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5 Allées Antonio Machado, 31058 Toulouse, France
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Elements related to the largest complete

excursion of a reflected BM stopped at a fixed

time. Application to local score.

Abstract

We calculate the density function of
(
U∗(t), θ∗(t)

)
, where U∗(t) is the maximum

over [0, g(t)] of a reflected Brownian motion U , where g(t) stands for the last zero of
U before t, θ∗(t) = f∗(t)−g∗(t), f∗(t) is the hitting time of the level U∗(t), and g∗(t)
is the left-hand point of the interval straddling f∗(t). We also calculate explicitly
the marginal density functions of (U∗(t) and θ∗(t). Let U∗

n and θ∗n be the analog
of U∗(t) and θ∗(t) respectively where the underlying process (Un) is the Lindley
process, i.e. the difference between a centered real random walk and its minimum.

We prove that
( U∗

n√
n
,
θ∗n
n

)
converges weakly to

(
U∗(1), θ∗(1)

)
as n → ∞.

Key words: Lindley process, local score, Donsker invariance Theorem, reflected
Brownian motion, inverse of the local time, Brownian excursions.
MSC: 60 F 17, 60 G 17, 60 G 40, 60 G 44, 60 G 50, 60 G 52, 60 J 55, 60 J 65.

1 Introduction

1.1 The local score is a probabilistic tool which is often used by molecular
biologists to study sequences of either amino-acids or nucleotides as DNA.
In particular its statistical properties allow to determine the most significant
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segment in a given sequence, see for instance [11] and [17]. Any position i
in the sequence is allocated a random value ǫi. For example, ǫi can measure
either physical or chemical property of the i-th amino acid or nucleotide of
the sequence. It can also code the similarity between two components of two
sequences. It is assumed that (ǫi)i≥1 is a sequence of independent and identi-
cally distributed random variables. Rather than considering (ǫi)i≥1, it is more
usefull to deal with:

Sn = ǫ1 + · · ·+ ǫn for n ≥ 1 ; S0 = 0. (1.1)

Obviously, (Sn) is the random walk starting at 0, with independent increments
(ǫi)i≥1. Let us introduce:

Sn = min
0≤i≤n

Si, n ≥ 0. (1.2)

The two following processes (Un) and (Un) play an important role in the
study of biological sequences. The first one is called the Lindley process and
is defined as:

Un = Sn − Sn = Sn −min
i≤n

Si, n ≥ 0. (1.3)

The process (Un) is non negative and further properties can be found either
in (Chap. III of [1]) or Chap. I [6]). The local score Un is the supremum of
the Lindley process up to time n.

Molecular biologists are interested in ”unexpected” large values of (Un), see
[17].

The exact distribution of Un has been determined in [12], using the exponenti-
ation of a suitable matrix and classical tools related to Markov chains theory.
Although the given formula in [12] is efficient whatever the sign of E(ǫi), in
practice, it can be only applied to short sequences. However, we are sometimes
faced with long sequences and in these situations it is often assumed that they
have a negative trend, i.e. E(ǫi) < 0. Then, the local score Un grows as ln(n)
(see [18]) and an asymptotic approximation of the distribution of Un as n is
large has been given in [11], [9], using the renewal theory. When E(ǫn) = 0,
the asymptotic behavior of the tail distribution of Un has been determined
in [7] and the rate of convergence is given in [10].

Although the study of biological sequences is the starting point of this paper,
the remainder will only consider the probabilistic model.

Here we consider that the (ǫi)i>1 are centered with unit variance.

It is clear that the trajectory of (Un) can be composed of a succession of 0 and
excursions above 0. However, we only deal with complete excursions up to a
fixed time. This leads us to introduce the maximum U∗

n of the heights of all
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the complete excursions up to time n. The second variable which will play an
important role is θ∗n, the time necessary to reach its maximum height U∗

n. See
Section 3 for more informations and detailed definitions of the previous RVs.

We believe that the knowledge of the joint distribution of the pair (U∗
n, θ

∗
n)

should permit the associated bi-dimensional statistical tests to be more pow-
erful than the usual ones based on the first component. This program should
be developed in a forthcoming paper.

1.2 Unfortunately, it is difficult to determine explicitly the law of (U∗
n, θ

∗
n)

for a fixed n. Bearing in mind applications with long biological sequences,
it is relevant to study the distribution of (U∗

n, θ∗n) where n is large. The
functional convergence theorem of Donsker tells us that the initial random
walk (Sk, 0 ≤ k ≤ n) normalized by the factor 1/

√
n converges in distribution

as n → ∞ to the Brownian motion (B(s), 0 ≤ s ≤ 1), see Sections 3.1 and
3.2 for a more precise formulation. It is easy to deduce that the normalized

Lindley process
(
Uk√
n
, 0 ≤ k ≤ n

)
can be approximated by (Ûs, 0 ≤ s ≤ 1)

where:

Û(t) := B(t)− inf
0≤s≤t

B(s), t ≥ 0. (1.4)

Recall that the process (Û(s), s ≥ 0) is distributed as the reflected Brownian
motion, since:

(
|B(t)|, t ≥ 0

)
(d)
=

(
B(t)− min

0≤u≤t
B(u), t ≥ 0

)
. (1.5)

It turns out that the asymptotic behavior of (U∗
n, θ

∗
n) for large n should be

closely linked the distribution of
(
U∗(1), θ∗(1)

)
where U∗(1) and θ∗(1) are the

analog in continuous time of U∗
n and θ∗. Consequently, the knowledge of the

distribution of (U∗
n, θ

∗
n) for large n reduces to

(
U∗(1), θ∗(1)

)
. Let us briefly

define these RVs. As we proceed with the random walk (Sn), we introduce the
following processes (see Section 2 for more explicit definitions):

(1) the local score U(t) which is the maximum of the heights of all the ex-
cursions of U(s) up to time t, i.e. U∗(t) := sup

0≤s≤t
U(s),

(2) the maximum U∗(t) of the heights of all the complete excursions up to
time t,

(3) the time θ∗(t) taken by U to reach U∗(t) starting from the beginning of
this highest excursion.

1.3 Let t be a fixed real number. The density function of U(t) is known
(see either Subsection 2.11 in [4] or Lemma 3.2 in [15]). Although U∗(t) =

U
(
g(t)

)
and g(t) is not a stopping time it is however easy to calculate the
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density function of U∗(t). Indeed, the process
(
g(t)−1/2B(g(t)s), 0 ≤ s ≤ 1

)

is distributed as
(
b(s), 0 ≤ s ≤ 1

)
and is independent of g(t), where g(t)

is the last zero of U(s) before t and b is the Brownian bridge (see e.g. [2]).
Therefore:

U∗(t)
(d)
=
√
g(t) sup

0≤s≤1
|b(s)|. (1.6)

Finally, we conclude using the fact that g(t) is distributed as the arcsine
law (see again [2]) and the distribution of sup0≤s≤1 |b(s)| is given by the
Kolmogorov-Smirnov formula (see e.g. [13]). The final and explicit result is
given in Theorem 2.6.

However, as far as we know, the distribution of
(
U∗(t), θ∗(t)

)
is unknown. Us-

ing the theory of excursions related to the one dimensional Brownian motion,
we determine in Theorem 2.3 the density function of the couple

(
U∗(t), θ∗(t)

)
.

Since we are interested in statistical tests based on the joint law of (U∗(t), θ∗(t)),
then we have to determine the quantiles of (U∗(t), θ∗(t)). Unfortunately the
expression of the density function is complicated and does not allow us to
calculate the distribution function of (U∗(t), θ∗(t)). In Theorem 2.4, we ex-
press, for any bounded Borel function f : ]0,∞[×]0,∞[→ R, the expectation

of f
(
U∗(t), θ∗(t)

)
as E(f(A1)A2) where A1 and A2 are RVs which can be sim-

ulated. Therefore, the quantity E

(
f
(
U∗(t), θ∗(t)

)
can be approximated by a

Monte-Carlo scheme.

In Section 2.2 we fix notations related to the setting of processes in con-
tinuous time, i.e. here the underlying process is the Brownian motion. The
main results are Theorems 2.3, 2.4, 2.5 and 2.6 and they are given in Section
2.3. Theorem 2.3 is based on Propositions 2.2 and 2.1. Although the law of
U∗(t) is easy to calculate, θ∗(t) is more difficult, see Theorem 2.5. We recall
in Section 3 the functional approximation of the one dimensional Brownian
motion by normalized random walks. Then, with additional technical develop-
ments, see Proposition 3.1 and Theorem 3.3 we obtain the weak convergence

of
(
U∗
n√
n
,
θ∗n
n

)
as n→ ∞ towards

(
U∗(1), θ∗(1)

)
. All the proofs which are not

immediate have been given in Section 4.

Acknowledgements The authors are greatly indebted to the referee for his
fruitful comments, references and suggestions.
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2 Theoretical results

2.1 Notation

Let (B(t), t ≥ 0) be a standard Brownian motion started at 0 and U(t) is the
reflected Brownian motion at time t:

U(t) := |B(t)|, t ≥ 0. (2.1)

The excursion (above 0) straddling t starts at g(t) and ends at d(t), namely

g(t) = sup{s ≤ t, U(s) = 0}, d(t) = inf{s ≥ t, U(s) = 0}, t ≥ 0. (2.2)

Let U(t) be the supremum of U over [0, t]

U(t) := sup
0≤s≤t

U(s), t ≥ 0. (2.3)

Then, the highest height U∗(t) of all the complete excursions of the process
(U(r) ; 0 ≤ r ≤ t) equals

U∗(t) := U(g(t)) = sup
0≤s≤g(t)

U(s), t ≥ 0. (2.4)

Let f ∗(t) be the unique time which achieves the maximum of U over [0, g(t)]:

f ∗(t) := sup{r ≤ g(t) ; U(r) = U∗(t)}, t ≥ 0. (2.5)

It is worth introducing the left end-point g∗(t) of the excursion straddling
f ∗(t):

g∗(t) := g(f ∗(t)) = sup{r ≤ f ∗(t) ; U(r) = 0}, t ≥ 0 (2.6)

as well as the right end-point d∗(t) of this excursion:

d∗(t) := d(f ∗(t)) = inf{r ≥ f ∗(t) ; U(r) = 0}, t ≥ 0. (2.7)

It is convenient to visualize the different variables in Figure 1.

We are interested in the joint law of U∗(t) and θ∗(t) where the second variable
is defined as

θ∗(t) := f ∗(t)− g∗(t), t ≥ 0. (2.8)

It is convenient to introduce the following notation which will be used exten-
sively in the sequel.

1) (ξn)n≥1 ∪ {ξ, ξ′} is a family of i.i.d. r.v.s such that
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f*(t) g(t) 

0 

U*(t) 

    U(s) 

s 
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*(t) 

Figure 1. Notation U(t)

ξ
(d)
= ξ′

(d)
= ξn

(d)
= T1(R) (2.9)

with

Tx(R) = inf{s ≥ 0 ; R(s) = x}, x > 0 (2.10)

and (R(s), s ≥ 0) stands for a 3-dimensional Bessel process started at 0.
The density pξ is explicitly known and is given by

pξ(u)=
1√

2πu3/2

∑

k∈Z

(
−1 +

(1 + 2k)2

u

)
exp

(
−(1 + 2k)2

2u

)
(2.11)

=
d

du


∑

k∈Z
(−1)k exp

(
−k

2π2u

2

)
 (2.12)

(see for instance [3] p 8 and 24). In perspective of simulation, let us mention
that an efficient algorithm to simulate very quickly the r.v. ξ is given in [8].

2) e′0, (en)n≥0 is a sequence of i.i.d. exponential r.v.s.

3) (λ(x), x ≥ 0) is the process defined by

λ(x) := x2(ξ1 + ξ2) +
∑

k≥1

ξ2k+1 + ξ2k+2(
1
x
+ e1 + · · ·+ ek

)2 , x ≥ 0. (2.13)

The sum converges a.s. and in L1 (see Lemma 4.5). The Laplace transform of
λ(x) has been calculated in (4.20).

4) α1 and α2 are two [0, 1] valued r.v.s; α2 is uniformly distributed and the
density function of α1 is 2

π
1√
1−s2

1 [0,1](s).
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We always assume in the sequel that

e′0, (en)n≥0, (ξn)n≥1, ξ, ξ
′, α1, α2 and (U(t))t≥0 are independent. (2.14)

2.2 Distribution of the pair (U∗(t), θ∗(t))

The main results are Theorems 2.3, 2.4, 2.5 and 2.6. All the proof of results
stated in this section will be developed in Section 4.
In Theorem 2.3, we determine the density function of (U∗(t), θ∗(t)). Its proofs
is based on the theory of excursion related to the Brownian motion, see for in-
stance Chap XII in [14]. Let us briefly recall the ingredients which are needed.
Let (L(t), t ≥ 0) be the local time process at 0 related to the Brownian
motion (B(t), t ≥ 0). The random function t 7→ L(t) is continuous and non-
decreasing. Let (τs, s ≥ 0) be its right inverse. The proof of Theorem 2.3
has two main steps. In Proposition 2.1 below we begin with expressing the
distribution of

(
U∗(t), θ∗(t)

)
in terms of the one of

(
U(τ1), τ1

)
.

Proposition 2.1 Let t be a fixed positive real number. Then, the density func-
tion of (U∗(t), θ∗(t)) is given by

p(U∗(t),θ∗(t)) =

√
2

π
ρ(x, y)pξ

(
y

x2

)
1

x4
, x > 0, 0 < y < t (2.15)

where pξ is the density function of ξ (see (2.11)-(2.12)),

ρ(x, y) :=
∫ +∞

0
E


 1

τ1




√
(ρ1)+ −

√√√√
(
ρ1 −

x2τ1
(U(τ1)2

)

+






 pξ(u)du, (2.16)

x+ := sup{x, 0} and ρ1 := t− y − x2u.

We are then naturally lead to determine the distribution
(
U(τ1), τ1

)
.

Proposition 2.2 (1) For any x ≥ 0, the sum in (2.13) converges a.s. and
in L1.

(2) The r.v. U(τ1)
−1 is exponentially distributed and conditionally on{

U(τ1) = x
}
, x > 0,

τ1
(d)
= λ(x). (2.17)

Finally, combining Propositions 2.1 and 2.2 provides the density function of(
U∗(t), θ∗(t)

)
.
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Theorem 2.3 For any t > 0, the pair
(
U∗(t), θ∗(t)

)
has the density function

p(U∗(t),θ∗(t)) given by (2.15) where

ρ(x, y) =
∫

R2
+

E


 1

λ(v)




√
(ρ1)+ −

√√√√
(
ρ1 −

x2

v2
λ(v)

)

+






 pξ(u)

e−1/v

v2
dudv

(2.18)
and ρ1 has been defined in Proposition 2.1.

Formula (2.18) has the disadvantage to be not completely explicit and there-

fore it does not allow a direct calculation of E
[
f
(
U∗(t), θ∗(t)

)]
for a given

bounded Borel function f . For instance, for our biological motivation ex-
plained in the Introduction, it would be interesting to calculate P

(
U∗(t) ≤

a, θ∗(t) ≤ b
)
for any a, b > 0. Rewriting the proof of Theorem 2.3 leads us

to an equivalent formulation of Theorem 2.3 which gives rise to a more useful
formula.

Theorem 2.4 Let f : R2
+ → R be a bounded Borel function. Then

E (f(U∗(t), θ∗(t))) =

√
π

2
E

[
f

(
α1

√
t√

Z
,
tα2

1ξ

Z

)
α2e

′2
0√
Z

]
(2.19)

where Z = ξ + ξ′ + e
′2
0 α

2
2λ(1/e

′
0).

2.3 Distributions of U∗(t) and θ∗(t)

We begin with the distribution of θ∗(t).

Theorem 2.5 For any t > 0, θ∗(t) admits the following density function

fθ∗(t)(x) =
1

x

∑

k≥1

(−1)k+1
sinh

(
πk
√

x
t−x

)

cosh2
(
πk
√

x
t−x

)1 [0,t](x). (2.20)

We now consider the law of U∗(t).

Theorem 2.6 Let t > 0.

(1) We have the following identity in law

U∗(t)
(d)
=

√
t
√
g(1)b∗, (2.21)

where g(1) and b∗ are two independent r.v.s such that
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P(g(1) ∈ dx)=
1

π
√
x(1− x)

1 [0,1](x) dx, (2.22)

P(b∗ > x)= 2
∑

k≥1

(−1)k−1e−2k2x2

, x > 0. (2.23)

(2) U∗(t) admits the following density function

fU∗(t)(x) = 4

√
2

πt


∑

k≥1

(−1)k−1ke−
2k2x2

t


 , x > 0. (2.24)

The proof of item 1 in Theorem 2.6 is straightforward and has been developed
in the Introduction. Note that this direct approach does not use the knowledge
of the density function of (U∗(t), θ∗(t)). However, Lemma 4.1 permits to get
another expression of the distribution of U∗(t).

Proposition 2.7 We define two other stopping times TU(a) = inf{t ≥ 0, U(t) =
a} and T

B̂
(a) = inf{t ≥ 0, B̂(t) = a} where (B̂(t), t ≥ 0) is a one dimensional

Brownian motion independent of U . Then

P(U∗(t) > a) = P

(
TU(a) + T

B̂
(a) < t

)
, t > 0, a > 0. (2.25)

Remark 2.8 It is clear that (2.25) allows to compute the cumulative distri-
bution function of U∗(t) and gives a complement to (2.24). The distributions
of T

B̂
(a) and TU(a) are explicitly known: the density function of T

B̂
(a) is

a√
2πt3

e−a2/2t1 {t>0} and (see Lemma 3.2 in [16])

P (TU(a) > t) =
4

π

∑

k≥0

(−1)k

2k + 1
exp

{
−(2k + 1)2π2

8a2
t

}
, t > 0.

3 Application to the discrete case

Recall that the r.v. Sn and the Lindley process Un are associated with the
sequence (ǫi)i≥1 via (1.1) and (1.3) respectively. The process (Uk) is a non
negative Markov chain. In the case where (ǫi)i≥1 are symmetric Bernoulli r.v.’s
(i.e. P (ǫi = ±1) = 1/2), then (Uk) takes its values in N and moves as a
symmetric random walk in {1, 2, · · · } and being at 0, it either stays at this
level with probability 1/2 or jumps to 1 with probability 1/2.

In general, the trajectory of (Uk) can be decomposed in a succession of 0 and
excursions above 0. An excursion of (Uk) starting at g and ending at d is a
process (e(k), 0 ≤ k ≤ ζ), where

e(0) = U(g) = 0, e(ζ) = U(d) = 0, ζ := d− g > 0

9



and e(k) := U(g + k) > 0, for any 0 < k < ζ. As mentioned in the Intro-
duction, the local score Un is the maximum of (Uk) up to time n and can be
interpreted as the maximum of all the heights of the excursions up to time n.
Namely

Un := max
0≤k≤n

Uk, n ≥ 0. (3.1)

We are interested in the highest complete excursion up to time n. We proceed
as in the continuous time setting introducing

gn := max {k ≤ n ; Uk = 0} , U∗
n := U gn = max

0≤k≤gn
Uk,

f ∗
n := max {k ≤ gn; Uk = U∗

n} , g∗n := gf∗

n
= max {k ≤ f ∗

n ; Uk = 0} ,

d∗n := inf {k ≥ f ∗
n ; Uk = 0} , θ∗n := f ∗

n − g∗n.

(3.2)

 

n 

0 

Ūn 

d*
n 

g*
n 

ϴ*
n 

gn 

0 

U*
n 

    Uk 

k 

ξ*
n  

f*
n 

Figure 2. Notation Un

In Section 3.1, we define a continuous process (UM(t), t ≥ 0) as the classical
linear interpolation of (Un, n ≥ 0). We naturally introduce the highest high
UM,∗(t) and length θM,∗(t) of the complete excursion until time t of (UM(t), t ≥
0). We conclude linking (UM,∗(1), θM,∗(1)) to (U∗

M , θ
∗
M). Then we prove in

Section 3.2 the convergence of (UM,∗(t), θM,∗(t)) to (U∗(t), θ∗(t)). Since the
distribution of (U∗(t), θ∗(t)) has been computed in Section 2, we then get an
approximation of the distribution of (U∗

M , θ
∗
M).
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3.1 The linear interpolation of (Uk)k

We keep notation given above and the one introduced in Section 2. Recall in
particular that (B(t), t ≥ 0) stands for a standard Brownian motion started
at 0 and (U(t), t ≥ 0) is the reflected Brownian motion defined by (2.1).
Let M > 0 be a scale parameter which allows to obtain the convergence of
the normalized random walk to the Brownian motion (B(t)) as M → ∞ (see

Section 3.2). The classical continuous process
(
BM(t), t ≥ 0

)
associated with

(Sn) and normalizing factor M is classically defined as BM
(

k
M

)
= 1√

M
Sk and

for any k such that k
M

≤ t ≤ k+1
M

BM(t) = BM

(
k

M

)
+M

(
t− k

M

)(
BM

(
k + 1

M

)
− BM

(
k

M

))
.

We are interested here by the process (UM(t), t ≥ 0)

UM(t) = BM(t)−min
s≤t

BM(s), t ≥ 0. (3.3)

Note that

UM

(
k

M

)
=

1√
M
Uk, k ≥ 0 (3.4)

where (Uk) is the Lindley process associated with (Sk) via (1.3).

We define the analog of r.v.s introduced in the discrete setting of Lindley
process, see (3.2) and (3.1) in the continuous time setting of

(
BM(t)

)

U
M
(t) := sup

0≤s≤t
UM(s), gM(t) := sup

{
s ≤ t ; UM(s) = 0

}
,

UM,∗(t) := U
M
(gM(t)) = sup

0≤s≤gM (t)

UM(s),

fM,∗(t) := sup
{
r ≤ gM(t); UM(r) = UM,∗(t)

}
,

gM,∗(t) := gM(fM,∗(t)) = sup
{
r ≤ fM,∗(t) ; UM(r) = 0

}
,

dM,∗(t) := inf
{
s ≥ fM,∗(t) ; U(s) = 0

}
, θM,∗(t) := fM,∗(t)− gM,∗(t).

(3.5)
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Using the definition (3.2) of θ∗M and U∗
M we deduce easily that these r.v.’s can

be expressed in terms of their analog in continuous time.

Proposition 3.1 We have the following scaling properties

θ∗M
M

= θM,∗(1) and
U∗
M√
M

= UM,∗(1). (3.6)

3.2 Convergence of
(
UM,∗(t), θM,∗(t)

)
to
(
U∗(t), θ∗(t)

)

The key ingredient of our convergence results is the Donsker Theorem, see
Section 2.10 in [4]: the processus

(
BM(t), t ≥ 0

)
converges weakly to the

Brownian motion
(
B(t), t ≥ 0

)
whenM → +∞. Using moreover (1.5) we get

the following useful result.

Proposition 3.2
(
UM(t), t ≥ 0

)
converges weakly to

(
U(t), t ≥ 0

)
.

Note that it is unclear that the map ω 7→
(
gM,∗(t), fM,∗(t), dM,∗(t), θM,∗(t)

)

defined from U∗(t) is continuous. Therefore the weak convergence of(
gM,∗(t), fM,∗(t), dM,∗(t), θM,∗(t), UM,∗(t)

)
asM → ∞ is not a straightforward

consequence of Proposition 3.2.

Theorem 3.3 Let t > 0. The 5-uplet
(
gM,∗(t), fM,∗(t), dM,∗(t), θM,∗(t), UM,∗(t)

)

converges weakly to
(
g∗(t), f ∗(t), d∗(t), θ∗(t), U∗(t)

)
asM → ∞ where the r.v.s

g∗(t), f ∗(t), d∗(t), θ∗(t), U∗(t)) have been defined by relations (2.4)-(2.8).

4 Proofs

We follow the notation introduced in Sections 2 and 3.

4.1 Proof of Proposition 2.1

We first link the distribution of (U∗(t), θ∗(t)) to that of (U(τs), θ
∗(τs), τs).

Lemma 4.1 Let f : R2
+ → R be a bounded Borel function. Then

E

[
f(U∗(t), θ∗(t))

]
=

√
2

π

∫ +∞

0
E

[
f
(
U(τs), θ

∗(τs)
) 1√

t− τs
1 {τs<t}

]
ds. (4.1)
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Proof The real number s = L(t) is the unique s such that τs− < t < τs.
Thus,

f
(
U∗(t), θ∗(t)

)
=
∑

s≥0

1 {τs
−
<t<τs}f

(
U(τs−), θ

∗(τs−)
)

since B(τs−) = 0 implies that U∗(t) = U(τs−) and θ
∗(t) = θ∗(τs−).

Denote es the Brownian excursion

es(v) : =




B(τs− + v), 0 ≤ v ≤ τs − τs− for τs − τs− > 0

[δ] otherwise

and ζ(es) := τs − τs− its lifetime. Since τs = τs− + ζ(es),

E

[
f(U∗(t), θ∗(t))

]
= E


∑

s≥0

f
(
U(τs−), θ

∗(τs−)
)
1 {τs−<t<τs−+ζ(es)}


 .

Applying Proposition 2.6 in [14] (consequence of the Master Formula stated
in Proposition 1.10, Chapter XII), one gets

E

[
f(U∗(t), θ∗(t))

]
= E

[∫ +∞

0

{∫
f
(
U(τs), θ

∗(τs)
)
1 {τs<t<τs+ζ(w)}n(dw)

}
ds
]
,

n(dw) being a σ-finite measure on the set of all positive excursions. According

to Proposition 2.8, Chapter XII in [14], n
(
ζ(ω) > ε

)
=
√

2
πε
. Identity (4.1)

then follows. �

Since for any a > 0, the process (U(sa)/
√
a; s ≥ 0) is distributed as (U(s); s ≥ 0),

we deduce the following scaling property

(U(τs), θ
∗(τs), τs)

(d)
= (sU(τ1), s

2θ∗(τ1), s
2τ1), s > 0. (4.2)

Now we express the distribution of
(
U(τ1), θ

∗(τ1), τ1
)

in terms of that of(
U(τ1), τ1

)
.

Lemma 4.2 Let h : R3
+ → R be a bounded Borel function. Then

E

[
h
(
U(τ1), θ

∗(τ1), τ1
)]

=
∫ +∞

0
E

[
h
(
x, x2ξ, x2(ξ + ξ′) + τ1

)
1 {U(τ1)<x}

] dx
x2
.

Proof It can be deduced from Theorem 1 of [16] that

P

(
U(τ1) < x

)
= e−1/x x > 0. (4.3)
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Moreover conditionally on {U(τ1) = x},

(1) the r.v. f ∗(τ1)− g∗(τ1), d
∗(τ1)− f ∗(τ1) and τ1 − d∗(τ1) + g∗(τ1) are inde-

pendent;

(2) f ∗(τ1)− g∗(τ1)
(d)
= d∗(τ1)− f ∗(τ1)

(d)
= Tx(R);

(3) τ1 − d∗(τ1) + g∗(τ1) is distributed as τ1 conditionally on {U(τ1) < x}.

Now assume that R̃ is distributed as R such that (R,R̃) is independent of U .
By the definition of θ∗(τ1) and a wise decomposition of τ1, we get

E

[
h(U(τ1), θ

∗(τ1), τ1)
]
=
∫ +∞

0

e−1/x

x2
(4.4)

E

[
h
(
x, Tx(R), Tx(R) + Tx(R̃) + τ1

)
|U(τ1) < x

]
dx.

The result is a direct consequence of (2.9) and the scaling property

Tx(R)
(d)
= x2T1(R). (4.5)

�

Proof of Proposition 2.1 Denote ∆ := E [f(U∗(t), θ∗(t))], where
f : [0,∞[×[0,∞[→ R is a bounded Borel function. According to Lemma 4.1,
we have

∆ =

√
2

π

∫

R2
+

f(y, y2z)E
(
ψ(y)1 {y2(ξ′+z)<t}

) 1

y2
pξ(z) dydz

where

ψ(y) :=
∫ +∞

0

s ds√
t− y2(z + ξ′)− s2τ1

1 {s<s∗} (4.6)

=
1

τ1

[√
t− y2(z + ξ′)−

√
t− y2(z + ξ′)− s2∗τ1

]
(4.7)

with s∗ =
y

U(τ1)
∧
√

t−y2(z+ξ′)
τ1

and a ∧ b = inf{a, b}.

It is easy to prove that on {s < s∗},

ψ(y) =
1

τ1



√
(t− y2(z + ξ′))+ −

√√√√√√


t− y2




z + ξ′ − τ1(

U(τ1)
)2








+


 .

Then (2.15) follows. �
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4.2 Proof of Proposition 2.2

Since the density function of U(τ1) is explicit (see (4.3)), that of
(
τ1, U(τ1)

)

will be determined once the conditional distribution of τ1 given U(τ1) will be
known. Our proof is based on the study of the process (λ̂(x), x > 0) such that
conditionally on {U(τ1) = x},

τ1
(d)
= λ̂(x). (4.8)

Obviously (4.8) is equivalent to

E
[
f(τ1)g

(
U(τ1)

)]
= E

[
f
(
λ̂
(
U(τ1)

))
g
(
U(τ1)

)]
(4.9)

for any bounded Borel functions f , g : [0,∞[→ R. We will show that (λ̂(x), x >
0) satisfies an equation which has a unique solution.

Lemma 4.3 Let x > 0 and n ≥ 0. Then,

λ̂(x)
(d)
= Λn + λ̂

(
1

1
x
+ e1 + · · ·+ en+1

)
(4.10)

where

Λn := x2(ξ1 + ξ2) +
n∑

k=1

ξ2k+1 + ξ2k+2(
1
x
+ e1 + · · ·+ ek

)2 , n ≥ 0

with the classical convention
0∑
1
= 0.

Proof First we prove

λ̂(x)
(d)
= x2(ξ1 + ξ2) + λ̂

(
1

1
x
+ e1

)
, x > 0.

Let f1, f2 : [0,+∞[→ [0,+∞[ be two bounded Borel functions and

A := E

[
f1(τ1)f2

(
U(τ1)

)]
=
∫ +∞

0
e−1/xf2(x)E[f1(λ̂(x))]

dx

x2
(4.11)

by (4.3) and (4.8). Applying formula (4.4) to h(x1, x2, x3) = f1(x3)f2(x1) leads
to

A=
∫ +∞

0
e−1/x

E

[
f1
(
Tx(R) + Tx(R̃) + τ1

)∣∣∣U(τ1) < x
]
f2(x)

dx

x2

=
∫ +∞

0

(∫ x

0

e−1/y

y2
E

[
f1
(
x2(ξ1 + ξ2) + λ̂(y)

)]
dy

)
f2(x)

dx

x2
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using (4.5), (4.3) (2.9) and (4.9). Identifying with (4.11) implies

E

[
f1
(
λ̂(x)

)]
= e1/x

∫ x

0
e−1/y

E

[
f1
(
x2(ξ1 + ξ2) + λ̂(y)

)] dy
y2
.

Let Y be the r.v. defined by Y = 1
/(

1
x
+ e1

)
whose density is obviously given

by e1/x−1/y 1 [0,x](y)/y
2. Thus E

[
f1
(
λ̂(x)

)]
can be rewritten as

E

[
f1
(
x2(ξ1 + ξ2) + λ̂(Y )

)]
which means that

λ̂(x)
(d)
= x2(ξ1 + ξ2) + λ̂(Y ) = x2(ξ1 + ξ2) + λ̂

(
1

1
x
+ e1

)
, x > 0.

Iterating this procedure leads to (4.10). �

Lemma 4.4 For any x > 0, E
(
λ̂(x)

)
= 2

3
(x+ x2).

Proof Using for instance Exercise (4.9) Chap VI in [14] we get that

M(t) :=
{
cosh

(
λ|B(t)|

)
+ b sinh

(
λ|B(t)|

)}
exp

{
−λ

2

2
t− bλL(t)

}

is a local martingale for λ > 0. Let r > 0, b = −cosh(λr)

sinh(λr)
and

σr := inf{s ≥ 0 ; |B(s)| = r} = inf{s > 0 ; U(s) = r}.

The process (Mt∧τ1∧σr ; t ≥ 0) being bounded, we can apply the stopping the-
orem to obtain E(M(τ1 ∧ σr)) = E(M(0)). It is clear that |B(σr)| = U(σr) =
r, B(τ1) = 0 and L(τ1) = 1. Our choice of b implies that M(σr) = 0. Conse-

quently, M(τ1 ∧ σr) = M(τ1) 1 {τ1<σr} and e−bλ
E

[
e−λ2τ1/2 1 {τ1<σr}

]
= 1. Since

{τ1 < σr} = {U(τ1) < r}, the previous identity can be rewritten as

E

[
e−λ2τ1/2 1 {U(τ1)<r}

]
= ebλ = exp

{
−λcosh(λr)

sinh(λr)

}
, (4.12)

that leads to

E

[
e−λτ1 1 {U(τ1)<r}

]
= exp

{
−
√
2λ

cosh(r
√
2λ)

sinh(r
√
2λ)

}
= e−1/r

(
1− 2λr

3
+ o(λ)

)
.

(4.13)
Taking the derivative at 0, we get

E

(
τ11 {U(τ1)<r}

)
=

2r

3
e−1/r. (4.14)
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Let ϕ be the function defined by ϕ(x) := E

[
λ̂(x)

]
. Therefore, taking the

conditional expectation with respect to U(τ1) in (4.14) and using (4.3), we
have

∫ r
0 e

−1/xϕ(x) dx/x2 = 2r
3
e−1/r r > 0, which conduces to

ϕ(x) =
2

3

(
x+ x2

)
. �

Lemma 4.5 (1) Λn converges a.s. and in L1 while n→ +∞.

(2) For any x > 0, λ̂
(

1
1
x
+e1+···+en

)
converges to 0 in L1 while n→ +∞.

Proof 1) Since all the r.v.s under concern are positive, Λn converges a.s.
while n→ ∞ to the positive r.v.

Λ∞ := x2(ξ1 + ξ2) +
∑

k≥1

ξ2k+1 + ξ2k+2(
1
x
+ e1 + · · ·+ ek

)2 . (4.15)

One way to prove that Λ∞ is a.s. finite is to show that its expectation is finite.

Note that (see [5] p 463)

E

[
e−λξ1

]
= E

[
e−λT1(R)

]
=

√
2λ

sinh(
√
2λ)

= 1− λ

3
+ o(λ), λ > 0.

that conduces by derivation to E(ξ1) =
1
3
. Now using the fact that e1+ · · ·+ek

is γ(k)-distributed, we have successively

E(Λ∞)− 2

3
x2 =E



∑

k≥1

ξ2k+1 + ξ2k+2(
1
x
+ e1 + · · ·+ ek

)2




=
2

3

∑

k≥1

∫ +∞

0

1
(
1
x
+ y

)2
yk−1

(k − 1)!
e−y dy =

2

3

∫ +∞

0

dy
(
1
x
+ y

)2 < +∞

which proves item 1 of Lemma 4.5.

2) Since λ̂(y) ≥ 0, it is sufficient to check that lim
n→+∞

E

[
λ̂
(

1
1
x
+e1+···+en

)]
= 0.

As 0 < 1
1
x
+e1+···+en

≤ x and lim
n→+∞

1
1
x
+e1+···+en

= 0 a.s. (by the Law of Large

Numbers), the Lebesgue’s dominated convergence theorem directly implies

lim
n→+∞

E

(
1

1
x
+ e1 + · · ·+ en

)
= lim

n→+∞
E




1
(
1
x
+ e1 + · · ·+ en

)2


 = 0.
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It remains to use Lemma 4.4 to get

E

[
λ̂

(
1

1
x
+ e1 + · · ·+ en

)]
=

2

3




E

(
1

1
x
+ e1 + · · ·+ en

)
+ E




1
(
1
x
+ e1 + · · ·+ en

)2







.

and conclude the proof. �

4.3 Proof of Theorem 2.4

We revisit the results of Sections 4.1 and 4.2, keeping the notation introduced
there. Interpreting the Lebesgue integral as an expectation in Lemma 4.1 gives:

E

[
f(U∗(t), θ∗(t))

]
=

√
π

2
E

[
f

(√
t

τ1
α1U(τ1),

t

τ1
α2
1θ

∗(τ1)

)
1√
τ1

]
.

By the same reasoning, Lemma 4.2 can be modified as:

E

[
h
(
U(τ1), θ

∗(τ1), τ1
)]

= E

[
h

(
U(τ1)

α2

,
U(τ1)

2

α2
2

ξ,
U(τ1)

2

α2
2

(ξ + ξ′) + τ1

)
1

U(τ1)

]
.

Then the two previous equations and the following identity in law: U(τ1)
(d)
=

1/e′0 imply (2.19). �

4.4 Proof of Theorem 2.5

For any a > 0, b and c ∈ R, we set

H(a, b) := E

[
1√

b− aξ
1 {b−aξ>0}

]

Ĥ(a, b, c) := E

[
1

(aξ − b)3/2
exp

(
− c

aξ − b

)
1 {aξ−b>0}

]
.

The proof of Theorem 2.5 is based on the following Lemma.

Lemma 4.6 We have
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H(a, b) =
a

b3/2
∑

k∈Z
|1 + 2k| exp

(
−(1 + 2k)2

2

a

b

)
(4.16)

Ĥ(a, b, c) =
π5/2

2a
√
c

∑

k∈Z
(−1)k+1k2 exp


−k

2π2b

2a
− |k|π

√
2c

a


. (4.17)

Proof 1) Since H(a, b) = 0 for b ≤ 0, we assume from now on b > 0. By (2.11)

H(a, b) =
1√
2π

∑

k∈Z

(
−H1,k + (1 + 2k)2H2,k

)

with

H1,k :=
∫ b/a

0

1

u3/2
1√

b− au
exp

(
−(1 + 2k)2

2u

)
du,

H2,k :=
∫ b/a

0

1

u5/2
√
b− au

exp

(
−(1 + 2k)2

2u

)
du.

The change of variable z = 1/u− 1/a in the above integrals gives

H1,k =

√
2π

b

1

|1 + 2k| exp
(
−(1 + 2k)2

2

a

b

)
,

H2,k =

(
a
√
2π

b3/2
1

|1 + 2k| +
√
2π√
b

1

|1 + 2k|3
)
exp

(
−(1 + 2k)2

2

a

b

)
.

From these relations we deduce the identity −H1,k +(1+2k)2H2,k =
a
√
2π

b3/2
|1+

2k| exp
(
− (1+2k)2

2
a
b

)
and finally (4.16).

2) Using (2.12) and an integration by parts lead to Ĥ(a, b, c) = a
∑

n∈Z(−1)nĤn

with

Ĥn =
∫ ∞

b/a

(
3

2(au− b)5/2
− c

(au− b)7/2

)
exp

(
− c

au− b
− n2π2u

2

)
du.

With the change of variable s = c/(au− b), we get

Ĥn =
1

a

(
Ĥ1

n + Ĥ2
n

)
exp

(
−n

2π2

2

b

a

)

where
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Ĥ1
n =

3

2c3/2

∫ ∞

0

√
s exp

(
−s− n2π2c

2a

1

s

)
ds,

Ĥ2
n =− 1

c3/2

∫ ∞

0
s3/2 exp

(
−s− n2π2c

2a

1

s

)
ds.

The Bessel functions Kν admits the following integral representation (see for-
mula (15) p 183 in [19]):

Kν(z) =
1

2

(
z

2

)ν ∫ ∞

0

1

sν+1
exp

(
−s− z2

4s

)
ds.

Since K−ν(z) = Kν(z) (see formula (8) p 79 in [19], we obtain

Ĥ1
n =

3

c3/2

(
z

2

)3/2

K3/2(z) and Ĥ2
n = − 2

c3/2

(
z

2

)5/2

K5/2(z)

where z = |n|π
√

2c
a
. The functions K3/2 and K5/2 are explicit (see formula (12)

p 80 in [19]):

K3/2(z) =

√
π

2z
e−z

(
1 +

1

z

)
and K5/2(z) =

√
π

2z
e−z

(
1 +

3

z
+

3

z2
.
)

Then, we deduce Ĥ1
n + Ĥ2

n = −
√
π

4c3/2
z2e−z and (4.17). �

Proof of Theorem 2.5 Using Proposition 2.1 and (4.16), for 0 < x < t, we
get

fθ∗(t)(x)=
1√
2πtx

∫

R3
+

E


H

(
x

ty
, 1− x

t
− u2x

ty
λ
(
1

v

))
1 {

1−x
t
−u2x

ty
λ(1/v)>0

}



u√
y
e−v1 {u<v}pξ(y) du dv dy

=
1√
2πtx

∫

R2
+

ue−v1 {0<u<v}f1(u, v) du dv (4.18)

where

f1(u, v) :=
∫ ∞

0
E


H

(
x

ty
, 1− x

t
− u2x

ty
λ
(
1

v

))
1{

1−x
t
−u2x

ty
λ( 1

v
)>0

}

 pξ(y)√

y
dy.

Using (4.16) with a = x
ty

and b = 1− x
t
− u2x

ty
λ
(
1
v

)
, we get

H()√
y

=
x
√
t

[(t− x)y − u2xλ(1/v)]3/2
∑

k∈Z
|1+2k| exp

{
−(1 + 2k)2

2

x

(t− x)y − u2xλ(1/v)

}
.
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Using the definition of the function Ĥ, we have:

f1(u, v) = x
√
t
∑

k∈Z
|1 + 2k|E

[
Ĥ

(
t− x, u2xλ(1/v),

(1 + 2k)2

2
x

)]
.

Thus the density function of θ∗(t) can be written as follows, for 0 < x < t,

fθ∗(t)(x)=

√
x√
2π

∫

R2
+

ue−v1 {0<u<v} (4.19)




∑

k∈Z
|1 + 2k|E

[
Ĥ

(
t− x, u2xλ(1/v),

(1 + 2k)2

2
x

)]
 du dv.

Set a = t− x, b = u2xλ(1/v) and c = (1+2k)2

2
x. From (4.17), we get

E

[
Ĥ

(
t− x, u2xλ(1/v),

(1 + 2k)2

2
x

)]
=

π5/2

√
2x(t− x)|1 + 2k|

∑

n∈Z
(−1)n+1n2 exp

(
−π|n||1 + 2k|

√
x

t− x

)
E

[
exp−

(
n2π2

2(t− x)
u2xλ(1/v)

)]
.

Identity (4.12) and item 2 of Proposition 2.2 give

∫ r

0
E

(
e−µλ(x)

)
e−1/x dx

x2
= exp

{
−
√
2µ coth

(
r
√
2µ
)}

and a derivation with respect to r leads to

E[exp {−µλ(r)}] = r2e1/r
(

2µ

sinh2(r
√
2µ)

)
exp

{
−
√
2µ coth(r

√
2µ)

}
. (4.20)

Taking µ = n2π2

2(t−x)
u2x we get

E

[
Ĥ

(
t− x, u2xλ(1/v),

(1 + 2k)2

2
x

)]
=

π9/2u2ev
√
x√

2|1 + 2k|(t− x)2v2
(4.21)

∑

n∈Z∗

(−1)n+1n4
exp

{
−π|n|√x√

t−x

(
|1 + 2k|+ u coth

(
πu|n|
v

√
x

t−x

))}

sinh2
(
πu|n|
v

√
x

t−x

) .

Equations (4.19) and (4.21) imply that fθ∗(t)(x) =
∑

k,n∈Z∗ fk,n(x) where
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fk,n(x)=

√
x

2π
|1 + 2k| π9/2

√
x√

2|1 + 2k|(t− x)2
(−1)n+1n4

∫

R2

u3

v2

exp
{
−π|n|√x√

t−x

(
|1 + 2k|+ u coth (πu|n|

v

√
x

t−x
)
)}

sinh2
(
πu|n|
v

√
x

t−x

) 1 {u<v} du dv.

Letting u = vs (v being fixed) and integrating with respect to dv, we obtain

fk,n(x)= (−1)n+1π|n|
√

1

x(t− x)
exp

(
−π|n||1 + 2k|

√
x

t− x

)

×
∫ 1

0

sinh
(
πs|n|

√
x

t−x

)

cosh2
(
π|n|

√
x

t−x

) ds

=(−1)n+1 1

2x
exp

(
−π|n||1 + 2k|

√
x

t− x

)
tanh2

(
π|n|

√
x

t− x

)

and straightforward computation leads to

∑

k∈Z∗

fk,n(x) = (−1)n+1 1

2x
tanh2

(
π|n|

√
x

t− x

)(
sinh

(
π|n|

√
x

t− x

))−1

that finally conduces to (2.20). �

4.5 Proof of (2.24) in Theorem 2.6

It is clear that (2.21)-(2.23) directly imply

P(U∗(t) > x)=E


2

∑

k≥1

(−1)k−1e−
2k2x2

tg(1)


 =

2

π

∑

k≥1

(−1)k−1
∫ 1

0
e−

2k2x2

ty
dy√

y(1− y)
.

We take the x-derivative and we set u = 1/y − 1. (2.24) follows easily. �

4.6 Proof of Proposition 2.7

Let us introduce da := inf{t ≥ TU(a), U(t) = 0}. It is clear that {U∗(t) > a} =
{da < t}. The process (U(s+ TU(a))− a, 0 ≤ s ≤ da − TU(a)) is distributed
as (B(s), 0 ≤ s ≤ TB(−a)) and is independent of (U(s), s ≤ TU(a)), then

da
(d)
= TU(a) + T

B̂
(a). This shows (2.25). �
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4.7 Proof of Theorem 3.3

4.7.1 Auxiliary results in the discrete setting

Let us go back to the random walk defined by (1.1) and introduce for any
integer n1 > 0,

S ′
k := Sn1+k − Sn1 , k ≥ 0.

Lemma 4.7 (Key Property) (1) Un+1 = max(Un + ǫn+1, 0).
(2) Let k be an integer such as k > 0. Then

Un1+i > 0 ∀i ∈ {0, · · · , k} ⇐⇒ Un1 > 0 and Un1+S
′
i > 0 ∀i ∈ {1, · · · , k}.

In such a case
Un1+i = Un1 + S ′

i for 1 ≤ i ≤ k.

Now consider

N := {g∗n < n1, n2 < f ∗
n < n3, n4 < d∗n < n5, U

∗
n ≥ b} (4.22)

where 0 < n1 < · · · < n5 < n are integers and see (3.2) and (1.3) for the
definition of the r.v.’s g∗n, f

∗
n, d

∗
n, U

∗
n and (Uk).

Define
U(m1,m2) := max

m1≤i≤m2

Ui, U(m1,m2) := min
m1≤i≤m2

Ui

and
n′
i := ni − n1, 2 ≤ i ≤ 5, n′ := n− n1.

The event D can be decomposed as

N = N1 ∩N2 ∩N3 ∩N4 (4.23)

where

N1 :=
{
Uk > 0, n1 ≤ k ≤ n4

}
=
{
U(n1, n4) > 0

}
(4.24)

N2 :=
{
U(n2, n3) ≥ U(0, n2) ∨ b

}
(4.25)

N3 :=
{
U(n2, n3) > U(n3, n)

}
(4.26)

N4 :=
{
∃ k, Uk = 0, n4 ≤ k ≤ n5

}
=
{
U(n4, n5) ≤ 0

}
(4.27)

Now note that

Un1 + S ′
i > 0 ⇐⇒ Sn1+k − S(0, n1) > 0. (4.28)

Moreover by the definitions of the nj’s, one has Unj
> 0 and Si+nj

−S(0, nj) >
0 ∀i = 1 . . . n5. Consequently, we successively have
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N1 =
{
S ′(0, n′

4) > −Un1

}
(4.29)

N2 =
{
S ′(n′

2, n
′
3) ≥ −Un1 +max

[
U(0, n1), b, S ′(0, n′

2) + Un1

]}
(4.30)

N3 =
{
S ′(n′

2, n
′
3) ≥ −Un1 + U(n3, n)

}
(4.31)

N4 =
{
S ′(n′

4, n
′
5) ≤ −Un1

}
. (4.32)

The above equalities can be directly read on Figure 4.7.2 (a dash line repre-
senting a level that could not be crossed by the process).

We want to express N3 in terms of T ′
k := St3+k − St3 . We have

S(0, n3 + k) = min
{
S(0, n3), Sn3 + T ′(0, k)

}

and

Un3+k = Sn3+k − S(0, n3 + k) = T ′
k +max

{
Un3 , −T ′(0, k)

}
.

As a result

N3 =
{
S ′(n′

2, n
′
3) > −Un1 + max

0≤k≤n−n3

[
T ′
k +max

{
Un3 , −T ′(0, k)

}]}
.

4.7.2 Back to the continuous case

1) Let t1, t2, . . . , t5 be positive real numbers such that 0 < t1 < · · · < t5 and
b > 0. Let us introduce

A1
M = {gM,∗(t) < t1, t2 < fM,∗(t) < t3, t4 < dM,∗(t) < t5, U

M,∗(t) > b}
(4.33)

where gM,∗(t), fM,∗(t), dM,∗(t) and UM,∗(t)) have been defined by (3.5). The
goal is to show

lim
M→∞

P (A1
M) = P (A1) (4.34)

where

A1 := {g∗(t) < t1, t2 < f ∗(t) < t3, t4 < d∗(t) < t5, U
∗(t) > b} (4.35)

and the r.v.’s U∗(t), g∗(t), f ∗(t) and d∗(t) have been defined by (2.4)-(2.7).

2) In view of the discrete case, let us consider the sets of dyadic points

D =
⋃

m∈N
Dm where Dm =

{
k

2m
, k ∈ {0, 1, . . .}

}
.
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Since D is dense in R and Dn ⊂ Dm as soon as n ≤ m, we can choose without
loss of generality positive integers L0, l and li for i = 1 . . . 5 such as

ti =
li
2L0

, 1 ≤ i ≤ 5, t =
l

2L0
.

Recall that
(
UM(t), t ≥ 0

)
is the continuous process defined by (3.3) and the

linear interpolation of

(
1√
M
Uk, k ≥ 0

)
.

3) For any continuous function ω : [0,∞[→ R, we denote

ω(u, v) := max
u≤r≤v

ω(r), ω(u, v) := min
u≤r≤v

ω(r), 0 ≤ u ≤ v. (4.36)

Following the procedure presented in the discrete case, the event A1
M can be

decomposed as

A1
M = A1,1

M ∩ A1,2
M ∩ A1,3

M ∩ A1,4
M (4.37)

where for i = 1, . . . , 4 A1,i
M is the analog of Ni obtained by replacing U (resp.

U , ni, i = 1, . . . , 5) by UM (resp. U
M
, ti, i = 1, . . . , 5).

By Corollary 3.2, UM(t4, t5) converges weakly to U(t4, t5), as M → ∞. Thus
we want to study the limit when M goes to infinity and apply the following
lemma

Lemma 4.8 Let (ξM) be a sequence of r.v.’s valued in R
d and converging

weakly to ξ when M → ∞. Then the Porte-Manteau’s lemma (see e.g. [4])
asserts that for any Borel Λ in R

d,

lim
M→∞

P(ξM ∈ Λ) = P (ξ ∈ Λ) (4.38)

if P(ξ ∈ ∂Λ) = 0.

Unfortunately, the distribution of U(t4, t5) (being bounded below by 0) has

an atom at 0; therefore we cannot conclude directly that lim
M→∞

P

(
UM(t4, t5) =

0
)
= P

(
U(t4, t5) = 0

)
. This is the reason why we will introduce the processes

W and Z in the sequel.

4) We follow now the procedure developed in section 4.7.1. It is worth intro-
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ducing t′i := ti − t1, i ∈ {2, 3, 4, 5}, t′ := t− t1 and WM the process

WM(s) := BM(t1 + s)− BM(t1), s ≥ 0.

Note that the process
(
WM(s), s ≥ 0

)
is the linear interpolation of

(
1√
M

(Sk+n1−

Sn1 , k ∈ N

)
. We deduce from the previous step that A1

M = A2
M where

A2
M := A2,1

M ∩ A2,2
M ∩ A2,3

M ∩ A2,4
M

and

A2,1
M :=

{
WM(0, t′4) > −UM(t1)

}

A2,2
M :=

{
W

M
(t′2, t

′
3) ≥ −UM(t1) + max

[
U

M
(0, t1), b, W

M
(0, t′2) + UM(t1)

] }

A2,3
M :=

{
W

M
(t′2, t

′
3) > −UM(t1) + max

0≤u≤t−t3

[
ZM(u) + max

{
UM(t3), −ZM(0, u)

}]}

A2,4
M :=

{
WM(t′4, t

′
5) ≤ −UM(t1)

}
.

 

t1 

0 

Ū
M(t) 

dM,*(t) gM,*(t) 

fM,*(t) 
gM(t) 

0 

UM,*(t) 

    UM(s) 

t3 t5 t2 

t 
t4 s 

Figure 3. Sequence of ti

5) To conclude the proof by taking the limit in M , it remains to express the
limit subsets in the same way. In that view, let us introduce

W (s) := B(t1 + s)− B(t1), Z(s) := B(t3 + s)− B(t3), s ≥ 0

and

A2 := A2,1 ∩ A2,2 ∩ A2,3 ∩ A2,4
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with

A2,1 :=
{
W (0, t′4) > −U(t1)

}

A2,2 :=
{
W (t′2, t

′
4) ≥ −U(t1) + max

[
U(0, t1), b, W (0, t′2) + U(t1)

] }

A2,3 :=
{
W (t′2, t

′
3) > −U(t1) + max

0≤u≤t−t3

[
Z(u) + max

{
U(t3), −Z(0, u)

}]}

A2,4 :=
{
W (t′4, t

′
5) ≤ −U(t1)

}
.

Recall that for any u > 0, the r.v.s max
0≤r≤u

B(r) and min
0≤r≤u

B(r) have a density

function. Therefore we can apply (4.38) to get

lim
M→∞

P(A2,M) = P(A2).

As done in the discrete setting, we deduce that A2 = A1 where A1 has been
defined by (4.35). It is now clear that (4.34) follows.

�
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