the joint law
of (U∗(t), θ∗(t)), where t > 0 is given.

1.3 The law of U(t) is known (see either subsection 2.11 in [4] or Lemma 3.2
in [15]). However, at our knowledge, the distributions of U∗(t) and the one of(
U∗(t), θ∗(t)

)
are unknown. Using the theory of excursions related to the one

dimensional Brownian motion, we determine in Theorem 2.2 the density func-
tion of the couple

(
U∗(t), θ∗(t)

)
. However, as explained at the beginning of

the introduction, we are interested in statistical tests based on the joint law of
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(U∗(t), θ∗(t)). This actually means that for our purpose, we have to determine
quantiles of (U∗(t), θ∗(t)). Unfortunately the expression of the density function
is too complicated and does not allow to calculate the distribution function
of (U∗(t), θ∗(t)). Let f : ]0,∞[×]0,∞[→ R be a bounded function. In Theo-

rem 2.4 we express the expectation of f
(
U∗(t), θ∗(t)

)
as E(f(A1)A2) where

the random variable (A1, A2) can be simulated more or less easily. Therefore

for any a, b > 0 the probability P
(
U∗(t) ≤ a, θ∗(t) ≤ b

)
can be calculated

via Monte Carlo simulations. Consequently, our formula gives a theoretical
solution of finding quantiles for (U∗(t), θ∗(t)).

In Section 2, we begin with giving theoretical results, i.e. whose related to
Brownian motion and in particular the distribution of the pair

(
U∗(t), θ∗(t)

)
.

We recall in Section 3 the functional approximation of one dimensional Brow-
nian motion by normalized random walks. Then, we deduce in Proposition
3 and Theorem 3.2 that approximation permits to obtain the convergence in

distribution of of
(
U∗

n√
n
,
θ∗n
n

)
as n→ ∞ towards

(
U∗(1), θ∗(1)

)
.

2 Theoretical results

We begin with some notation. (B(t)) is a standard Brownian motion started
at 0 and U(t) is the reflected Brownian motion, i.e.

U(t) := |B(t)|, t ≥ 0. (2.6)

The excursion (above 0) straddling t starts at g(t) and ends at d(t), namely

g(t) = sup{s ≤ t, U(s) = 0}, d(t) = inf{s ≥ t, U(s) = 0}. (2.7)

Let U(t) be the supremum of U over [0, t] :

U(t) := sup
0≤s≤t

U(s), t ≥ 0. (2.8)

Then, the highest height U∗(t) of all the complete excursions of the process
(U(r) ; 0 ≤ r ≤ t) equals

U∗(t) := U(g(t)) = sup
0≤s≤g(t)

U(s), t ≥ 0. (2.9)

Let f ∗(t) be the unique time which achieves the maximum of U over [0, g(t)] :

f ∗(t) := sup{r ≤ g(t) ; U(r) = U∗(t)}. (2.10)
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It is important to introduce the left end-point g∗(t) of the excursion straddling
f ∗(t) :

g∗(t) := g(f ∗(t)) = sup{r ≤ f ∗(t) ; U(r) = 0} (2.11)

as well as the right end-point d∗(t) of this excursion :

d∗(t) := d(f ∗(t)) = inf{r ≥ f ∗(t) ; U(r) = 0}. (2.12)

It is convenient to visualize the different variables in Figure 2.

 

t   

0 

�(t) 

d*(t) g*(t) 
f*(t) g(t) 

0 

U*(t) 

     U(s) 

s 

�*(t) 

Figure 1. Notation U(t)

We are interested in the joint law of U∗(t) and θ∗(t) where the second variable
is defined as :

θ∗(t) := f ∗(t) − g∗(t), t ≥ 0. (2.13)

To give either the density function or the expectation of a given function of(
U∗(t), θ∗(t)

)
it is convenient to introduce preliminary notation.

Notation 2.1 (1) (ξn)n≥1∪{ξ, ξ′} is a family of i.i.d. random variables with
common density pξ such that

ξ
(d)
= ξ′

(d)
= ξn

(d)
= T1(R) (2.14)

with

Tx(R) = inf{s ≥ 0 ; R(s) = x}, x > 0 (2.15)

and (R(s)) stands for a 3-dimensional Bessel process started at 0.

(2) (en)n≥1 is a sequence of i.i.d. exponential random variables. We assume
moreover that

(en)n≥1, (ξn)n≥1, ξ, and ξ′ are independent. (2.16)
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(3) Let (λ(x) ; x ≥ 0) be the process :

λ(x) := x2(ξ1 + ξ2) +
∑

k≥1

ξ2k+1 + ξ2k+2
(

1
x

+ e1 + · · · + ek

)2 , x ≥ 0. (2.17)

We will prove in Lemma 4.8 below that the previous sum converges a.s.
and in L1.

Let (Lt) be the local time process at 0 related to the Brownian motion (Bt).
The random function t 7→ Lt is continuous and non-decreasing. Let (τs, s ≥
0) be its right inverse. For more details on the local time process and its
inverse, the reader should referred to [14]. In Proposition 1 below we express

the distribution of
(
U∗(t), θ∗(t)

)
in terms of the one of

(
U(τ1), τ1

)
.

Proposition 1 Let t be a fixed positive real number. Then, for any bounded
and Borel function f : ]0,∞[×]0,∞[→ R,

E
[
f
(
U∗(t), θ∗(t)

)]
=

√
2

π

∫ +∞

0
E
[
f(y, y2ξ)ψ(y)1 {y2(ξ+ξ′)≤t}

] dy
y2

where

ψ(y) :=
1

τ1




√
t− y2(ξ + ξ′) −

√√√√
(

t− y2

(

ξ + ξ′ +
τ1

(U(τ1))2

))

+



 ,

x+ := sup{x, 0} and ξ, ξ′ have been introduced in Notation 2.1.

Thus, we are naturally lead to determine the distribution
(
U(τ1), τ1

)
.

Proposition 2 (1) For any x ≥ 0, the sum in (2.17) converges a.s. and in
L1.

(2) The r.v.
1

U(τ1)
is exponentially distributed and conditionally on U(τ1) =

x > 0,

τ1
(d)
= λ(x). (2.18)

Finally, combining Propositions 1 and 2 we get the density function of
(
U∗(t), θ∗(t)

)
.

Theorem 2.2 For a fixed t > 0, the couple
(
U∗(t), θ∗(t)

)
has the following

density

p(U∗(t),θ∗(t))(x, y) =

√
2

π

1

x4
pξ

(
y

x2

)
ψ1

(
x,

y

x2

)
1 {x>0,0<y<t} (2.19)
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with

ψ1(x, u) :=
∫ +∞

0
E



 1

λ(v)






√
t− x2(u+ ξ′) −

√√√√
(

t− x2

[

u+ ξ′ +
λ(v)

v2

])

+






×1 {x2(u+ξ′)≤t}
] e−1/v

v2
dv (2.20)

where x > 0 et 0 < u < t/x2.

Remark 2.3 The density pξ is explicitly known, see for instance either [7] or
formula 2.0.2 in [5].

Formula (2.20) has the disadvantage to be not completely explicit and the-

refore it does not allow a direct calculation of E
[
f
(
U∗(t), θ∗(t)

)]
for a given

bounded function f . For instance for our biological motivation it would be
interesting to calculate P

(
U∗(t) ≤ a, θ∗(t) ≤ b

)
for any a, b > 0. This leads us

to give an equivalent formulation of Theorem 2.2 which gives rise to a more
useful formula.

Before stating our second main result, let us introduce e0, e
′
0 and G so that :

e0 and e′0 are exponential random variables, (2.21)

G is a standard Gaussian random variable, (2.22)

e0, e
′
0, G are independent and independent from

{
(ξn)n≥1, ξ, ξ

′, (en)n≥1

}
.

(2.23)

Theorem 2.4 Let t > 0. For any bounded Borel function f : [0,∞[×[0,∞[→
R we have :

E [f(U∗(t), θ∗(t))] = E



f

(√
t|G|
e0

,
tG2ξ

e20

)
e

G2

2
+e0

√
1 −G2

(
ξ+ξ′

e2
0

+ λ
(

1
e′0

))

×1 {
G2

(
ξ+ξ′
e2
0

+λ

(
1

e′
0

))
≤1, e0<e′0

}




(2.24)
where the r.v.’s e0, e

′
0, G, ξ and ξ′ are independent and their distributions

are given by (2.21), (2.22) and (2.14).

Theorem 2.4 and comes directly by rewritting the proof of Theorem 2.2.

Remark 2.5 It has been given in [10] an efficient algorithm which permits
to simulate very quickly the random variable ξ. Although the right hand-side
of (2.24) is not explicit its forms suggest to develop a Monte Carlo procedure.
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However the difficulty is to simulate the r.v. λ
(
1/e′0

)
. Indeed, according to

(2.17) we have :

λ
(
1/e′0

)
=
∑

k≥0

ξ2k+1 + ξ2k+2

(e′0 + e1 + · · · + ek)
2 .

Therefore to calculate explicitly P
(
U∗(t) ≤ a, θ∗(t) ≤ b

)
demands additional

developments.

The proofs of Theorems 2.2 et 2.4 are postponed in Subsections 4.1 and 4.4.

3 Application to the discrete case

Recall that the r.v. Sn and the Lindley process Un are associated with the
sequence (ǫi)i≥1 via (1.1) and (1.3) respectively. The process (Uk) is a non
negative Markov chain. In the case where (ǫi)i≥1 are symmetric Bernoulli r.v.’s
(i.e. P (ǫi = ±1) = 1/2), then (Uk) takes its values in N and moves as a
symmetric random walk in {1, 2, · · · } and being at 0, it either stays at this
level with probability 1/2 or jumps to 1 with probability 1/2.

In general, the trajectory of (Uk) can be decomposed in a succession of 0 and
excursions above 0. An excursion of (Uk) is a process (e(k), 0 ≤ k ≤ ζ), where

e(0) = U(g) = 0, e(ζ) = U(d) = 0, ζ := d− g > 0

and

e(k) := U(g + k) > 0, for any 0 < k < ζ.

As mentioned in the Introduction, the local score Un is the maximum of (Uk)
up to time n and can be interpreted as the maximum of all the heights of the
excursions up to time n. Namely :

Un := max
0≤k≤n

Uk, n ≥ 0. (3.25)

We are interested in the highest complete excursion up to time n. We proceed

8



as in the continuous time setting introducing :

gn := max {k ≤ n ; Uk = 0}

U∗
n := U gn

= max
0≤k≤gn

Uk

f ∗
n := max {k ≤ gn; Uk = U∗

n}

g∗n := gf∗
n

= max {k ≤ f ∗
n ; Uk = 0}

d∗n := inf {k ≥ f ∗
n ; Uk = 0}

θ∗n := f ∗
n − g∗n.

(3.26)

 

n 

0 

�n 

d*
n 

g*
n 

�*
n 

gn 

0 

U*
n 

     Uk 

k 

�*
n  

f*
n 

Figure 2. Notation Un

In Section 3.1, we define a continuous process (UM(t), t ≥ 0) as the classical
linear interpolation of (Un, n ≥ 0). We naturally introduce the highest high
UM,∗(t) and length θM,∗(t) of the complete excursion until time t of (UM(t), t ≥
0). We conclude linking (UM,∗(1), θM,∗(1)) to (U∗

M , θ
∗
M). Then we prove in

Section 3.2 the convergence of (UM,∗(t), θM,∗(t)) to (U∗(t), θ∗(t)). Since the
distribution of (U∗(t), θ∗(t)) has been computed in Section 2, we get in such
a way an approximation of the distribution of (U∗

M , θ
∗
M).
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3.1 The linear interpolation of (Uk)k

We keep notation given above and the one introduced in Section 2. Recall in
particular that (B(t), t ≥ 0) stands for a standard Brownian motion started
at 0 and (U(t), t ≥ 0) is the reflected Brownian motion defined by (2.6).

Let M > 0 be a scale parameter which permits to obtain the convergence of
the normalized random walk to the Brownian motion (B(t)) as M → ∞ (see

Theorem 3.1). The classical continuous process
(
BM(t), t ≥ 0

)
associated

with (Sn) and normalizing factor M is classically defined as :

BM

(
k

M

)

=
1√
M
Sk

and

BM(t) = BM

(
k

M

)

+M

(

t− k

M

)(

BM

(
k + 1

M

)

−BM

(
k

M

))
k

M
≤ t ≤ k + 1

M
.

We are interested here by the process (UM(t), t ≥ 0) :

UM(t) = BM(t) − min
s≤t

BM(s), t ≥ 0. (3.27)

Note that

UM

(
k

M

)

=
1√
M
Uk, k ≥ 0 (3.28)

where (Uk) is the Lindley process associated with (Sk) via (1.3).

We define the analog of random variables introduced in the discrete setting
of Lindley process, see (3.26) and (3.25) in the continous time setting of(
BM(t)

)
:

10



U
M

(t) := sup
0≤s≤t

UM(s)

gM(t) := sup
{
s ≤ t ; UM(s) = 0

}

UM,∗(t) := U
M

(gM(t)) = sup
0≤s≤gM (t)

UM(s)

fM,∗(t) := sup
{
r ≤ gM(t); UM(r) = UM,∗(t)

}

gM,∗(t) := gM(fM,∗(t)) = sup
{
r ≤ fM,∗(t) ; UM(r) = 0

}

dM,∗(t) := inf
{
s ≥ fM,∗(t) ; U(s) = 0

}

θM,∗(t) := fM,∗(t) − gM,∗(t).

(3.29)

Using the definition (3.26) of θ∗M and U∗
M we deduce easily that these r.v.’s

can be expressed in terms of their analog in continuous time.

Proposition 3 We have the following scaling properties :

θ∗M
M

= θM,∗(1) and
U∗

M√
M

= UM,∗(1). (3.30)

3.2 Convergence of
(
UM,∗(t), θM,∗(t)

)
to
(
U∗(t), θ∗(t)

)

Let us start with the Donsker’s Theorem, see section 2.10 in [4], which is the
key ingredient of our results of convergence.

Theorem 3.1 The processus
(
BM(t), t ≥ 0

)
converges in distribution to the

Brownian motion
(
B(t), t ≥ 0

)
when M → +∞.

A direct consequence of Theorem 3.1 which be useful for our purpose is the
following.

Corollary 4
(
UM(t), t ≥ 0

)
(d)→
(
U(t), t ≥ 0

)
.
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Proof Let T be a finite horizon. The set C
(
[0, T ]

)
of continuous functions

defined over [0, T ] is equipped with the uniform topology. Since the map Λ :

C
(
[0, T ]

)
→ C

(
[0, T ]

)
,

Λ(ω)(s) := ω(s) − min
0≤u≤s

ω(u), s ∈ [0, T ]

is continuous, Theorem 3.1 implies that
(
UM(t), t ≥ 0

)
converges in distribu-

tion to
(
Û(t), t ≥ 0

)
, where Û(t) has been already defined in (1.4). Corollary

4 is a direct consequence of the identity in law (1.5). �

Recall that the r.v.’s gM,∗(t), fM,∗(t), dM,∗(t), θM,∗(t) and UM,∗(t) have been

defined by relations (3.29). Note that it is unclear that the map ω 7→
(
gM,∗(t), fM,∗(t), dM,∗(t), θM,∗(t)

is continuous. Therefore the convergence in distribution of
(
gM,∗(t), fM,∗(t), dM,∗(t), θM,∗(t),

UM,∗(t)
)

as M → ∞ is not a straightforward consequence of Corollary 4.

Theorem 3.2 Let t > 0.

(1) The 5-uplet
(
gM,∗(t), fM,∗(t), dM,∗(t), θM,∗(t), UM,∗(t)

)
converges in dis-

tribution to
(
g∗(t), f∗(t), d∗(t), θ∗(t), U∗(t)

)
as M → ∞ where the r.v.’s g∗(t), f ∗(t),

d∗(t), θ∗(t), U∗(t)) have been defined by relations (2.9)-(2.13).

(2) In particular,
(
UM,∗(t), θM,∗(t)

)
converges in distribution to

(
U∗(t), θ∗(t)

)
,

as M → ∞.

The proof of Theorem 3.2 is postponed in Appendix 4.5.

4 Proofs

Propositions 1 and 2 are the two main ingredients to prove Theorem 2.2 and
we make use of theory of excursions related to Brownian motion

(
B(t), t ≥ 0

)

starting at 0. Recall that
(
Lt, t ≥ 0

)
is the local time process at 0 associated

with (Bt) and
(
τt, t ≥ 0

)
its right inverse.

Recall that the random variables U∗(t) and θ∗(t) have been defined by (2.9)
and (2.13).
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4.1 Proof of Proposition 1

Lemma 4.1 Let f : R2
+ → R a bounded Borel function. Then

E
[
f(U∗(t), θ∗(t))

]
=

√
2

π

∫ +∞

0
E

[

f
(
U(τs), θ

∗(τs)
) 1√

t− τs
× 1 {τs<t}

]

ds.

Proof The real number s = Lt is the unique s such that τs− < t < τs. Thus,

f
(
U∗(t), θ∗(t)

)
=
∑

s≥0

1 {τs−<t<τs}f
(
U(τs−), θ∗(τs−)

)

since B(τs−) = 0 implies that U∗(t) = U(τs−) and θ∗(t) = θ∗(τs−).

Denote es the Brownian excursion

es(v) : =





B(τs− + v), 0 ≤ v ≤ τs − τs− for τs − τs− > 0

[δ] otherwise

and ζ(es) its lifetime : ζ(es) := τs − τs− . Since τs = τs− + ζ(es),

E
[
f(U∗(t), θ∗(t))

]
= E




∑

s≥0

f
(
U(τs−), θ∗(τs−)

)
1 {τs−<t<τs−+ζ(es)}



 .

Applying Proposition 2.6 deduced from the Master Formula (Proposition 1.10,
Chapter XII) in [14], one gets

E
[
f(U∗(t), θ∗(t))

]
= E

[∫ +∞

0

{∫
f
(
U(τs), θ

∗(τs)
)
1 {τs<t<τs+ζ(w)} × n(dw)

}
ds
]

n(dw) being a σ-finite measure on the set of all positive excursions. In parti-
cular, by Itô’s description of Brownian excursions (Proposition 2.8, Chapter
XII in [14])

n
(
ζ(ω) > ε

)
=

√
2

πε

from which we deduce

E
[
f(U∗(t), θ∗(t))

]
=
∫ +∞

0
E



f
(
U(τs), θ

∗(τs)
)
1 {τs<t} ×

√
2

π

1√
t− τs



 ds.

�
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To get the distribution (U∗(t), θ∗(t)), we must determine the one of (U(τs), θ
∗(τs), τs).

First, we proceed to a change of scale permitting to reduce to the case s = 1.

Lemma 4.2 Let s > 0. Then

(U(τs), θ
∗(τs), τs)

(d)
= (sU(τ1), s

2θ∗(τ1), s
2τ1).

Proof According to Corollary 2.2 of [14], τs is a stable subordinator of index

1/2 and as a consequence τs
(d)
= s2τ1.

Using formula (10) in [17], we have

(
1

s
B(s2r) ; 0 ≤ r ≤ τs

s2

)
(d)
= (B(r) ; 0 ≤ r ≤ τ1) (4.31)

Since B(τs) = 0,

U∗(τs) =U(τs) = max
r≤τs

U(r) = max
r≤τs

|B(r)| = max
r′≤τs/s2

|B(s2r′)| = s max
r′≤τs/s2

(
1

s
B(s2r′)

)
.

Similarly with r = s2r′,

f ∗(τs) = sup{r < τs , |B(r)| = U∗(τs)}
= sup{s2r′ < τs , |B(s2r′)| = U∗(τs)}

= s2 sup
{
r′ <

τs
s2

,

∣∣∣∣
1

s
B(s2r′)

∣∣∣∣ = U∗(τs)
}

and

g∗(τs) = sup{r < f∗(τs) , |B(r)| = 0} = s2 sup

{

r′ <
f ∗(τs)

s2
,
(

1

s
B(s2r′)

)
= 0

}

.

We conclude using θ∗(τs) = f ∗(τs) − g∗(τs). �

Second, we express the distribution of
(
U(τ1), θ

∗(τ1), τ1
)

in terms of the one

of
(
U(τ1), τ1

)
only.

14



Lemma 4.3 Let h : R3
+ → R be a bounded function. Then

E
[
h
(
U(τ1), θ

∗(τ1), τ1
)]

=
∫ +∞

0

dx

x2
× E

[
h
(
x, x2ξ, x2(ξ + ξ′) + τ1

)
1 {U(τ1)<x}

]
.

Proof It can be deduced from Theorem 1 of [17] :

P
(
U(τ1) < x

)
= e−1/x ∀ x > 0 (4.32)

and conditionally on U(τ1) = x :

(1) the random variables f ∗(τ1)−g∗(τ1), d∗(τ1)−f ∗(τ1) and τ1−d∗(τ1)+g∗(τ1)
are independent ;

(2) f ∗(τ1) − g∗(τ1)
(d)
= d∗(τ1) − f ∗(τ1)

(d)
= Tx(R), where Tx(R) has been intro-

duced in Notation 2.1 ;

(3) τ1 − d∗(τ1) + g∗(τ1) is distributed as τ1 conditionally on U(τ1) < x.

We can see in Figure 4.1 the different variables of interest.

See Remark 4.7 below for a proof of (4.32).

 

�1  
0 

�(�1) 

d*( �1)- f
*( �1) 

 

g*( �1) 
f*(�1) �1- d

*( �1)+g*( �1) 

 

0 

U*( �1) 

     U*(s) 

s 

�
*( �1)= f*( �1)- g*( �1) 

 

x 

g*( �1) 

Figure 3. Notation with τ1

For our purpose it is very convenient to introduce a random variableMx having
the same distribution as τ1 conditionally on U(τ1) < x :

E
(
φ(Mx)

)
= E

(
φ(τ1)

∣∣∣U(τ1) < x
)

for any bounded Borel function φ : [0,∞[→ R.

Assume that Tx(R), T̃x(R), Mx are independent and T̃x(R) is distributed as
Tx(R).
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Since θ∗(τ1) = f ∗(τ1) − g∗(τ1) and

τ1 =
(
τ1 − d∗(τ1) + g∗(τ1)

)
+
(
d∗(τ1) − f ∗(τ1)

)
+
(
f ∗(τ1) − g∗(τ1)

)
,

we deduce

E
[
h(U(τ1), θ

∗(τ1), τ1)
]
=
∫ +∞

0
E
[
h
(
U(τ1), θ

∗(τ1), τ1
)∣∣∣U(τ1) = x)

]
fU(τ1)(x)dx

=
∫ +∞

0
E

[
h
(
x, Tx(R), Tx(R) + T̃x(R) +Mx

)]
fU(τ1)(x)dx.

=
∫ +∞

0
E

[
h
(
x, Tx(R), Tx(R) + T̃x(R) + τ1

)
|U(τ1) < x

]
e−1/x

x2
dx.(4.33)

The result is a direct consequence of (4.32), (2.14) and the scaling property :

Tx(R)
(d)
= x2T1(R). (4.34)

�

As a consequence, by Lemmas 4.1, 4.2 and 4.3, we prove Proposition 1.

Proof of Proposition 1

Denote ∆ := E [f(U∗(t), θ∗(t))], where f : [0,∞[×[0,∞[→ R is a bounded
Borel function. According to Lemma 4.1, we have :

∆ =

√
2

π

∫ +∞

0
∆s ds

with

∆s := E

[

f
(
U(τs), θ

∗(τs)
) 1√

t− τs
1 {τs<t}

]

.

Then we use Lemma 4.2

∆s = E

[

f
(
sU(τ1), s

2θ∗(τ1)
) 1√

t− s2τ1
1 {s2τ1<t}

]

.

Finally, Lemma 4.3 leads to

16



∆s =
∫ +∞

0

dx

x2
E



f(sx, s2x2ξ1)
1

√
t− s2 [x2(ξ1 + ξ2) + τ1]

1 {s2[x2(ξ1+ξ2)+τ1]<t,U(τ1)<x}





= s
∫ +∞

0

dy

y2
E



f(y, y2ξ1)
1

√
t− y2(ξ1 + ξ2) − s2τ1

1 {y2(ξ1+ξ2)+s2τ1<t, sU(τ1)<y}





(recall that, according to Notation 2.1, the r.v.’s ξ1, ξ2, τ1 and U(τ1) are
independent).

We now apply Fubini’s theorem

∆ =

√
2

π

∫ +∞

0

dy

y2
E
[
f(y, y2ξ1)ψ(y)1 {y2(ξ1+ξ2)<t}

]

where

ψ(y) : =
∫ +∞

0

s ds
√
t− y2(ξ1 + ξ2) − s2τ1

1{
s<

√
t−y2(ξ1+ξ2)

τ1
∧
(

y

U(τ1)

)}

=
[
− 1

τ1

√
t− y2(ξ1 + ξ2) − s2τ1

]s∗

0

=
1

τ1

[√
t− y2(ξ1 + ξ2) −

√
t− y2(ξ1 + ξ2) − s2

∗τ1

]

with

s∗ =
y

U(τ1)
∧
√
t− y2(ξ1 + ξ2)

τ1
, a ∧ b = inf(a, b).

We explicit ψ(y) as :

ψ(y) =






1
τ1

√
t− y2(ξ1 + ξ2) if t−y2(ξ1+ξ2)

τ1
< y2

(U(τ1))2

1
τ1

[√
t− y2(ξ1 + ξ2) −

√

t− y2

(
ξ1 + ξ2 + τ1

(U(τ1))2

)]

else.

It remains to observe :

ψ(y) =
1

τ1




√
t− y2(ξ1 + ξ2) −

√√√√
(

t− y2

(

ξ1 + ξ2 +
τ1

(U(τ1))2

))

+



 .

�
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Remark 4.4 Since τ
(d)
= 1

G2 where G is a standard Gaussian random variable
(see e.g. [14]),

P(τ1 ∈ ds) =
1√
2π

1

s3/2
e−

1
2s 1 [0,+∞[(s)ds. (4.35)

Consequently E
(

1
τ1

)
= +∞. Therefore the conditional expectation of the first

term in ψ(y) is infinite, more precisely,

E
(

1

τ1

√
t− y2(ξ1 + ξ2)

∣∣∣ξ1, ξ2
)

= ∞.

4.2 Proof of Proposition 2

As reveals Proposition 1, the law of
(
U∗(t), θ∗(t) can be expressed in terms of

the unknown distribution of the couple
(
τ1, U(τ1)

)
. The goal of this second step

of the proof of Theorem 2.2, is the explicit calculation of this distribution. Since
the density function of U(τ1) is explicit, see (4.32), therefore the distribution of(
τ1, U(τ1)

)
is determined once we know the conditional distribution of τ1 given

U(τ1). Our proof is based on the study of the process (λ̂(x), x > 0) which is
supposed to be independent of (U(t), t ≥ 0) and such that conditionally on
U(τ1) = x,

τ1
(d)
= λ̂(x). (4.36)

Obviously (4.36) is equivalent to :

E
[
f(τ1)g

(
U(τ1)

)]
= E

[
f
(
λ̂
(
U(τ1)

))
g
(
U(τ1)

)]
(4.37)

for any bounded and Borel functions f, g : [0,∞[→ R.

We will show that (λ̂(x))x≥0 satisfies an equation which has a unique solution.

Lemma 4.5 Let x > 0 and n ≥ 1. Then,

λ̂(x)
(d)
= Λn + λ̂

(
1

1
x

+ e1 + · · · + en+1

)

(4.38)

where :

Λn := x2(ξ1 + ξ2) +
n∑

k=1

ξ2k+1 + ξ2k+2
(

1
x

+ e1 + · · · + ek

)2 n ≥ 0

with the classical convention
0∑
1

= 0.
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Proof First we prove for any x > 0

λ̂(x)
(d)
= x2(ξ1 + ξ2) + λ̂

(
1

1
x

+ e1

)

.

Let f1, f2 : [0,+∞[→ [0,+∞[ be two bounded and Borel functions and

A := E
[
f1(τ1)f2

(
(U(τ1)

)]
.

Using (4.32) and (4.36) we get :

A =
∫ +∞

0

1

x2
e−1/xf2(x)E[f1(λ̂(x))] dx. (4.39)

Applying formula (4.33) to h(x1, x2, x3) = f1(x3)f2(x1) leads to :

A =
∫ +∞

0

1

x2
e−1/xE

[
f1

(
Tx(R) + T̃x(R) + τ1

)∣∣∣U(τ1) < x
]
× f2(x) dx.

Using (4.34), (4.32) (2.14) and (4.37), one gets

A=
∫ +∞

0

1

x2
E
[
f1

(
x2(ξ1 + ξ2) + τ1

)
1 {U(τ1)<x}

]
f2(x) dx

=
∫ +∞

0

1

x2

(∫ x

0

e−1/y

y2
E
[
f1

(
x2(ξ1 + ξ2) + λ̂(y)

)]
dy

)

× f2(x) dx.

Identifying with (4.39) implies :

E
[
f1

(
λ̂(x)

)]
= e1/x

∫ x

0

e−1/y

y2
E
[
f1

(
x2(ξ1 + ξ2) + λ̂(y)

)]
dy.

Let Y the random variable defined by Y = 1
1
x
+e1

. Then 0 < Y < x and for any

y ∈]0, x[, we get

P (Y < y) = P

(
1

1
x

+ e1
< y

)

= P

(
1

x
+ e1 >

1

y

)

= P

(

e1 >
1

y
− 1

x

)

= exp

(
1

x
− 1

y

)

.

Thus the density of Y is 1
y2 e

1/xe−1/y 1 [0,x](y) and

E
[
f1

(
λ̂(x)

)]
= E

[
f1

(
x2(ξ1 + ξ2) + λ̂(Y )

)]
.

19



The above identity actually means :

λ̂(x)
(d)
= x2(ξ1 + ξ2) + λ̂(Y ), ∀ x ≥ 0.

Now we iterate the procedure

λ̂

(
1

1
x

+ e1

)
(d)
=

(
1

1
x

+ e1

)2

(ξ3 + ξ4) + λ̂

(
1

1
x

+ e1 + e2

)

λ̂

(
1

1
x

+ e1 + e2

)
(d)
=

(
1

1
x

+ e1 + e2

)2

(ξ5 + ξ6) + λ̂

(
1

1
x

+ e1 + e2 + e3

)

etc...

�

Lemma 4.6 For any x > 0,

E
(
λ̂(x)

)
=

2

3
(x+ x2).

Proof Using for instance Exercise (4.9) Chap VI in [14]) we get :

Mt :=
{

cosh
(
λ|B(t)|

)
+ b sinh

(
λ|B(t)|

)}
exp

{

−λ
2

2
t− bλLt

}

is a local martingale for λ > 0.

Let r > 0, b = −cosh(λr)

sinh(λr)
and

σr := inf{s ≥ 0 ; |B(s)| = r} = inf{s > 0 ; U(s) = r}.

The process (Mt∧τ1∧σr
; t ≥ 0) being bounded, we can apply the stopping theo-

rem, we obtain :

E(Mτ1∧σr
) = E(M0).

It is clear that :

|B(σr)| = U(σr) = r, B(τ1) = 0, Lτ1 = 1.
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Our choice of b implies that Mσr
= 0. Consequently, Mτ1∧σr

= Mτ1 1 {τ1<σr}
and

e−bλE
[
e−λ2τ1/2 1 {τ1<σr}

]
= 1

Note that {τ1 < σr} = {U(τ1) < r}, therefore the above identity can be
rewritten as :

E
[
e−λ2τ1/2 1 {U(τ1)<r}

]
= ebλ = e−λ

cosh(λr)
sinh(λr) . (4.40)

Changing λ into
√

2λ in the above identity gives

E
[
e−λτ1 1 {U(τ1)<r}

]
= exp

{

−
√

2λ
cosh(r

√
2λ)

sinh(r
√

2λ)

}

. (4.41)

Using classical analysis we get :

u coshu

sinhu
=
u
(
1 + u2

2
+ o(u2)

)

u
(
1 + u2

6
+ o(u2)

) =

(

1 +
u2

2

)(

1 − u2

6

)

+o(u2) = 1+
u2

3
+o(u2) (u→ 0).

With u = r
√

2λ and taking the limit λ→ 0 we obtain :

√
2λ

cosh(r
√

2λ)

sinh(r
√

2λ)
=

1

r

(

1 +
2λr2

3
+ o(λ)

)

exp

{

−
√

2λ
cosh(r

√
2λ)

sinh(r
√

2λ)

}

= e−1/r exp

{

−2λr

3
+ o(λ)

}

= e−1/r

(

1 − 2λr

3
+ o(λ)

)

.

Using (4.41) we deduce :

E
(
τ11 {U(τ1)<r}

)
=

2r

3
e−1/r. (4.42)

Let us introduce the following function ϕ :

ϕ(x) := E
[
λ̂(x)

]
= E

(
τ1
∣∣∣U(τ1) = x

)
, x ≥ 0.

Therefore :

E
(
τ11 {U(τ1)<r}

)
= E

(
E
(
τ1|U(τ1)

)
1 {U(τ1)<r}

)

=
∫ r

0

1

x2
e−1/xE

(
λ̂(x)

)
dx

=
∫ r

0

1

x2
e−1/xϕ(x) dx.
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Thus formula (4.42) can be rewritten as

∫ r

0

1

x2
e−1/xϕ(x) dx =

2r

3
e−1/r ∀ r > 0,

which conduces to ϕ(x) =
2

3

(
x+ x2

)
.

�

Remark 4.7 Note that if we take the limit λ→ 0 in (4.41) we get

P
(
U(τ1) < r

)
= e−1/r, ∀ r > 0.

Consequently we have given a direct proof of (4.32).

Lemma 4.8 (1) Λn converge a.s. and in L1 while n→ +∞.

(2) For any x > 0, λ̂
(

1
1
x
+e1+···+en

)
converges to 0 in L1, while n→ +∞.

Proof 1) a) As all the random variables in consideration are positive Λn

converges a.s. as n→ ∞ to the limit :

Λ∞ := x2(ξ1 + ξ2) +
∑

k≥1

ξ2k+1 + ξ2k+2
(

1
x

+ e1 + · · · + ek

)2 . (4.43)

Λ∞ is a r.v. which takes its values in ]0,∞]. One way to prove that Λ∞ is a.s.
finite is to show that this r.v. has a finite expectation.

b) Recall (cf. Borodin and Salminen [5] p.463)

E
[
e−λξ1

]
= E

[
e−λT1(R)

]
=

√
2λ

sinh(
√

2λ)
, λ > 0.

An easy calculation leads to

u

sinh(u)
=

u

u+ u3

3!
+ o(u3)

= 1 − u2

6
+ o(u2) (u→ 0).

Therefore one gets E(ξ1) = 1
3
.

c) We are now able to prove that E(Λ∞) <∞. Using the fact that e1 + · · ·+ek

is γ(k)-distributed, we have successively :
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E(Λ∞) − 2

3
x2 = E




∑

k≥1

ξ2k+1 + ξ2k+2
(

1
x

+ e1 + · · · + ek

)2



 =
∑

k≥1

E




ξ2k+1 + ξ2k+2

(
1
x

+ e1 + · · · + ek

)2





=
∑

k≥1

[
E(ξ2k+1) + E(ξ2k+2)

]
E




1

(
1
x

+ e1 + · · · + ek

)2





=
2

3

∑

k≥1

∫ +∞

0

1
(

1
x

+ y
)2

yk−1

(k − 1)!
e−y dy

=
2

3

∫ +∞

0

1
(

1
x

+ y
)2




∑

k≥1

yk−1

(k − 1)!



 e−y dy

=
2

3

∫ +∞

0

dy
(

1
x

+ y
)2 < +∞

That proves item 1 of Lemma 4.8.

2) We will show that λ̂
(

1
1
x
+e1+···+en

)
converges to 0 in L1, n → ∞. Since

λ̂(y) ≥ 0, it is sufficient to check that

lim
n→+∞

E

[

λ̂

(
1

1
x

+ e1 + · · · + en

)]

= 0.

From Lemma 4.6 we have

E

[

λ̂

(
1

1
x

+ e1 + · · · + en

)]

=
2

3





E

(
1

1
x

+ e1 + · · · + en

)

+ E




1

(
1
x

+ e1 + · · · + en

)2









.

The Law of Large Numbers implies that

lim
n→+∞

1
1
x

+ e1 + · · · + en

= 0 (a.s.)

Moreover 0 < 1
1
x
+e1+···+en

≤ x. Thus Lebesgue’s dominated convergence theo-

rem directly implies :

lim
n→+∞

E

(
1

1
x

+ e1 + · · · + en

)

= lim
n→+∞

E




1

(
1
x

+ e1 + · · · + en

)2



 = 0.

�
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As a result, it is clear that Proposition 2 is a direct consequence of (4.38) and
Lemma 4.8.

4.3 Proof of Theorem 2.2

Using Propositions 1 and 2 we have :

E [f(U∗(t), θ∗(t))] =

√
2

π

∫ +∞

0
E
[
f(x, x2ξ)ψ1(x, ξ) 1 {x2ξ≤t}

] dx
x2

with

ψ1(x, u) = E

[

1 {x2(u+ξ′)≤t}

∫ +∞

0

e−1/v

v2

1

λ(v)

×





√
t− x2(u+ ξ′) −

√√√√
(

t− x2

(

u+ ξ′ +
λ(v)

v2

))

+




 dv



 .

As a consequence,

E [f(U∗(t), θ∗(t))] =

√
2

π

∫

R2
+

f(x, x2s)ψ1(x, s) 1 {x2s≤t} × pξ(s)
dx

x2
ds.

Letting x2s = y (for x fixed), we deduce that the density of (U∗(t), θ∗(t)) is

√
2

π
ψ1

(
x,

y

x2

)
1 {y≤t} pξ

(
y

x2

)
1

x4
1 {x>0, 0<y<t}.

4.4 Proof of Theorem 2.4

The goal is to calculate explicitly ∆ := E [f(U∗(t), θ∗(t))] for particular f .
On way is to express ∆ as an expectation of a random variable which can be
simulated. Then, the Monte Carlo method permits to obtain an approximation
of ∆. We revisit the former results of Subsections 4.1 and 4.2. We keep notation
given in these subsections.

Interpreting the Lebesgue integral as an expectation in Lemma 4.1 gives :

Lemma 4.9 Let t > 0 and f be a bounded function. Then

E [f(U∗(t), θ∗(t))] = E

[

f
(√

t|G|U(τ1), tG
2θ∗(τ1)

) eG2/2

√
1 −G2τ1

1 {G2τ1≤1}

]

,
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G being a standard Gaussian random variable independent of (U(s) ; s ≥ 0).

Proof The density function of |G|
√
t is

√
2

πt
e−s2/2t1 {s>0}. Applying Lemma

4.1 we have :

E [f(U∗(t), θ∗(t))] =
√
t
∫ +∞

0

√
2

πt
e−s2/2t

{

E

[

f
(
U(τs), θ

∗(τs)
) 1√

t− τs
1 {τs<t}

]

es2/2t

}

ds

=
√
t E



f
(
U(τ√t|G|), θ

∗(τ√t|G|)
) eG2/2

√
t− τ√t|G|

1 {τ√
t|G|≤t

}



 .

Lemma 4.9 is a direct consequence Lemma 4.2. �

The analog of Lemma 4.3 is

Lemma 4.10 Let h : [0,∞[→ R be a bounded and Borel function. Then

E
[
h
(
U(τ1), θ

∗(τ1), τ1
)]

= E

[

h

(
1

e0
,
ξ

e20
,
ξ + ξ′

e20
+ τ1

)

× 1 {U(τ1)e0<1}e
e0

]

where e0 is an exponential random variable independent of
(
(U(s) ; s ≥

0), ξ, ξ′, G
)
.

Proof Let A := 1/e0. Then

P (A < x) = P
(

1

e0
< x

)
= P

(
e0 >

1

x

)
= e−1/x and fA(x) =

1

x2
e−1/x.

By Lemma 4.3, one derives

E
[
h(U(τ1), θ

∗(τ1), τ1)
]
=
∫ +∞

0

1

x2
e−1/x E

[
h
(
x, x2ξ, x2(ξ + ξ′) + τ1

)
1 {U(τ1)<x}

]
e1/x dx

= E
[
h
(
A,A2ξ, A2(ξ + ξ′) + τ1

)
e1/A 1 {U(τ1)<A}

]
.

�

Proof of Theorem 2.4
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Synthesizing Lemma 4.9 and 4.10 leads to :

E [f(U∗(t), θ∗(t))] = E



f

(√
t|G|
e0

,
tG2ξ

e20

)
e

G2

2
+e0

√
1 −G2

(
ξ+ξ′

e2
0

+ τ1
)1 {

G2

(
τ1+ ξ+ξ′

e2
0

)
≤1, U(τ1)e0<1

}





(4.44)
where f be a bounded and Borel function.

Let e′0 be an exponential random variable independent of e0, ξ, ξ
′, σ et

(U(s) ; s ≥ 0). It is clear that Proposition 2 is equivalent to the following
identity in law :

(U(τ1), τ1)
(d)
=

(
1

e′0
, λ

(
1

e′0

))

. (4.45)

Theorem 2.4 is a direct consequence of (4.44) and (4.45). �

4.5 Proof of Theorem 3.2

Recall that the 5-uplet (gM,∗(t), dM,∗(t), fM,∗(t), θM,∗(t), UM,∗(t)) has been de-
fined by (3.29). Since θM,∗(t) = fM,∗(t)− gM,∗(t), Theorem 3.2 will be proved
as soon as the convergence of
(gM,∗(t), dM,∗(t), fM,∗(t), UM,∗(t)) holds.
Before starting with the proof of the theorem, we go back for a while to the
discrete setting.

4.5.1 Auxiliary results in the discrete setting

Let us go back to the random walk defined by (1.1) and introduce for any
integer n1 > 0,

S ′
k := Sn1+k − Sn1 , k ≥ 0.

Lemma 4.11 (Key Property) (1) Un+1 = max(Un + ǫn+1, 0).

(2) Let k be an integer such as k > 0. Then

Un1+i > 0 ∀i ∈ {0, · · · , k} ⇐⇒ Un1 > 0 and Un1+S
′
i > 0 ∀i ∈ {1, · · · , k}.

In such a case

Un1+i = Un1 + S ′
i for 1 ≤ i ≤ k.

Note that

Un1 + S ′
i > 0 ⇐⇒ Sn1+k − S(0, n1) > 0. (4.46)
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Proof

(1) One has

Un+1 =Sn+1 − min
0≤i≤n+1

Si = max
0≤i≤n+1

(Sn+1 − Si) = max(max
0≤i≤n

(Sn+1 − Si), 0)

= max(max
0≤i≤n

(Sn + ǫn+1 − Si), 0) = max(ǫn+1 + max
0≤i≤n

(Sn − Si), 0)

= max(ǫn+1 + Un, 0).

(2) First assume Un1+i > 0 ∀i ∈ {0, · · · , k}. By 1.,

• 0 < Un1 .

• 0 < Un1+1 = Un1 + ǫn1+1 = Un1 + S ′
1.

• 0 < Un1+2 = Un1+1 + ǫn1+2 = Un1 + ǫn1+1 + ǫn1+2 = Un1 + S ′
2 . . .

Conversely assume Un1 > 0 and Un1 +S ′
i > 0 ∀i ∈ {1, · · · , k}. Still by 1.,

• since Un1 + ǫn1+1 > 0, then Un1+1 = Un1 + ǫn1+1 > 0.

• since Un1+1 + ǫn1+2 > 0, then Un1+2 = Un1+1 + ǫn1+2 > 0.

�

Now consider

N := {g∗n < n1, n2 < f∗
n < n3, n4 < d∗n < n5, U

∗
n ≥ b} (4.47)

where 0 < n1 < · · · < n5 < n are integers and see (3.26) (resp. (1.3)) for the
definition of the r.v.’s g∗n, f

∗
n, d

∗
n, U

∗
n (resp. (Uk)).

Define
U(m1,m2) := max

m1≤i≤m2

Ui, U(m1,m2) := min
m1≤i≤m2

Ui

and
n′

i := ni − n1, 2 ≤ i ≤ 5, n′ := n− n1.

The event D can be decomposed as :

N = N1 ∩N2 ∩N3 ∩N4 (4.48)

where :

N1 :=
{
Uk > 0, n1 ≤ k ≤ n4

}
=
{
U(n1, n4) > 0

}
(4.49)

N2 :=
{
U(n2, n3) ≥ U(0, n2) ∨ b

}
(4.50)

N3 :=
{
U(n2, n3) > U(n3, n)

}
(4.51)

N4 :=
{
∃ k, Uk = 0, n4 ≤ k ≤ n5

}
=
{
U(n4, n5) ≤ 0

}
(4.52)
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By the definitions of nj and (4.46), one has Unj
> 0 and Si+nj

− S(0, nj) >
0 ∀i = 1 . . . n5. Consequently, we successively have :

N1 =
{
S ′(0, n′

4) > −Un1

}
(4.53)

N2 =
{
S ′(n′

2, n
′
3) ≥ −Un1 + max

[
U(0, n1), b, S ′(0, n′

2) + Un1

]}
(4.54)

N3 =
{
S ′(n′

2, n
′
3) ≥ −Un1 + U(n3, n)

}
(4.55)

N4 =
{
S ′(n′

4, n
′
5) ≤ −Un1

}
. (4.56)

The above equalities can be directly read on Figure 4.5.2 (a dash line repre-
senting a level that could not be crossed by the process).

We would like to express N3 with

T ′
k := St3+k − St3 , k ≥ 0.

We have
S(0, n3 + k) = min

{
S(0, n3), Sn3 + T ′(0, k)

}

and

Un3+k = Sn3+k − S(0, n3 + k) = T ′
k + max

{
Un3 , −T ′(0, k)

}
.

As a result

N3 =
{
S ′(n′

2, n
′
3) > −Un1 + max

0≤k≤n−n3

[
T ′

k + max
{
Un3 , −T ′(0, k)

}]}
.

4.5.2 Return to the continuous case

Recall that the 5-uplet (gM,∗(t), dM,∗(t), fM,∗(t), θM,∗(t), UM,∗(t)) has been de-
fined by (3.29). Since θM,∗(t) = fM,∗(t)− gM,∗(t), Theorem 3.2 will be proved
as soon as the convergence of
(gM,∗(t), dM,∗(t), fM,∗(t), UM,∗(t)) holds. We proceed in 5 successive steps.

1) Let t1, t2, . . . , t5 be positive real numbers such that 0 < t1 < · · · < t5 and
b > 0. Let us introduce

A1
M = {gM,∗(t) < t1, t2 < fM,∗(t) < t3, t4 < dM,∗(t) < t5, U

M,∗(t) > b}.
(4.57)

Consequently the goal is to show

lim
M→∞

P (A1
M) = P (A1) (4.58)
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where

A1 := {g∗(t) < t1, t2 < f∗(t) < t3, t4 < d∗(t) < t5, U
∗(t) > b} (4.59)

and the r.v.’s g∗(t), f∗(t), d∗(t) and U∗(t) have been defined by (2.10)-(2.12)
and (2.9).

2) In view of the discrete case, let us consider the set of dyadic points

D =
⋃

m∈N

Dm where Dm =

{
k

2m
, k ∈ {0, 1, . . .}

}

.

By density of D in R and the fact that Dn ⊂ Dm as soon as n ≤ m, we
can choose without loss of generality strictly positive integers L0, l and li for
i = 1 . . . 5 such as

ti =
li

2L0
, 1 ≤ i ≤ 5, t =

l

2L0
.

Recall also that
(
UM(t), t ≥ 0

)
is the continuous process defined by (3.27). It

is important to note that UM(t) is also the linear interpolation of

(
1√
M
Uk, k ≥ 0

)

.

3) For any continuous function ω : [0,∞[→ R denote

ω(u, v) := max
u≤r≤v

ω(r), ω(u, v) := min
u≤r≤v

ω(r), 0 ≤ u ≤ v. (4.60)

Following the procedure presented in the discrete case, the event A1
M can be

decomposed as :
A1

M = A1,1
M ∩ A1,2

M ∩ A1,3
M ∩ A1,4

M (4.61)

where :

A1,1
M :=

{
UM(t) > 0, t1 ≤ t ≤ t4

}
=
{
UM(t1, t4) > 0

}
(4.62)

A1,2
M :=

{
U

M
(t2, t3) ≥ U

M
(0, t2) ∨ b

}
(4.63)

A1,3
M :=

{
U

M
(t2, t3) > U

M
(t3, t)

}
(4.64)

A1,4
M :=

{
∃ s, UM(s) = 0, t4 ≤ t ≤ t5

}
=
{
UM(t4, t5) ≤ 0

}
. (4.65)

According to Corollary 4, UM(t4, t5) converges in distribution to U(t4, t5),
as M → ∞. Thus we aim at taking the limit when M goes to infinity and
applying the following lemma :
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Lemma 4.12 Let (ξM) be sequence of Rd-valued r.v.’s which converges in
distribution to ξ when M → ∞. Then Porte-Manteau’s lemma (see e.g. [4])
asserts that for any Borel Λ in Rd,

lim
M→∞

P(ξM ∈ Λ) = P (ξ ∈ Λ) (4.66)

if P(ξ ∈ ∂Λ) = 0.

Unfortunately, the distribution of U(t4, t5) (being bounded below by 0) has

an atom at 0, therefore we cannot conclude directly that lim
M→∞

P
(
UM(t4, t5) =

0
)

= P
(
U(t4, t5) = 0

)
. This explains why we will introduce the processes W

and Z in the following.

4) We follow now the procedure developed in section 4.5.1. It is convenient to
introduce :

t′i := ti − t1, i ∈ {2, 3, 4, 5}, t′ := t− t1

and WM the process :

WM(s) := BM(t1 + s) −BM(t1), s ≥ 0.

The process
(
WM(s), s ≥ 0

)
is the linear interpolation of

(
1√
M

(Sk+n1 −

Sn1 , k ∈ N

)
.

We deduce from the previous step that A1
M = A2

M where :

A2
M := A2,1

M ∩ A2,2
M ∩ A2,3

M ∩ A2,4
M

and

A2,1
M :=

{
WM(0, t′4) > −UM(t1)

}

A2,2
M :=

{
W

M
(t′2, t

′
3) ≥ −UM(t1) + max

[
U

M
(0, t1), b, W

M
(0, t′2) + UM(t1)

] }

A2,3
M :=

{
W

M
(t′2, t

′
3) > −UM(t1) + max

0≤u≤t−t3

[
ZM(u) + max

{
UM(t3), −ZM(0, u)

}]}

A2,4
M :=

{
WM(t′4, t

′
5) ≤ −UM(t1)

}
.

5) To conclude the proof before taking the limit in M , it remains to express
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Figure 4. Sequence of ti

the limit subsets in the same way. In that view, let us introduce :

W (s) := B(t1 + s) −B(t1), Z(s) := B(t3 + s) −B(t3), s ≥ 0

and

A2 := A2,1 ∩ A2,2 ∩ A2,3 ∩ A2,4

with

A2,1 :=
{
W (0, t′4) > −U(t1)

}

A2,2 :=
{
W (t′2, t

′
4) ≥ −U(t1) + max

[
U(0, t1), b, W (0, t′2) + U(t1)

] }

A2,3 :=
{
W (t′2, t

′
3) > −U(t1) + max

0≤u≤t−t3

[
Z(u) + max

{
U(t3), −Z(0, u)

}]}

A2,4 :=
{
W (t′4, t

′
5) ≤ −U(t1)

}
.

Recall that for any u > 0, the random variables max
0≤r≤u

B(r) and min
0≤r≤u

B(r)

have density. Therefore we can apply (4.66), we get :

lim
M→∞

P(A2,M) = P(A2).

Reasoning as in the discrete setting, we get A2 = A1 where A1 has been defined
by (4.59). It is now clear that (4.58) follows.

�.
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second edition, 2002.

[6] A. A. Borovkov. Stochastic processes in queueing theory. Springer-Verlag, New
York, 1976. Translated from the Russian by Kenneth Wickwire, Applications
of Mathematics, No. 4.

[7] Z. Ciesielski and S. J. Taylor. First passage times and sojourn times for
Brownian motion in space and the exact Hausdorff measure of the sample path.
Trans. Amer. Math. Soc., 103 :434–450, 1962.

[8] Etienne M.P. Daudin, J.J. and P. Vallois. Asymptotic behavior of the local score
of independent and identically distributed random sequences. Stoch. Proc. and
their Appl., 107 :1–28, 2003.

[9] J.J. Daudin and S. Mercier. Exact distribution for the local score of one i.i.d.
random sequence. Jour. Comp. Biol, 8(4) :373–380, 2001.

[10] M. Deaconu and S. Herrmann. Hitting time for bessel processes - walk on
moving spheres algorithm (woms). The Annals of Applied Probability, submitted
2011.

[11] A. Dembo and S. Karlin. Strong limit theorems of empirical functionals for
large exceedances of partial sums of i.i.d. variables. The Annals of Probability,
19(4) :1737–1755, 1991.

[12] M.P. Etienne and P. Vallois. Approximation of the supremum of a centered
random walk. application to the local score. Methodology and Computing in
Applied Probability, 6, 2004.

[13] S. Karlin and S.-F. Altschul. Methods for assessing the statistical significance of
molecular sequence features by using general scoring schemes. PNAS, 87 :2264–
2268, 1990.

[14] Daniel Revuz and Marc Yor. Continuous martingales and Brownian motion,
volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental

32



Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition,
1999.

[15] B. Roynette, P. Vallois, and M. Yor. Penalisations of Brownian motion with
its maximum and minimum processes as weak forms of Skorokhod embedding.
Theory Stoch. Process., 14(2) :116–138, 2008.

[16] McGinnis S. and Madden T.L. Blast : at the core of a powerful and diverse set
of sequence analysis tools. Nucleic Acids Res, 32 :W20–W25, 2004.

[17] P. Vallois. Sur la loi conjointe du maximum et de l’inverse du temps local
du mouvement brownien : application à un théorème de Knight. Stochastics
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