
HAL Id: hal-00857388
https://hal.science/hal-00857388

Submitted on 3 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DBA-VM: Dynamic bandwidth allocator for virtual
machines

Ahmed Amamou, Manel Bourguiba, Kamel Haddadou, Guy Pujolle

To cite this version:
Ahmed Amamou, Manel Bourguiba, Kamel Haddadou, Guy Pujolle. DBA-VM: Dynamic bandwidth
allocator for virtual machines. ISCC 2012 - IEEE Symposium on Computers and Communications,
Jul 2012, Capadocia, Turkey. pp.713-718, �10.1109/ISCC.2012.6249382�. �hal-00857388�

https://hal.science/hal-00857388
https://hal.archives-ouvertes.fr

DBA-VM: Dynamic Bandwidth Allocator for

Virtual Machines

Ahmed Amamou, Manel Bourguiba, Kamel Haddadou and Guy Pujolle

LIP6, Pierre & Marie Curie University

4 Place Jussieu

75005 Paris, France

Email: {ahmed.amamou, manel.bourguiba, kamel.haddadou, guy.pujolle}@lip6.fr

Abstract—Cloud computing is an emergent paradigm that
allows customers to rent infrastructure, platforms and software as
a service. With resource sharing and reuse through virtualization
technology, cloud environments become even more cost effective
and flexible. Nevertheless, networking within virtualized cloud
still presents some challenges in performance and resource alloca-
tion. In this paper, we propose DBA-VM, a Dynamic Bandwidth
Allocator for Virtual Machines with regard to the established
SLAs. The proposed scheme enforces the isolation between the
virtual machines through the transmission bandwidth adjustment
at the network I/O channel. The experimental performance
evaluation shows that DBA-VM allows to the virtualized system
to respect each virtual machine SLA while reducing the global
physical resources (CPU and memory) consumption.

I. INTRODUCTION

Cloud computing is a new technology trend that is expected

to reshape the information technology landscape. It is a way

to deliver software, infrastructure and platforms as a service

to remote customers over the Internet. Cloud computing re-

duces hardware’s management and software resources cost by

shifting the location of the infrastructure to the network. It

offers high availability, scalability and cost-effectiveness since

it is particularly associated with the provision of computing re-

sources on-demand and according to a pay-as-you-use model.

These resources are kept on the provider’s servers which

are located in various parts of the Internet. Their management

is then shifted from the user to the provider. Cloud computing

refers to both the applications delivered as services over the

Internet and the hardware and systems software in the data

centers that provide those services [1]. The cloud is defined in

[2] as a large pool of easily usable and accessible virtualized

resources (such as hardware, development platforms and/or

services). These resources can be dynamically reconfigured to

adjust to a variable load (scale), allowing also for an opti-

mum resource utilization. This pool of resources is typically

exploited by a pay-as-you-use model in which guarantees are

offered by the infrastructure provider by means of customized

Service Level Agreements (SLAs).

This definition introduces the virtualization as a key en-

abling technology for cloud computing. In fact, virtualization

basically allows partitioning one physical machine to multiple

virtual instances running concurrently and sharing the same

physical resources. Advances in system virtualization make

infrastructure-as-a-service a compelling paradigm since it of-

fers cost effectiveness through resources sharing. It also offers

flexibility through the ability of migrating virtual machines

from one physical machine to another which helps reducing

energy consumption. Furthermore, it enhances the cloud plat-

form scalability and availability through the instantiation of

new isolated virtual instances on demand.

Virtualization has been widely studied and deployed in

recent years [3]. The Virtual Machine Monitor (VMM), also

called hypervisor is a software layer that presents abstractions

of the underlying physical resources to the guest machines.

It allows the different virtual machines to share the physical

resources including the network device. Network I/O virtu-

alization is essential to provide connectivity to the virtual

machines. However, the current implementations of VMMs

do not provide high enough throughputs, especially when the

applications running on different virtual machines within the

same physical machine are I/O intensive (web services, video

servers,...)[5][6][7]. Network intensive applications are among

the applications dominating the cloud-based data centers today

[9].

Although there are compelling advantages behind virtualiz-

ing the cloud computing infrastructure, there are still perfor-

mance issues that need to be addressed before virtualizing the

data centers could be fully advantageous. Indeed, concurrent

applications share equally the available bandwidth. Current

VMMs only offer a static allocation of the bandwidth. In this

paper, we propose an SLA aware dynamic bandwidth allocator

that dynamically manages bandwidth allocation among virtual

machines according to the established SLAs. The proposed

mechanism allocates the required bandwidth in terms of both

bits per second and packets per second while minimizing

global physical resources consumption.

The remainder of this paper is organized as follows: Section

2 introduces some related works. We state the problem through

the native system evaluation in section 3. In section 4 we

detail the proposed solution and its experimental evaluation in

section 5. Finally, section 6 concludes the paper and introduces

our future work.

II. RELATED WORK

Over the last few years, a fair number of research efforts

has been dedicated to the enhancement of the I/O virtualization

technology. In both [5] and [6], the authors conducted exten-

sive measurements to evaluate the performance interference

among virtual machines running network I/O workloads that

are either CPU or network bound. They show how different

resources scheduling and allocation strategies and workloads

may impact the performance of a virtualized system. In [10]

the authors show that cache and memory architecture, network

architecture and virtualization overheads can be scalability

bottlenecks in a virtualized cloud platform, depending on

whether the application is compute or memory or network

I/O intensive respectively. Network performance evaluation of

virtual machines was the objective of multiple others works

[11] [12]. The transmission, reception and emission through-

puts of virtual machines are shown to be very low compared to

the Dom0 (the privileged domain) performance. The multiple

context switches and the costly I/O communication between

the driver domain and the virtual machines through the event

channel are behind this drastic performance degradation. A

deep analysis of the network I/O operations within Xen in [8]

shows that the grant mechanism incurs significant overhead

when performing network I/O operations. This overhead is

mostly due to the overheads of grant hypercalls and of the high

cost of page mapping/unmapping. For this purpose, the authors

proposed several optimizations to the memory sharing mech-

anism implemented in Xen. They improved the cache locality

by moving the grant copy operation from the driver domain to

the guest. Besides, they proposed to relax the memory isolation

property to reduce the number of grant operations performed.

In this case, performance would come at the cost of isolation,

one of the most attractive benefits of the Xen architecture.

In [13], the authors proposed a new design for the memory

sharing mechanism with Xen which completes the mechanism

presented in [8]. The basic idea of the new mechanism is to

enable the guest domains to unilaterally issue and revoke a

grant. This allows the guest domains to protect their memory

from incorrect Direct Memory Access (DMA) operations.

Beyond the memory sharing mechanism, the authors of [14]

proposed to optimize the interrupt deliver route and shorten

the network I/O path. In [10], the author shows that the out-

of-the-box network bandwidth to another host is only 71% and

45% of non-virtualized performance for transmit and receive

workloads, respectively. These bottlenecks are present even on

a test system massively over-provisioned in both memory and

computation resources. Similar restrictions are also evident in

commercial clouds provided by Amazon [19], showing that

even after much research effort I/O virtualization bottlenecks

still challenge the designers of modern systems [20].

III. BACKGROUND AND PROBLEM STATEMENT

A. Virtualized cloud environment

A cloud platform basically consists in multiple data centers

connected through a WAN and a web portal. The data center

is composed of multiple physical nodes connected through a

LAN. Inside the data center, the infrastructure can be virtual-

ized, in which case each physical machine supports multiple

isolated virtual machines. Different applications (game server,

Fig. 1. Driver domain based I/O Virtualization model

media server..) run over these virtual machines and users have

direct access to those applications through the web portal.

These virtual machines share the same hardware and storage,

and can be migrated from one physical machine to another in

the same data center or even in a remote data center. The VMM

ensures physical resources sharing (CPU, memory, etc.) and

provides isolated shared access to the devices through a special

virtual machine called driver domain (Figure 1). The driver

domain hosts the devices physical drivers and is responsible

for protecting the I/O access as well as transferring the traffic

to the appropriate virtual machine. With the driver domain

I/O model, all the virtual machines share the same network

interface and the driver domain demultiplexes incoming and

multiplexes outgoing traffics. A great level of transparency

is hence reached since the guest machines do not have to

implement the eventually buggy device drivers. Besides, since

all the traffic goes through the driver domain, this latter

enjoys more traffic monitoring abilities like admission control

or priorities establishment between the flows with regard to

their types. However, this model performance experiences

limitations due to the overhead incurred by the communication

between the driver domain and the guests. We will further

analyze this limitation in the next section.

B. Xen network I/O architecture

Xen [2] is a popular open source VMM for the x86

architecture. Xen relies on the driver domain to host device

drivers and to ensure shared access to the network device

among the guest machines [15]. In a Xen environment, the

driver domain hosts the physical device drivers. Each guest

machine is associated one or more virtual interfaces (vif)

that are connected via a bridge to the physical interface. A

vif is split into the netback (in the driver domain) and the

netfront (in each guest machine). Shared memory pages are

used to transfer the packets between the driver domain and the

guests. Network transmissions and receptions are achieved as

illustrated by Figure 1.

As soon as a packet is sent by upper layer, it is relayed to

netfront, this latter notifies the netback of the arrival of the

packet and copies the packet to its address space.When the

driver domain is scheduled, the netback see the notification,

look for the packet in shared memory page and relays it to

the Bridge. The Bridge relays the packet to device driver that

transmit it to the network device. Incoming packets will follow

the opposite path.

C. Problem statement

In a virtualized cloud, multiple virtual machines are dedi-

cated to different types of applications while sharing the same

physical machine and network device. The sum of rates at

which the virtual machines transmit cannot thus exceed the

physical Network Interface Card (NIC) bandwidth. Some ap-

plications like video streaming servers are required to sustain

an acceptable throughput so that the contract with the customer

could be respected. The video server thus requires a bandwidth

that may not be guaranteed in the presence of concurrent

flows. In a native virtualized system, the virtual machines

share the available bandwidth equally. Then, instantiating a

new virtual machine may compromise the QoS required by

already running applications. Native Xen only offers a tool to

statistically set a cap on the bandwidth that a virtual machine

can enjoy and the whole system needs to be restarted after

each reconfiguration. First, we show through experimental

evaluation how the Xen native system is unable to respect

the bandwidth allocation specified in the SLAs.

1) Experimental Setup: The system that we are using is

a Dell PowerEdge 2950 server, with two 2940 Mhz Intel

Quad-core CPUs. Pairs of cores share the same L2 cache,

and all 8 cores share the same main DDR2 667Mhz memory.

Networking is handled by one quad-gigabit card using a PCI

X4 channel. As a hypervisor, we use Xen 3.4.0 in para-

virtualization mode. We instantiate a driver domain and three

guest machines: VM1, VM2 and VM3 for traffic transmission.

The driver domain is allocated four cores and each guest

virtual machine is allocated only one core. As traffic sink, we

used one NEC machine with a 2400 Mhz core 2 duo processor,

1GB DDR2 667Mhz and 1 Gb NIC. We used Iperf for the

traffic transmission. VM1, VM2 and VM3 are characterized

by the SLAs SLA1, SLA2 and SLA3 respectively, as follows:

VM1 and VM3 require a bandwidth of only 150Mb/s while

VM2 requires 700Mb/s. Each virtual machine is connected to

one virtual interface. The three virtual machines send traffic

at the rate of 1Gb/s. We consider the following two scenarios:

In the first scenario, the three virtual machines send packets

of 1500 bytes. In the second scenario, VM1 and VM3 send

packets of 64 bytes while VM2 sends packets of 1500 bytes.

In both scenarios, the three virtual machines transmit packets

at the rate of 1Gb/s.

2) Experimental Results: Figure 2 shows how the native

system is unable to guarantee the required bandwidth to each

virtual machine. Indeed, the three virtual machines share

equally the link bandwidth and transmit at 330 Mb/s each.

Then, one can imagine that using a traffic shaping method

as traffic controller (TC),deployed in driver domain, would

resolve the problem. This is indeed true with the first scenario

when virtual machines transmit large packets of 1500 bytes.

However, with regard to the second scenario, we notice that

neither the native system nor the native system with TC respect

the established SLA. In fact, no virtual machine is able to

transmit at the required throughput: VM1 and VM3 require

 0

 100

 200

 300

 400

 500

 600

 700

 800

Native System TC

B
a

n
w

id
th

(M
b

/s
)

SLA1(150Mb/s)
SLA2(700Mb/s)
SLA3(150Mb/s)

(a) scenario1

 0

 100

 200

 300

 400

 500

 600

Native System TC

B
a

n
w

id
th

(M
b

/s
)

SLA1(150Mb/s)
SLA2(700Mb/s)
SLA3(150Mb/s)

(b) scenario2

Fig. 2. Transmission throughput

 50000

 100000

 150000

 200000

 250000

 300000

 0 50000 100000 150000 200000 250000 300000

O
u

tp
u

t
R

a
te

 (
K

p
/s

)

Input Rate (Kp/s)

64Bytes packets
1500Bytes packets

Fig. 3. Transmission Throughput in packets per second

150 Mb/s each, but they are able to achieve 50 Mb/s. VM2

sees its throughput limited to 520 Mb/s while it requires 700

Mb/s. This is due to the fact that the transmission is limited

to 190 Kp/s as shown by figure 3 with 64 bytes sized packets.

The virtual machine is then unable to transmit 64 bytes sized

packets at more than 50 Mb/s.

The transmission capacity is even worse with traffic control

TC since this latter rejects packets in the driver domain

after they are transferred from the virtual machine through

the shared memory. This leads us to evaluate the system’s

consumption in terms of CPU and memory transactions in

order to determine the system bottleneck. This bottleneck is

behind the transmission throughput limitation of 190 Kp/s.

Then, we consider the two main system physical components:

the CPU and the memory. We aim to determine the component

which has reached its maximum capacity when the virtual

machine transmits at the maximum throughput of 190 Kp/s.

For each component, we profile its usage using Xenoprofile

[21] in order to determine the effectively used capacity of the

component. Then, we compare, we compare the upper-bound

capacity per transmitted packet with the effectively consumed

capacity per packet. Figure 4 shows that at a throughput of

190 Kp/s, the system has consumed all the available memory

transactions while there still are available CPU cycles. We

conclude then that the memory is the physical bottleneck of

the system.

In current VMM implementations, when one virtual ma-

chine transmits at a rate exceeding the available bandwidth,

the driver domain drops the packets (in the netback). Packets

are then dropped after they have been transferred through

the memory from the netfront to the netback. All of these

operations are shown to require multiple memory transactions.

To encounter this problem, we propose to integrate an

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250

C
P

U
 C

y
c
le

s
 (

K
C

/p
a
c
k
e
t)

Input Rate (Kp/s)

CPU

Upper-bound
Effective

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250M
e
m

o
ry

 T
ra

n
s
a
c
ti
o
n
s
 (

M
T

/p
a
c
k
e
t)

Input Rate (Kp/s)

Memory

Upper-bound
Effective

Fig. 4. Physical resources consumption

SLA-based Dynamic Bandwidth Allocator for the virtual

machines called DBA-VM that will run in the driver domain

to dynamically adjust the transmission bandwidth of each

virtual machine according to the established SLA and the

available bandwidth in terms of bits per second as well as

packets per second.

Furthermore, in order to minimize the memory consump-

tion, we propose that the DBA-VM drops packets in the

netfront (rather than in the netback) whenever the packet is

dedicated to be dropped due to bandwidth exceed. Thus we

eliminate unnecessary and costly packet copies and notifica-

tions between the netfront and the netback.

IV. DBA-VM: DYNAMIC BANDWIDTH ALLOCATOR FOR

VIRTUAL MACHINES

We consider a virtualized system with a driver domain

and several virtual machines with different QoS requirements

depending on applications that each one hosts. We use an

SLA that, in addition to system requirements (CPU, memory),

specifies bandwidth usage in terms of bits per second and a

maximum packets per second rate for each virtual machine as

network requirements. Such an SLA definition takes also into

consideration the physical machine packets per second rate

limit. The proposed DBA-VM is built in a with regard to such

an SLA definition. In order to guarantee an acceptable band-

width to virtual machines hosting applications requiring QoS,

DBA-VM proposes a differentiation mechanism operating at

the driver domain level that dynamically readjusts transmission

bandwidth according to the SLAs. This mechanism classifies

the different virtual interfaces into classes that are character-

ized by a priority, by a maximum and minimum bandwidth

and by maximum allowed packet per second rate.

Since the memory bottleneck is due to multiple useless

packets copies from the netfront to the netback, DBA-VM

will be deployed between these two components to avoid such

useless memory usage.

Indeed, with the DBA-VM, the packets dedicated to be

dropped whenever the maximum allowed bandwidth is ex-

ceeded, will be dropped at the netfront, before their transfer

to the netback

In our algorithm we use the following notations:

• N the number of virtual machines.

• VMj the virtual Machine j, j= 1..N

• vifi virtual interface i, i=1..M

• Bp maximum bandwidth of the physical interface p.

• Bi the bandwidth at which vifi is transmitting, i=1..M

• Bmax
i the maximum bandwidth at which vifi is allowed

to emit, set in the SLA.

• Bmin
i the minimum guaranteed bandwidth of vifi, set in

the SLA.

• Bex
p is the available physical interface bandwidth.

• Ci the class of vifi.

• ppsVMj the maximum rate in packets per second that

VMj can send, set in the SLA

• ppsvifi the maximum rate in packets per second that vifi
can send

• BT VMj total bandwidth emitted by VMj

The DBA-VM is run in two steps: first it computes the max-

imum bandwidth in bits per second and second it computes

the maximum packets per second rate.

a) Step 1: Maximum bandwidth computation in bits per

second

For each physical interface P, the DBA-VM browses each

vifi attached to P starting with the ones belonging to the

highest priority class. The DBA-VM measures Bi for each

vifi. In the case where multiple virtual interfaces belong to

the same class, the DBA-VM will start with the first created

one.

For each vifi, if Bi is between Bmax
i and Bmin

i (Bmax
i <

Bi < Bmin
i), then no change is made.

In the case where Bi exceeds Bmax
i (Bi > Bmax

i) then Bi

will be readjusted to Bmax
i and the available bandwidth Bex

P

will be augmented by the resulting difference of Bi-B
max
i .

(Bex
P ← Bex

P +(Bi - Bmax
i)

Finally in the case where Bi went below Bmin
i then the

DBA-VM checks whether there still is available bandwidth

(Bex) on the physical interface and whether (Bi - Bmin
i) <

Bex or not.

If so, Bmin
i is readjusted to Bi and Bex

P is diminished by the

difference Bmin
i - Bi.

If not, in the case where the current virtual interface belongs

to the least important class, it readjusts the bandwidth of

all the other virtual interfaces vifj , j=1..K belonging to the

same class to Bmin
j so that Bi could reach Bmin

i . In the case

where there are other less prioritized classes Cx, x=1..N, then

the bandwidth of each virtual interface belonging to the class

Cx is also readjusted to the minimum bandwidth of the class

Cx: Bmin
x starting with the least prioritized class.If there is

an remaining available bandwidth Bex > 0 then it will be

reallocated to the different virtual interfaces based on their

priorities.

b) Step 2: Maximum bandwidth computation in packets

per second

For each virtual machine j VMj the DBA-VM browses

each vifi attached to VMj . The DBA-VM measures Bi for

each vifi and then sums all Bi this sum is BT VMj which is

the total bandwidth consumed by VMj

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1500B1500B1500B 64B 1500B 64B

B
a
n
w

id
th

(M
b
/s

)

SLA1(150Mb/s,20kp/s)
SLA2(700Mb/s,60kp/s)
SLA3(150Mb/s,60kp/s)

(a)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

Native System TC DBA-VM
B

a
n
w

id
th

(p
a
c
k
e
ts

/s
)

SLA1(150Mb/s,20Kp/s), 64Bytes
SLA2(700Mb/s,60kp/s), 1500Bytes

SLA3(150Mb/s,60kp/s), 64Bytes

(b)

Fig. 5. (a) Transmission throughput with DBA-VM in bits per second
(b)Transmission throughput in packets per second with different configurations

For each virtual interface the bandwidth in packet per sec-

ond is the total virtual machine packet per second multiplied

by interface usage coefficient which is interface bandwidth

divided by virtual machine total bandwidth (Bi /BT VMj).

V. PERFORMANCE EVALUATION

We have developed the proposed DBA-VM as a module

that we integrated to the driver domain kernel. It consists of

a daemon that periodically executes the described algorithm,

checks the rate at which each virtual machine is transmitting,

and reconfigures all the virtual machines rates according to

these results and SLA definition.

In order to evaluate our algorithm performance, we will

compare it to Native Xen System and also to traffic shaping

mechanism using TC deployed in the driver domain. We use

the same experimental setup and scenarios as in section III.c.

We also modify the three SLA by introducing the SLA

packets per second parameters as follows: SLA1 fixes the

maximum rate to 20 kilos packets per second (Kp/s), while

SLA2 and SLA3 fix it to 60Kp/s.

We present DBA-VM evaluation of bandwidth , QoS pa-

rameters and System resources consumption.

A. System throughput

For homogenous traffic of large packets (1500 bytes) figure

5(a), DBA-VM allows the system to respect the SLA. In fact,

as total packet rate per second is well below VM maximum

achievable packets per second rate, all the SLAs throughput

in terms of packets per second and bits per seconds are

respected. In the second scenario, the virtual machines transmit

a mixture of large and small packets. We notice a decrease

in the transmission of the three virtual machines especially

for VM1 and VM3 which transmission throughput dropped

from 150 Mb/s to 9.1 Mb/s and 22 Mb/s respectively. In such

case VM2 throughput decreases slightly while we have a more

important decrease in VM1 and VM3 throughput. However

M2 throughput for the DBA-VM case in scenario 2 is clearly

better than for native System and native system with TC.VM1

is more affected than VM3 by this decrease since its SLA

allows less packets per second rate. We also notice that even

if the VM1 and VM3 throughput is decreased, the packets per

second rate specified in the SLA is respected as shown by

 0

 1

 2

 3

 4

 5

 6

 7

 8

Native System TC DBA-VM

D
e

la
y
(m

s
)

SLA1(150Mb/s,20kp/s), 64Bytes
SLA2(700Mb/s,60kp/s), 1500Bytes

SLA3(150Mb/s,60kp/s), 64Bytes

(a) Delay

 0

 5

 10

 15

 20

Native System TC DBA-VM

J
it
te

r(
m

s
)

SLA1(150Mb/s,20kp/s), 64Bytes
SLA2(700Mb/s,60kp/s), 1500Bytes

SLA3(150Mb/s,60kp/s), 64Bytes

(b) Jitter

Fig. 6. Packets delay and jitter

 1600

 1800

 2000

 2200

 2400

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
C

P
U

 C
y
c
le

s
 (

M
C

/s
)

readjustement period (s)

DBA-VM
Native System

Fig. 7. System Resource consumption: CPU

 0

 1

 2

 3

 4

 5

 6

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

tr
a

n
s
a

c
ti
o

n
 (

m
ill

io
n

/s
e

c
o

n
d

)

readjustement period (s)

DBA-VM
Native System

Fig. 8. System Resource consumption: MEMORY

figure 5(b). Unlike native system and native system with TC,

DBA-VM imposes a strict packet per second allowed rate. This

constraint allows a better network bandwidth sharing between

the different virtual machines.

B. Performance analysis for QoS parameters

We first notice that the proposed mechanism considerably

reduces the packets delay for the flows transmitted by VM2

and VM3 from respectively 3 and 4ms to less than 1ms

and 1.6ms.However, we notice an increase in the delay for

packets transmitted by VM1 from 4ms up to 6ms. As VM1

has low packets per second rate, it is scheduled for a smaller

period comparing to VM2 and VM3 so this lead to a bigger

packets transmission delay. As VM1 has a relatively low

packets per second rate compared to VM2 and VM3, it is

expected that the packets transmitted by VM1 experience a

higher delay. The jitter value in DBA-VM is around 0.5ms

for high priority flows. This represents a relatively good result

for QoS compared with a TC based system.

It is interesting to point out that with DBA-VM, when we

are under the SLA limits, the loss rate is lower than with

the native system since we control the packets transmission

rate for each Virtual machine so we can limit packets drop.

However, as soon as we reach the SLA limitations, the loss

rate grows rapidly. This is an intended mechanism to avoid

affecting the other machines performances.

C. System Resources consumption

We also evaluated the system CPU and memory resources

consumption for different readjustment periods. The

readjustment period is the period after which bandwidth

is recomputed in terms of bits per second and packets per

second for each Virtual Machine.

The DBA-VM avoids transferring packets emitted from

virtual machines beyond their SLA. It also avoids packets

loss in driver domain. This leads to less system resources

consumption. However the algorithm introduces a CPU and

memory overload. Using a long readjustment period leads

to less computation in the daemon, so this will lead to less

memory and CPU usage for a non I/O operation, in return

this leads to a biggest adaptation time. A compromise should

be found between adaptation time and system resources

consumption.

In order to evaluate the DBA-VM impact on system re-

source consumption we profiled the system resources usage

(memory transaction and CPU cycles) using Xenoprofile [21]

with both native and DBA-VM system. Figures 8 and 9 present

CPU and memory usage for different readjustment periods.

First we observe that for a period lasting more than 0.3

second, the DBA-VM consumes less memory transactions than

the native system. This is due to the fact that we avoid useless

memory copies between the netfront and the netback.

With regard to the CPU consumption, the DBA-VM con-

sumes as much CPU cycles as the native system form a

readjustment period equal to 0.9 second. This value represents

a good check period since with such a value, the DBA-VM

also reduces the achieved memory transactions compared to

the native system.

VI. CONCLUSION

In this paper we proposed DBA-VM, a new mechanism

for the dynamic bandwidth allocation to the virtual machines,

in a virtualized cloud environment. We first showed the native

system and the TC based system shortcomings in guaranteeing

the required transmission bandwidth to the virtual machines.

We have also evaluated the system’s capacity in terms of

transmitted packets per second and show that the memory

severely limits this transmission rate. These findings led us

to propose a novel scheme that enables the system to adjust

the transmission rate of the virtual interfaces in the I/O chan-

nel according to the virtual machine SLA, the transmission

bandwidth being defined in terms of both bits per second and

packets per second in the SLA. The experimental evaluation

first shows that the proposed mechanism allows the respect of

the virtual machines SLA by enforcing the isolation between

the different flows as well as an improvement in the QoS pa-

rameters. Furthermore, this gain is achieved while reducing the

total cost in terms of physical resources (CPU and memory)

usage. We intend next to extend our algorithm to establish

the SLAs based on flows classes rather than virtual machines

classes. Furthermore, our proposal could be extended to define

classes according to multiple QoS parameters like packet delay

and jitter in order to enable virtualized cloud totally respond

to customers expectations.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A.D Joseph, R. Katz, A. Konwinski, G.
Lee, D. Patterson, A. Rabkin, I. Stoica, A.Zaharia, ”Above the Clouds: A
Berkeley View of Cloud Computing”, Technical Report No. UCB/EECS-
2009-28, February 10, 2009.

[2] L. M.Vaquero, L. Rodero-Merino, J.Caceres, M.Lindner, A Break in the
Clouds: Towards a Cloud Definition, ACM SIGCOMM Communication
Review, vol 39, no. 1, Jan. 2009, pp. 50-55.

[3] N. Feamster, L. Gao, and J. Rexford, How to lease the Internet in
your spare time, in the Editorial Zone of ACM SIGCOMM Computer
Communications Review, p. 61-64, January 2007

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R.Neugebauer, I.Pratt, and A. Warfield, Xen and the art of virtualization,
19th ACM Symposium on Operating Systems Principles, October 2003.

[5] P. Xing, L. Ling, M. Yiduo, A. Menon, S. Rixner, A.L Cox, W.
Zwaenepoel, Performance Measurements and Analysis of Network I/O
applications in Virtualized Cloud, International Conference on Cloud
Computing, 2010.

[6] P. Xing, L. Ling, M. Yiduo, S. Sivathanu, K. Younggynm, P. Calton,
Understanding Performance Interference of I/O Workload in Virtualized
Cloud Environments. International Conference on Cloud Computing,
2010.

[7] P. Apparao, S. Makineni, and D. Newell, Characterization of net-
work processing overheads in xen, in Proceedings of the 2nd Interna-
tional Workshop on Virtualization Technology in Distributed Computing
VTDC 2006, Washington, DC, USA, 2006.

[8] JR. Santos, Y. Turner, G. Janakiraman, I. Pratt, Bridging the gap between
software and hardware techniques for I/O virtualization, USENIX An-
nual Technical Conference, 2008.

[9] A. Li, X. Yang, S. Kandula, M. Zhang, CloudCmp: comparing public
cloud providers, in Proceedings of the 10th annual conference on Internet
measurement (IMC ’10), 2010

[10] J. Shafer, I/O Virtualization Bottlenecks in Cloud Computing Today,
Workshop on I/O Virtualization (WIOV 2010), Pittsburgh, 2010.

[11] F. Anhalt, and P. Vicat-Blan Primet, Analysis and experimental evalu-
ation of data plane virtualization with Xen, in Proceeings of the fifth
International Conference on Networking and Services 2009

[12] X. Xu, F. Zhou, J. Wan, and Y. Jiang, Quantifying performance proper-
ties of virtual machine, in the International Symposium on Information
Science and engineering, 2008

[13] K.K Ram, Y. Turner and J.R, Santos, Redesigning Xen’s memory sharing
mechanism for safe and efficient I/O virtualization , In the second
workshop on I/O virtualization, Pittsburgh, PA, USA, 2010.

[14] J. Zhang, X. Li, and H. Guan, The optimization of Xen network
virtualization, in the proceedings of the International Conference on
Computer Science and Software Engineering, 2008.

[15] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M.
Williams, Safe hadrware Access with the Xen virtual machine monitor,
In Proceedings of the first workshop on Operating System and Archi-
tectural Support for the on demand IT Infrastructure, OASIS 2004.

[16] X. Zhang, and Y. Dong, Optimizing Xen VMM based on Intel Virtual-
ization technology, In the proceedings of the International Conference
on Computer Science and Software Engineering, 2008.

[17] D. Guo, G. Liao, and L.N Bhuyan, Performance characterization and
cache-aware core scheduling in a virtualized multi-core server under
10GbE, in the Proceedings of the 2009 IEEE International Symposium
on Workload Characterization (IISWC) 2009

[18] G. Liao, D. Guo, L. Bhuyan, and S.R King, Software techniques
to improve Virtualized I/O performance on multi-core systems, in
Proceedings of the 4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS) 2008.

[19] http://aws.amazon.com/ec2
[20] S.K. Barker, P. Shenoy, Empirical Evaluation of Latency-sensitive Ap-

plication Performance in the Cloud, in the Proceedings of the first annual
ACM SIGMM conference on Multimedia systems (MMSys ’10) 2010

[21] A. Menon, G. Janakiraman, JR. Santos, and W. Zwaenepoel, Diagnosing
performance overheads in the Xen virtual machine environment,VEE
2005.

