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Summary 

Tensegrity structures are spatial reticulated structures composed of cables and struts. A tension-
compression equilibrium leads to lightweight systems that change shape through length changes in 
their members. Active members thus control several degrees of freedom simultaneously. Tensegrity-
ring modules are transformable circuit-pattern modules. The linear combination of tensegrity rings 
has been shown to be viable for a footbridge application. Shape transformations of a ¼  scale four-
ring-module tensegrity-footbridge system are studied in this paper. Transformations are obtained 
employing active continuous cables and springs in the tensegrity system to reduce the number of 
active elements. Obtaining a desired shape may involve independent actuation in several active 
elements. Independent actuation steps are found with the combination of a dynamic relaxation 
algorithm and a stochastic search algorithm. 
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1. Introduction 

Tensegrity structures are spatial reticulated structures composed of cables and struts in a self-
equilibrium. Although tensegrity was introduced in the 1950s, there are few examples in structural 
engineering [1-5]. Tensegrity systems are attractive transformable units for adaptive structures as 
structural elements and actuators can be combined. Both active struts and cables have been used to 
control tensegrity structures [6-9]. Sultan and Skelton [10] showed that appropriate cable actuation 
allows tensegrity systems to remain close enough to their equilibrium manifold to maintain stiffness 
during shape transformations, contrary to traditional deployable systems. The position and the 
number of active cables depend on the chosen topology and application. However, such deployment 
usually requires a large number of active cables. The number of active cables can be reduced with 
the use of continuous cables. Moored and Bart-Smith [11] showed that employing continuous 
cables changes tensegrity mechanics resulting in a more generalized formulation than with 
discontinuous cables. Furthermore, continuous cables may result in remote actuation schemes of 
tensegrity systems as actuation devices can be detached from the structure and placed at the 
supports [12].  

This paper focuses on shape transformations of a multiple-degree-of-freedom ¼  scale tensegrity-
footbridge system using continuous active cables and springs. Shape transformations such as 
deployment and shape corrections are conducted using the same remote actuation scheme. Due to 
the complexity of the shape-transformation task and the large solution space, a stochastic search 
algorithm is combined with a modified dynamic relaxation algorithm to identify the right actuation 
steps for each active cable in order to obtain the desired shape transformation. 

2. The Tensegrity-Ring Topology 

There is a wide variety of tensegrity units that can be used to develop structural systems, including 



modules and assembly forms. However, not all tensegrity modules are suitable for structural 
applications as neither all modules nor assemblies result in transformable systems. The proposed 
tensegrity-footbridge system is based on four pentagonal tensegrity-ring modules assembled in a 
linear way as shown in Figure 1. Pentagonal tensegrity-ring modules belong to the circuit-pattern 
topologies [13]. The “ring module” characterization originates from Motro et al [14] who studied 
their ring-like topology as well as their ability to fold based on cable-length changes. When ring 
modules are assembled together in a linear form, they create a structural system resembling a 
hollow-rope where the empty space in the center can be used as walking space with the addition of 
a deck [14]. The hollow-rope assembly results in a transformable system that changes shape or 
deploys through cable actuation [15]. In this study, the deployment of the footbridge system is 
assumed to be from both sides. 

 

 

Figure 1: Illustration of the pentagonal tensegrity-ring footbridge 

Pentagonal ring modules include a single strut circuit of 15 struts connected to 30 cables through 15 
nodes. The nodes are arranged in three pentagonal layers. Figure 2 illustrates the topology of a 
pentagonal ring module. The strut circuit-pattern is thus composed of diagonal struts and 
intermediate struts. Diagonal struts connect the nodes on the external pentagonal layers of the 
module, while intermediate struts connect the nodes of the intermediate pentagonal layer with the 
external ones. Cables can also be grouped into two topology families: layer cables and x-cables. 
Layer cables are cables that connect the nodes of the external pentagonal layers. X-cables are the 
cables on the lateral faces of the module connecting the nodes of the intermediate pentagonal layer 
with the external ones. X-cables can be further distinguished in coplanar and non-coplanar cables 
according to their in-plane position in relation to diagonal struts.  

 

 

Figure 2: Pentagonal tensegrity ring module topology 

Pentagonal ring modules are suitable for structural applications because they have no internal 
mechanisms and six self-stress states. Furthermore, the four-module tensegrity-system considered 
for the footbridge application has no internal mechanism and 36 self-stress states. The number of 
internal mechanisms and self-stress states is obtained through the study of the equilibrium matrix A 
defined as in [11] with rigid body movements constrained: 

 
1 TA Cgl S l

 (1) 

where C is the connectivity matrix, g corresponds to the projection of element length in each 
Cartesian direction, l is the corresponding element length vector and S is the clustering matrix. The 
clustering matrix links continuous cables (clustered cables) to discontinuous cables. Hence, for 



traditional discontinuous systems it corresponds to an identity matrix with the size depending on the 
number of the elements in the system. The structural behaviour of the pentagonal tensegrity-ring 
module was studied in [16]. 

In this paper, continuous cables are applied only in non-coplanar x-cables. The 2 x-cables that are 
not coplanar with diagonal struts at each lateral face of the module are replaced by a continuous 
cable. In the linear “hollow-rope” system for the footbridge application, continuous cables run 
through two modules replacing thus 4 x-cables. Employing continuous cables affects the structural 
behavior of the system modifying the tensegrity equilibrium and reducing the kinematic constraints 
[11]. The study of the equilibrium matrix showed that the continuous pentagonal ring module has 
no internal mechanism and a single self-stress state. If continuous cables run in the half-footbridge 
system then the four-module hollow-rope system has no internal mechanisms and 6 self-stress states 
thus remaining suitable for structural applications. These results are summarized in Table 1. 

 

Table 1: Mechanical characterization of the pentagonal tensegrity-ring module and footbridge system 

 

Module with 

discontinuous 

cables 

Module with 

continuous 

cables 

Footbridge 

system with 

discontinuous 

cables  

Footbridge 

system with 

continuous 

cables 

Rank of the 

equilibrium-matrix 
39 39 129 129 

N° of mechanisms 0 0 0 0 

N° of self-stress states 6 1 36 6 

3. Shape Transformations of the Tensegrity-Ring System 

Tensegrity systems are stable systems and therefore require active elements to change their shape. If 
large shape transformations are required, cable actuation is usually more efficient than employing 
telescopic struts. The number of active cables required depends on the topology, the desired shape 
transformation and the actuation scheme applied.  

The pentagonal tensegrity-ring module is deployable if cable lengths can be adjusted [14]. 
Deployment is defined as the transformation from a compact to an expanded form. Previous studies 
identified the contact-free deployment-path space of pentagonal ring modules as well as suitable 
actuation schemes [17]. The deployment motion involved is composed of a translation, a dilation 
and a rotation. The motion is similar to a helix elongation: when a helix is elongated, it twists and 
its internal space shrinks (Figure 3). Thus, during deployment the length of x-cables (lateral cables) 
increases while the length of layer cables (front and back side cables) decreases. Consequently, 
there is an inverse relationship between x-cables and layer cables with x-cables controlling folding 
while layer cables controlling unfolding. However, actions on both cable families are required to 
obtain stable configurations. 

In order to simplify the design and control of the tensegrity system, continuous cables and spring 
elements are employed resulting in a 5-actuator system. Continuous active cables replace 
individually actuated x-cables thus reducing the number of actuators required. Furthermore, 
actuators can thus be placed on the supports since continuous cables run through the boundary 
nodes.  Employing continuous active cables in the footbridge system thus eliminates actuator-
related design constraints such as mass and volume of the actuation devices. Springs allow length 
changes without requiring any actuation devices. However, spring-length changes are driven by 
actions on other elements. In this study, springs replace layer cables so that their length changes are 
driven by actions of the continuous active x-cables as illustrated in Figure 3. Hence, springs are 
elongated in the folded configuration and contracted in the unfolded configurations allowing spring 
energy to be used for unfolding. Moreover, springs are thus in a low energy state in the unfolded 



configuration reducing the risk of energy bursts under service. 

 

 

Figure 3: Deployment motion and actuation components of the tensegrity-ring footbridge-system  

Although the shape transformation of deployment of the tensegrity-ring system involves modifying 
several degrees of freedom, it is found feasible with the same length change (actuation step) applied 
in all 5 active continuous x-cables. Consequently, a single actuator connected to the 5 active cables 
is sufficient for the deployment of each half of the tensegrity-footbridge system. However, single 
actuator configurations do not allow adjustments in the shape of the system unless the actuator 
controls individually every cable. Therefore, in order to allow a wider range of shape 
transformations, including shape corrections during deployment, the actuation scheme is composed 
of 5 independently active continuous x-cables for each half of the footbridge system. The feasibility 
of the deployment of the module with continuous active cables and springs was validated on a small 
scale physical model shown in Figure 4. For this prototype, deployment was successfully controlled 
using 5 hand cranks placed at the supports of the model.  

 

 

Figure 4: Snapshots from the deployment of a small scale (
1
/10) tensegrity-ring module  

4. Analysis and Shape Control 

In this paper, the structural analysis of the continuous tensegrity-ring system is performed using a 
modified dynamic relaxation algorithm that takes into account continuous cables [18]. The system 
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studied next in this paper is a ¼  scale four-ring-module tensegrity footbridge made of steel hollow 
tubes, steel cables and springs as shown in Figure 5. The Young modulus is set at 210GPa and 
115GPa for tubes and cables respectively. Details of the steel hollow tubes and steel cables are 
given in Table 2. Spring stiffness is set at 5% of cable stiffness with a rest length of 0.85m.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Details of the ¼  scale four ring-module tensegrity footbridge-model 

Member 

type 

Length 

[m] 

Diameter 

[mm] 

Thickness 

[mm] 

Element 

strength [kN] 

Self-stress                

[% element strength] 

Struts 1.35 28 1.5 10.6 - 

Cables  0.69 4 - 9 12.5 

 

In this study, quasi-static actuation and frictionless motion are assumed during shape 
transformations. Quasi-static actuation implies that dynamic analyses of shape transformations can 
be approximated by a series of static analyses. Thus, shape changes are analyzed using an algorithm 
that integrates cable actuation and spring reaction in the modified dynamic relaxation algorithm. 
Actuation is implemented as a length change in active cables. After each actuation, a new 
equilibrium configuration is found. Hence, large shape transformations such as deployment are 
decomposed into a series of intermediate equilibriums thus remaining always close to the 
equilibrium manifold. The number of intermediate equilibriums depends on the actuation step. 
Large actuation steps may result into unstable configurations, while small actuation steps are 
computationally expensive. Although deployment of the tensegrity-ring system is found feasible 
using the same actuation step in all continuous active x-cables, obtaining the desired deployed 
shape or complex shapes requires the application of several actuation steps in the active cables. 

The initial strategy employed to find the right actuation steps that lead to the desired shape is an 
iterative approach similar to a gradient-based search. Starting with a trial solution actuation steps 
are then applied depending upon constraint violations of element contact and element strength to 
arrive at a particular shape. It is thus assumed that the search space has a single minimum solution 
and that individually adjusting the active cables leads to this minimum. However, this assumption is 
seldom valid as actuation steps simultaneously affect multiple degrees of freedom and the objective 
function has multiple local minima. Furthermore, it is often of interest to generate a number of 
solutions so that there can be a selection using secondary criteria such as the energy required by the 
actuation devices. Consequently, a stochastic search algorithm is combined with the modified 
dynamic relaxation algorithm to identify steps hat lead to the desired shape. 

Figure 5: Pictures of the ¼  scale ring-module tensegrity footbridge system 



Stochastic search algorithms replace gradient search methods when the objective function includes 
multiple minima. There are many tens of stochastic methods, such as Simulated Annealing, Genetic 
Algorithms and Particle Swarm Optimization. The stochastic search algorithm used in this study is 
Probabilistic Global Search Lausanne (PGSL). Its principal assumption is that sets of near-optimal 
solutions are near sets of good solutions [19]. The PGSL algorithm is based on a probability density 
function that is iteratively modified so that more exhaustive searches are made in regions of good 
solutions. It is suitable for objective functions with continuous parameters and was successfully 
used in other engineering tasks [20] as well as for the control of a tensegrity structure [21, 22]. In 
this study, cable-actuation steps are defined as the search parameters for this study. They are defined 
within a set of [l0-10, l0+10] with a 0.1cm precision where l0 corresponds to the cable rest-length. 
Finally, the Objective Function (OF) consists of the sum of the absolute values of the differences in 
nodal coordinates between the desired shape and the current shape of the system in addition with a 
penalty cost: 

 

 1 2( ) ( , )
N E

d cOF n n P f f     (2) 

where N is the number of nodes, nd and nc are the nodal coordinates for the desired and the current 
shape respectively. E is the number of elements and P is the penalty function accounted for 
constraint violations of element contact f1 and element strength f2. Element contact is estimated 
based on element geometry and position, while internal forces are estimated using the modified 
dynamic relaxation algorithm. The actuation-solution space depends on the number of actuators and 
their characteristics (range and precision). The space grows exponentially with the number of 
actuators. The size of the actuation space for the two module footbridge-system with the 5 
continuous active x-cables is estimated at 100

5
 = 10

10
 solutions. 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 6 shows an example of shape correction due to a loading of 0.5kN applied at the two right-
bottom end-nodes resulting to an average displacement δ of approximately 2.5cm of the deployed 
two-module system (OF = 5). The goal of the shape transformation is to correct the displacement of 
the right-bottom end-nodes while maintaining the structural integrity of the system under the 
applied loading. Therefore, only the right end-nodes are taken into account in the objective function 
along with the penalties for element contact and strength. PGSL provides a 90% correction of the 
deformed shape with respect to the actuation scheme applied (OF = 0.5) avoiding strut contact and 

Figure 6: Shape corrections on the half-footbridge tensegrity-system: shape before correction (OF =5),   

shape after correction using stochastic search (OF = 0.5) 

* Note: Displacement δ is amplified for visualization 



element failure.  

A better shape control can be obtained considering a larger number of active cables in the module as 
controllability of the shape depends on the number of active cables in the system. Therefore, a 
better shape correction is obtained if springs of the layer elements are replaced by discontinuous 
active cables. Figure 7 shows the shape correction for an average displacement δ of approximately 
2.5cm (OF = 5) of the two-module system with continuous active x-cables and discontinuous active 
layer cables. The obtained correction shape is closer to the initial shape (OF = 0.0) due to a larger 
number of active cables.   

 

 

 

 

 

 

 

 

 

 
 

 

 

 

5. Conclusions 

This paper focuses on multi-degree-of-freedom shape transformations of a ¼  scale tensegrity 
footbridge. The conclusions from this study are as follows: 

 Shape controllability increases with the number of actuators. Shape control of the 
pentagonal tensegrity-ring system is successfully conducted when actuators are replaced by 
springs.  

 The actuation scheme with active cables and spring elements is applicable for both large 
transformations such as deployment as well as for small shape changes such as deployment 
corrections. Actuation steps differ according to the desired shape change.  

 Actuation steps required for contact-free shape corrections while maintaining structural 
integrity are successfully identified through combining a stochastic search algorithm with a 
dynamic relaxation algorithm that has been modified for continuous cables. 

The efficiency of using advanced computing methods for shape control of active deployable 
tensegrity systems has potential for shape control of other tensegrity systems. 
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