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The main purpose of this paper is providing a systematic study and classification of non-scalar kernels for Reproducing Kernel Hilbert Spaces (RKHS), to be used in the analysis of deformation in shape spaces endowed with metrics induced by the action of groups of diffeomorphisms. After providing an introduction to matrix-valued kernels and their relevant differential properties, we explore extensively those, that we call TRI kernels, that induce a metric on the corresponding Hilbert spaces of vector fields that is both translation-and rotation-invariant. These are analyzed in an effective manner in the Fourier domain, where the characterization of RKHS of curl-free and divergence-free vector fields is particularly natural. A simple technique for constructing generic matrix-valued kernels from scalar kernels is also developed. We accompany the exposition of the theory with several examples, and provide numerical results that show the dynamics induced by different choices of TRI kernels on the manifold of labeled landmark points.

Introduction

Recent years have seen the rapid development of acquisition techniques for medical data, such as magnetic resonance imaging, that allow the identification and very detailed visualization of anatomical structures in vivo and the quantitative description of their shape. The key challenge for researchers is to devise statistical methods that assess normal and abnormal variations of such shapes across subjects, with the goal of gaining understanding of several pathologies and ultimately providing practitioners with shapebased diagnostic tools. The problems of comparing geometrical objects of the same nature, establishing correspondences that are anatomically justified, and quantifying deformation (i.e. computing distances between shapes, so to be able perform, for example, shape classification) are central in addressing all of the above issues. The emerging discipline of computational anatomy thus lies at the interface of geometry, imaging science, statistics, and numerical analysis.

Group action approach. It was Ulf Grenander [START_REF] Grenander | Computational anatomy: an emerging discipline[END_REF] that introduced the notion of group action in this field. The main idea is to compare anatomical objects through the estimation and the analysis of a deformation of their entire space where such objects are located. The theoretical model thus consists in defining (i) the mathematical space of the observed objects (e.g. the images, surfaces, curves, point setsin one word, the shapes), (ii) an appropriate group of transformations, and (iii) a group action on the objects. This approach stems from the observation that the visual comparison of medical images coming from different individuals suggests the existence of an underlying deformation of the ambient space.

The formulation of precise registration algorithms requires rigorous mathematical modeling of the deformations of such space. Rigid or affine transformations alone are insufficient to describe the complexity of the observed deformations, and it is in fact appropriate to consider functional spaces of infinite dimensions. In the diffeomorphic approach introduced in [START_REF] Christensen | Deformable templates using large deformation kinematics[END_REF][START_REF] Dupuis | Variational problems on flows of diffeomorphisms for image matching[END_REF] the transformations are obtained by the temporal integration of a family of vector fields; this was partly inspired by Vladimir Arnold's seminal paper [START_REF] Arnold | Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits[END_REF], in which it was proven that incompressible fluid dynamics can be characterized as geodesic flow in the group of volume preserving diffeomorphisms, with respect to the kinetic energy metric (i.e. the L 2 norm of the fluid velocity). A rigorous mathematical foundation for this new model and the construction of invariant metrics for the groups of diffeomorphisms was established by Alain Trouvé [START_REF] Trouvé | Infinite Dimensional Group Action and Pattern Recognition[END_REF]: in this approach one chooses a Hilbert space V of vector fields whose norm • V defines the cost of infinitesimal deformations, and time-dependent diffeomorphisms ϕ t are obtained by the integration of a family of vector fields v(t, •) : R d → R d in V , t ∈ [0, 1], via the equation ∂ t ϕ t (x) = v(t, ϕ t (x)), with ϕ 0 (x) = x. Given two shapes (geometric objects or images), among all diffeomorphisms that perform the registration, the one that is generated by a time-dependent vector field that minimizes the kinetic energy 1 0 v(t, •) 2 V dt is chosen, and the square root of the minimal energy is in fact a distance between the two shapes.

This framework, often referred to as Large Deformation Diffeomorphic Metric Mapping (LDDMM), has received considerable interest and is now popular in the fields of computational anatomy, morphometry, and shape analysis. The method may be applied for performing registration and computing distances in different kinds of "shape spaces", such as the manifolds curves [START_REF] Glaunès | Large deformation diffeomorphic metric curve mapping[END_REF][START_REF] Michor | An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach[END_REF], surfaces [START_REF] Zhang | Diffeomorphic surface flows: A novel method of surface evolution[END_REF], images [START_REF] Beg | Computing large deformation metric mappings via geodesic flows of diffeomorphisms[END_REF][START_REF] Miller | On the metrics and Euler-Lagrange equations of computational anatomy[END_REF][START_REF] Miller | Group actions, homeomorphisms, and matching: a general framework[END_REF], vector fields [START_REF] Cao | Large deformation diffeomorphic metric mapping of vector fields[END_REF], diffusion tensor images [START_REF] Cao | Diffeomorphic matching of diffusion tensor images[END_REF], measures [START_REF] Glaunès | Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l'anatomie numérique[END_REF][START_REF] Glaunès | Large deformation diffeomorphic metric curve mapping[END_REF], and labeled feature points, or landmarks [START_REF] Glaunès | Landmark matching via large deformation diffeomorphisms on the sphere[END_REF][START_REF] Joshi | Landmark matching via large deformation diffeomorphisms[END_REF][START_REF] Micheli | Sectional curvature in terms of the cometric, with applications to the Riemannian manifolds of landmarks[END_REF][START_REF] Miller | Group actions, homeomorphisms, and matching: a general framework[END_REF]. We should note that in this context the formulation of the registration problem requires the vector fields to be L 1 or L 2 in the time parameter t ; these and other notions, that deviate from the classical theory of dynamical systems, have been expanded in a book by Laurent Younes [START_REF] Younes | Shapes and Diffeomorphisms[END_REF].

David Mumford, to whom this work is dedicated, and his collaborators have given considerable contributions to the understanding of the differential geometry of shape spaces endowed with a Riemannian metric, including several instances of metrics induced by the action of groups of diffeomorphisms. The knowledge of such geometry (and in particular, of curvature) is fundamental as it allows one to infer, for example, about the uniqueness of geodesics between shapes, the existence of conjugate points, and the well-posedness of the problem of computing the intrinsic (or Karcher's) mean of a database of shapes. See, for example, the papers [START_REF] Micheli | Sectional curvature in terms of the cometric, with applications to the Riemannian manifolds of landmarks[END_REF][START_REF] Micheli | Sobolev metrics on diffeomorphism groups and the derived geometry on spaces of submanifolds[END_REF][START_REF] Michor | Riemannian geometries on of plane curves[END_REF][START_REF] Michor | An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach[END_REF][START_REF] Mumford | The geometry and curvature of shape spaces[END_REF][START_REF] Younes | A metric on shape space with explicit geodesics[END_REF]] and references therein.

Reproducing Kernel Hilbert Spaces. In LDDMM the Hilbert space of vector fields V has a reproducing kernel, whose choice uniquely determines the model in use and the properties of the deformation maps; moreover, from a computational point of view, the most demanding operations in registration algorithms usually consist in convolutions of data points with these kernels or their derivatives. For example, when dealing with the shape manifold L N (R d ) of N labeled landmarks in R d (typically, d = 2 or 3), the registration constraints are described in terms of the displacements of such points. The mathematical object of interest is the reproducing kernel K : R d × R d → R d×d of the space V of deformation fields. One can in fact show that the vector fields that minimize the kinetic energy for such registration constraints are sums of spline functions centered on the landmark trajectories x a (t), a = 1, . . . , N , t ∈ [0, 1], i.e. v(t, x) = N a=1 K x, x a (t) α a (t),

x ∈ R d , t ∈ [0, 1], [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] and that the associated cost of the infinitesimal deformation for vector fields of this type (i.e. their norm in the Hilbert space V ) is also expressed in terms of the reproducing kernel, as follows:

v(t, •) 2 V = N a,b=1 α a (t) • K x a (t), x b (t) α b (t), t ∈ [0, 1];
the vectors α a : [0, 1] → R d , a = 1, . . . , N , are called momenta, in analogy with analytical mechanics [START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF], and they completely parametrize the search space of an optimal (i.e. energy-minimizing) solution.

In this framework it is therefore natural to consider the kernel as the starting point for modeling the linear deformation space V and the group of diffeomorphisms that it generates. The theory of Reproducing Kernel Hilbert Spaces (RKHS) was developed starting in the in the 1940s, mostly by Aronszajn [START_REF] Aronszajn | La théorie des noyaux reproduisants et ses applications[END_REF][START_REF] Aronszajn | Theory of reproducing kernels[END_REF] and Schwartz [START_REF] Schwartz | Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants)[END_REF], who built on previous studies by Bergman [START_REF] Bergman | Functions satisfying certain partial differential equations of elliptic type and their representation[END_REF][START_REF] Bergman | The Kernel function and conformal mapping[END_REF], Bochner [START_REF] Bochner | Monotone funktionen, stieltjessche integrale und harmonische analyse[END_REF], Schoenberg [START_REF] Schoenberg | Metric spaces and completely monotone functions[END_REF][START_REF] Schoenberg | Metric spaces and positive definite functions[END_REF], and others. Such theory is mostly used in complex and functional analysis, and in more recent years it has found numerous applications and developments in statistics and machine learning [START_REF] Scholkopf | Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[END_REF]. Reproducing kernels are also used as spline functions for performing data interpolation [START_REF] Wahba | Spline models for observational data[END_REF]; their interest in this framework stems from the fact that functions expressed in terms of kernels solve the minimal norm interpolation problem in the corresponding Hilbert space. Kernels are also commonly used to interpolate data with values in the Euclidean space R d (again, mostly with d = 2 or 3), such as vector fields in fluid dynamics [START_REF] Bonaventura | Kernel-based vector field reconstruction in computational fluid dynamic models[END_REF] The kernels that are most commonly used in applications are either scalar-valued functions or (in the case of RKHS of R d -valued functions) they are given by a scalar-valued function multiplied by the d × d identity matrix. However, employing kernels that are truly non-scalar allows one to obtain desirable properties of the vector fields that are not achievable otherwise. To our knowledge a systematic study and classification of such kernels have not yet taken place. Here we focus our attention on kernels that induce translation-and rotation-invariant norms in the corresponding RKHS, since this a common requirement for the interpolation of geometric data. We shall examine in detail the ties between the properties of the kernels and the corresponding deformation spaces, with the goal of providing a large class of kernels that may be used to perform shape analysis. In particular, matrix-valued kernels that induce divergence-free vector fields are desirable in analyzing volume-preserving transformations; however, it is the case that curl-free and divergence-free vector fields are only achievable with non-scalar reproducing kernels.

Additional related work. As we said, it was Laurent Schwartz in his seminal work [START_REF] Schwartz | Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants)[END_REF] that built the foundations of the theory of (non-scalar) reproducing kernels. Much more recently, Carmeli et al. [START_REF] Carmeli | Vector-valued Reproducing Kernel Hilbert Spaces and Universality[END_REF] derived regularity results of vector-valued RKHS and analyzed some of their properties from the point of view of the machine learning community. De Vito et al. [START_REF] Vito | An extension of Mercer theorem to matrix-valued measurable kernels[END_REF] extend Mercer's theorem to matrix-valued measurable kernels, whereas Micchelli and Pontil [START_REF] Micchelli | On learning vector-valued functions[END_REF] use such kernels for learning vector-valued functions. Cachier and Ayache [START_REF] Cachier | Isotropic energies, filters and splines for vector field regularization[END_REF] consider a class of matrix-valued kernels that generalize thin-plate splines for the interpolation of dense and sparse vector fields, precisely for the purposes of image registration. The work by Dodu and Rabut [START_REF] Dodu | Irrotational or divergence-free interpolation[END_REF] is related to ours in that it introduces a class of irrotational and divergencefree kernels that minimize Beppo Levi seminorms, for the interpolation of vector fields in two and three dimensions; our study is restricted to the case of positive definite kernels but is more general in that it characterizes the entire class of kernels that induce translation-and rotation-invariant norms. Last, but not least, we should certainly mention a very recent paper by Mumford and Michor [START_REF] Mumford | On Euler's equation and 'EPDiff[END_REF], where they study an approximation to Euler's equation with EPDiff, i.e. the geodesic equation in the group of diffeomorphisms [START_REF] Mumford | Pattern theory: the stochastic analysis of real-world signals[END_REF], by choosing kernels that are Green's functions of a specific class of differential operators. The latter depend on two positive parameters, and their limit behavior yields precisely Euler's equation for fluid flow; such kernels, as well as their limit cases, fall within our study.

Paper organization. In Section 2 we introduce notation and definitions for Reproducing Kernel Hilbert Spaces of vector-valued functions, state and prove existence and uniqueness theorems for such spaces, and investigate relevant differential properties of the corresponding matrix-valued kernels. Section 3 explores the characterization of what we call TRI kernels, i.e. those that induce a translation-and rotation-invariant metric on the corresponding RKHS: this is also performed in the Fourier domain, and constitutes the core of the present contribution; in fact, it turns out that the characterization of kernels Hilbert spaces of curl-free or divergence-free vector fields is described in a more natural manner in the Fourier domain than it is in the spatial domain. Section 4 details methods for building TRI kernels from the more commonly used scalar kernels, which is of course crucial for applications; in fact, we show that all matrix-valued kernels may be obtained with such constructive procedures. Section 5 develops the equations of the dynamics induced by the LDDMM approach on the manifold of landmark points, such as (1), and presents some numerical results for specific choices of TRI kernels. We summarize conclusions and describe directions of potential future research developments in Section 6. We would like to point out that the length of our paper is justified by our desire to make it self-contained, exhaustive, and accessible the largest possible audience-in the hope to attract more researchers (mathematicians, engineers, statisticians, and computer scientists) to this interdisciplinary field.

Reproducing Kernel Hilbert Spaces of vector-valued functions

In the classical setting, the elements of Reproducing Kernel Hilbert Spaces are scalar-valued functions [START_REF] Aronszajn | La théorie des noyaux reproduisants et ses applications[END_REF][START_REF] Aronszajn | Theory of reproducing kernels[END_REF][START_REF] Wahba | Spline models for observational data[END_REF]. Such theory can be extended to vector-valued functions [START_REF] Carmeli | Vector-valued Reproducing Kernel Hilbert Spaces and Universality[END_REF][START_REF] Hein | Kernels, associated structures and generalizations[END_REF][START_REF] Schwartz | Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants)[END_REF] and has recently been adapted to the study of shape and deformation [START_REF] Younes | Shapes and Diffeomorphisms[END_REF]. Here we provide a summary of notions and results that are relevant precisely for this purpose, also extending some known ones to the vector-valued case.

Notation. If S is a subset of a vector space then span(S) denotes the set of finite linear combinations of elements of S. If (X, • X ), (Y, • Y ) are two normed spaces with X continuously embedded in Y (i.e. X ⊆ Y and there there is a constant C > 0 such that x Y ≤ C x X for all x ∈ X) we write X ֒→ Y . If (H, •, • H ) is an inner product space and U is a subspace of H we indicate its orthogonal complement with U ⊥ . If H is a Hilbert space its dual space is written as H * ; if a sequence {u n } in H converges weakly to some u ∈ H, i.e. u n -u, h H → 0 for all h ∈ H, we write u n ⇀ u in H. The dot product of two vectors a, b ∈ R d is denoted with a, b R d or a • b. Vectors a ∈ R d are treated as column vectors, and T indicates the transpose of a vector or a matrix. Definition 2.1. Let (H, •, • H ) be a Hilbert space of R d -valued functions defined on a set Ω. We call H a Reproducing Kernel Hilbert Space (RKHS) if the evaluation functionals δ α

x : u → α • u(x) are linear and continuous for all x ∈ Ω and α ∈ R d ; that is, if δ α

x ∈ H * .

By the Riesz Representation Theorem [START_REF] Folland | Real Analysis: Modern Techniques and Their Applications[END_REF], in Reproducing Kernel Hilbert Spaces, for all x ∈ Ω and α ∈ R d , there exists a unique function

K α x (•) ∈ H such that K α x , u H = α • u(x) (2) 
for all u ∈ H. Such function is called the representer of the evaluation functional δ α x , and relation ( 2) is referred to as the reproducing property of K α

x . The map

α → K α x (•) is linear in α, i.e. K aα+bβ x = aK α x +bK β x for all x ∈ Ω, α, β ∈ R d ,
and a, b ∈ R, by the uniqueness of the representer. So for any pair of points x, y ∈ Ω there exists a matrix K(y, x) ∈ R d×d such that K α x (y) = K(y, x)α for all α ∈ R d ; the matrixvalued function K : Ω × Ω → R d×d is called the reproducing kernel , or simply the kernel , of the space H.

By the reproducing property (2) we have, for any pair of points x, y ∈ Ω and any pair of vectors

α, β ∈ R d , that K α x , K β y H = α • K β y (x) = α • K(x, y)β but also K β y , K α x H = β • K α x (y) = β • K(y, x)α = α • K(y, x) T β
, so that the symmetry K(x, y) = K(y, x) T holds for all x, y ∈ Ω. Definition 2.2. A Reproducing Kernel Hilbert Space is called non-degenerate when it has the following property: for any N ∈ N and any distinct points

x 1 , . . . , x N ∈ Ω, if the vectors α 1 , . . . , α N ∈ R d are such that N a=1 α a • u(x a ) = 0 for all u ∈ H, then α 1 = • • • = α N = 0.
Non-degeneracy establishes a certain richness of functions in Reproducing Kernel Hilbert Spaces. Rather obviously, we will call a RKHS degenerate if it is not non-degenarate.

Definition 2.3. A generic matrix-valued function

K : Ω × Ω → R d×d is positive definite if for abitrary N ∈ N, vectors α 1 , . . . , α N ∈ R d and points x 1 , . . . , x N ∈ Ω, it is the case that N a,b=1 α a • K(x a , x b )α b ≥ 0. ( 3 
)
Moreover, K is strictly positive definite if for abitrary N ∈ N, vectors α 1 , . . . , α N ∈ R d , and distinct points x 1 , . . . , x N ∈ Ω the above inequality holds, with equality if and only if

α 1 = • • • = α N = 0.
Proposition 2.4. The kernel K of a RKHS is a positive definite matrix-valued function. Moreover, the RKHS is non-degenerate if and only if its kernel is strictly positive definite.

Proof. By the reproducing property (2) of the representer function we have

0 ≤ N i=a K αa xa 2 H = N a=1 K αa xa , M b=1 K α b x b H = M a,b=1 K αa xa , K α b x b H = M a,b=1 α a • K(x a , x b )α b .
Assuming that the RKHS is non-degenerate, if for x 1 , . . . , x N ∈ Ω (distinct), α 1 , . . . , α N ∈ R d we have

a K αa xa 2 H = a,b α a • K(x a , x b )α b = 0, then N a=1 K αa xa = 0, i.e. N a=1 K αa xa , u H = 0 for all u ∈ H; this is equivalent to a α a •u(x a ) = 0 for all u ∈ H, therefore α 1 = • • • = α N =
0 by Definition 2.2. On the other hand, assuming that the kernel K is strictly positive definite, if at least one of the vectors α

1 , . . . , α N ∈ R d is non-zero take u := a K αa xa , with distinct points x 1 , . . . , x N ∈ Ω; it is the case that a α a • u(x a ) = a,b α a • K(x a , x b )α b > 0 by strict positive definiteness.
Example. Consider a finite dimensional space H of R d -valued functions with a given inner product •, • H . We may assume without loss of generality that H = span{f 1 , . . . , f M } with f i , f j H = δ ij , where δ ij is Kronecker's delta. The reproducing kernel of H is the matrix-valued function K(x, y) = i=1,...,M f i (x)f i (y) T . It is in fact the case that all finite-dimensional functions spaces are degenerate. To see this, fix arbitrarily N ∈ N and the distinct points x 1 , . . . , x N ∈ Ω. Define:

α :=    α 1 . . . α N    ∈ R N d and f i (x) :=    f i (x 1 )
. . .

f i (x N )    ∈ R N d , i = 1, . . . , M,
all intended as column vectors. Having

N i=1 α i • u(x i ) = 0 for all u ∈ H is equivalent to α being orthogonal to U := span{f 1 (x), . . . , f M (x)}, i.e. α ∈ U ⊥ . But dim U ≤ M , therefore we must have that dim U ⊥ ≥ max{N d -M, 0}. Whence, if N was chosen large enough, α is not necessarily zero.
We have seen above that Reproducing Kernel Hilbert Spaces have a unique reproducing kernel. The next definition of "kernel" is justified by the theorem that immediately follows. Definition 2.5. A positive definite function K : Ω×Ω → R d×d such that K(y, x) = K(x, y) T for all x, y ∈ Ω is called a positive kernel, or simply a kernel, of dimension d. If, in addition, K is a strictly positive definite function, then we shall call it a strictly positive kernel of dimension d.

Theorem 2.6. Given a positive kernel K : Ω × Ω → R d×d of dimension d, there exists a unique RKHS of R d -valued functions defined on Ω that has K as its reproducing kernel.

Proof. For arbitrary x ∈ Ω and α ∈ R d we define the function K α x (•) := K(•, x)α and the linear space

H 0 := span{K α x | x ∈ Ω, α ∈ R d }.
We also define the inner product

K α x , K β y H 0 := α • K(x, y)β.
In order to extend it to all of H 0 by bilinearity it is sufficient to show that if

f = n i=1 K α i x i = n ′ i=1 K α ′ i x ′ i (i.e. there are two different representations of f ∈ H 0 )
then for all g = K β y ∈ H 0 we have f, g

H 0 := n i=1 K α i x i , K β y H 0 = n ′ i=1 K α ′ i x ′ i , K β y H 0 . To see this take m := n + n ′ , γ i := α i for 1 ≤ i ≤ n and γ i := -α ′ i for n + 1 ≤ i ≤ n + n ′ ; now observe that since m i=1 K γ i z i = 0 we also have m j=1 K γ j z j , K β y H 0 = m j=1 γ j • K(z j , y)β = m j=1 K γ j z j (y) β = 0. It is immediate to verify that the inner product •, • H 0 is symmetric; also, if u ∈ H 0 then it is the case that u, u H 0 ≥ 0 by the positive definiteness of K. By construction K α x , u H 0 = α • u(x) for all u ∈ H 0 , so by the Cauchy-Schwarz inequality we have |α • u(x)| ≤ K α x H 0 u H 0 for all u ∈ H 0 , x ∈ Ω and α ∈ R d ; whence if u, u H 0 = 0 then u = 0. Therefore H 0 is an inner product space.
Now one can follow the standard procedure for the completion of metric spaces [START_REF] Rudin | Principles of Mathematical Analysis[END_REF] with some modifications. Letting C be the set of Cauchy sequences in H 0 , one first partitions it into equivalence classes (we call {u n }, {v n } ∈ C equivalent and write {u n } ∼ {v n } if lim n→∞ u n -v n H 0 = 0). We denote with H e := C/∼ the set of equivalence classes, and with [{u n }] the generic element of H e . Then one defines the inner product between U, V ∈ H e as U, V He := lim n→∞ u n , v n H 0 , where {u n } ∈ U and {v n } ∈ V. The map ϕ : H 0 → H e given by ϕ(u) = [{u, u, u, . . .}] is an isometry, and ϕ(H 0 ) is in fact dense in H e . Any Cauchy sequence in ϕ(H 0 ) converges to some U ∈ H e (in fact if {ϕ(u n )} is Cauchy in H e then by isometry {u n } is Cauchy in H 0 , therefore {u n } belongs to some U ∈ H e ; one can prove that ϕ(u n ) → U in H e ). Together with the density of ϕ(H 0 ) in H e , this can be used to show that H e is complete. As we mentioned above, this procedure was rather standard; what follows is specific to our setting.

It is in fact the case that any Cauchy sequence in H 0 converges pointwise to some function Ω → R d . To see this, if {u n } ∈ C then by the Cauchy-Schwarz inequality

|(u m (x)-u n (x))•α| = | u m -u n , K α x H 0 | ≤ u m -u n H 0 α • K(x, x)α for all x ∈ Ω, α ∈ R d ,
and m, n ∈ N. Whence {u n (x)} is Cauchy in R d for all x ∈ Ω and there exists a function u : Ω → R d such that u n → u pointwise.

On the other hand Cauchy sequences in H 0 from distinct equivalence classes converge, pointwise, to distinct functions. In fact, if {u n }, {v n } ∈ C converge pointwise to the same u : Ω → R d then the sequence {h n }, with h n := u n -v n , is also Cauchy in H 0 and it converges to 0 pointwise. Therefore, since h n , K α

x H 0 = h n (x) • α for all x ∈ Ω and α ∈ R d , we have that h n ⇀ 0 in H 0 . By the Cauchy property of {h n } there exists an integer M such that h n 2

H 0 -2 h n , h M H 0 ≤ h n -h M 2 H 0 ≤ ε for all n ≥ M . But we have lim h n , h M H 0 = 0 by weak convergence, whence h n 2 H 0 = u n -v n 2 H 0 ≤ 2ε for sufficiently large n. So it is the case that {u n } ∼ {v n }.
This suggests that we may realize the completion H 0 as follows: we associate to each equivalence class in C/∼ of Cauchy sequences in H 0 the function u : Ω → R d to which they converge pointwise, and let H be the space of such functions. If {u n }, {v n } ∈ C and u n → u, v n → v pointwise, we say that u = lim n u n in H and set u, v H := lim n→∞ u n , v n H 0 , so H is isometric to H e . By construction the function space H is complete, H 0 is embedded in H, and

H = H 0 . Moreover K is a reproducing kernel for H, since if {u n } ∈ C and u n → u ∈ H pointwise then K α x , u H = lim n K α x , u n H 0 = lim n α • u n (x) = α • u(x), for all x ∈ Ω and α ∈ R d .
Finally, assume that H 1 is another RKHS with the same kernel K. So it must be the case that H 0 ⊆ H 1 , and the inner products

•, • H and •, • H 1 must coincide on H 0 . If {u n } ∈ C is such that u n → u ∈ H pointwise, by the completeness of H 1 there exists v ∈ H 1 with u n → v in H 1 , and |(u(x) -v(x)) • α| = lim n |(u n (x) -v(x)) • α| = lim n | u n -v, K α x H 1 | ≤ lim n u n -v H 1 K α x H 0 = 0, for all x ∈ Ω and α ∈ R d , so it is the case that u = v. Therefore H ⊆ H 1 . Also •, • H 1 = •, • H on H, whence H is a closed subset of H 1 and H 1 = H ⊕ H ⊥ . If u ∈ H 1 is orthogonal to H then α • u(x) = u, K α x H 1 = 0 for all x ∈ Ω and α ∈ R d , whence u = 0. In conclusion H = H 1 .
Corollary 2.7. Let H be a RKHS of R d -valued functions that are defined on Ω, with reproducing kernel K. It is the case that H = H 0 , where

H 0 = span{K(•, x)α | x ∈ Ω, α ∈ R d }.
Corollary 2.8. Let H be a RKHS, and {u n } a sequence in H. If u n ⇀ u in H then it converges pointwise to u. On the other hand, if {u n } is bounded in H and it converges pointwise to some function u, then u ∈ H and u n ⇀ u in H.

Proof. Let x ∈ Ω and α ∈ R d be arbitrary. If

u n ⇀ u in H then lim n α • u n (x) = lim n K α x , u n H = K α x , u H = α • u(x).
Vice versa, if {u n } is bounded in H then it has a subsequence {u ψ(n) } that converges weakly to some w ∈ H; however, α

• w(x) = K α x , w H = lim n K α x , u ψ(n) H = lim n α • u ψ(n) (x) = α • u(x), whence u = w and u ∈ H. Now, we have lim n K α x , u n H = lim n α • u n (x) = α • u(x) = K α
x , u H , so lim n u n , h 0 H = u, h 0 H for all h 0 ∈ H 0 . If M := sup n u n -u H then, since H = H 0 , for arbitrary ε > 0 and h ∈ H we can choose h 0 ∈ H 0 such that h -h 0 < ε/M , and we have

| u n -u, h H | ≤ | u n -u, h 0 H | + u n -u H h -h 0 H < 2ε for sufficiently large n.
Proposition 2.9 (Kernel of separable RKHS). Let H be a separable RKHS, K its kernel and {u i } i∈N an orthonormal basis of H. Then K(x, y) = lim n→∞ n i=1 u i (x) u i (y) T pointwise, for all x, y ∈ Ω.

Proof. For all y ∈ Ω and α ∈ R d we have

K α y = lim n→∞ n i=1 K α y , u i H u i (limit in H and therefore pointwise), whence K(x, y)α = lim n→∞ n i=1 K α y , u i H u i (x) = lim n→∞ n i=1 α • u i (y) u i (x).
We now introduce notions of regularity of R d -valued functions in RKHS, for which we assume that Ω is an open, connected subset of R m . Denote with C 0 (Ω, R d ) the space of continuous functions u : Ω → R d that vanish at infinity (i.e. such that for every ε > 0 the set {x ∈ Ω : u(x) R d ≥ ε} is compact) which is Banach with the norm u ∞ := sup x∈Ω u(x) R d . For any integer s ≥ 0 we define

C s 0 (Ω, R d ) := u ∈ C s (Ω, R d ) : ∂ p u ∈ C 0 (Ω, R d ) for |p| ≤ s ,
where C s (Ω, R d ) is the space of functions that are continuously differentiable s times. (We have used multi-index notation [START_REF] Evans | Partial Differential Equations[END_REF] for partial derivatives ∂ p = ∂ p ). Given a s-admissible space H, for a fixed point x ∈ Ω and a fixed vector α ∈ R d the evaluation functional δ α

x : H → R : u → α • u(x) is obviosuly linear in u but also bounded: in fact, for all u ∈ H,

|δ α x (u)| = |α • u(x)| ≤ α R d u(x) R d ≤ α R d u s,∞ ≤ C α R d u H ;
we have used the Cauchy-Schwarz inequality, the definition of • s,∞ , and Definition 2.10. Therefore if H is a s-admissible Hilbert space then it is also a Reproducing Kernel Hilbert Space, and admits a reproducing kernel such that K(•, x)α ∈ C s 0 (Ω, R d ) for all x ∈ Ω, α ∈ R d . Remark. By the symmetry K(x, y) = K(y, x) T it is the case that if K is continuous (respectively, differentiable) in one of the two variables then it is continuous (differentiable) in the other one too.

If kernel K : Ω × Ω → R d×d is smooth enough and p = (p 1 , . . . , p m ) and q = (p 1 , . . . , p m ) are multiindices, we indicate with ∂ p 1 ∂ q 2 K(•, •) the partial derivative of K where ∂ p and ∂ q are taken with respect to the first and second sets of variables of K(•, •), respectively. Theorem 2.11. Let H be a RKHS with kernel K : Ω × Ω → R d×d , and s ≥ 0 be an integer. The following two statements are equivalent:

a. H ֒→ C s (Ω, R d ); b. the function ∂ p 1 ∂ p 2 K
exists for all multi-indices p with 0 ≤ |p| ≤ s, it is continuous in each of the two variables (separately), and it is locally bounded.

Under the above assumptions, the following also holds: c. for all x ∈ Ω, α ∈ R d , and multi-index p such that 0 ≤ |p| ≤ s, we have

∂ p 2 K(•, x)α ∈ H and ∂ p 2 K(•, x)α, u H = α • ∂ p u(x), for all u ∈ H. (4) 
If, furthermore, we have K(•, x)α ∈ C s 0 (Ω, R d ) for all x ∈ Ω and α ∈ R d , then H ֒→ C s 0 (Ω, R d ). Proof. We shall prove that (a ⇒ b & c) and (b ⇒ a & c); in particular, this will imply that (a ⇔ b).

• (a ⇒ b & c). We will prove by induction on |p| that for all multi-indices p with 0 ≤ |p| ≤ s, the function ∂ p 2 K(•, x)α, with fixed x ∈ Ω and α ∈ R d , is in H and (4) holds, and that the function ∂ p 1 ∂ p 2 K exists and is continuous in each of its two variables (its local boundedness is proven separately 4) is simply the reproducing property (2); also, since

). If |p| = 0 then ∂ p 2 K(•, x)α = K(•, x)α ∈ H and (
H ⊂ C s (Ω, R d ) we have that ∂ p 1 ∂ p 2 K(•, x) = K(•, x
) is continuous in its first variable: the continuity in the second one derives from the symmetry K(x, y) = K(y, x) T , x, y ∈ Ω.

We now fix |p| and assume that for any multi-index r with 0 ≤ |r| ≤ |p| we have that ∂ r 1 ∂ r 2 K exists and it is continuous in each of its two variables; also,

∂ r 2 K(•, x)α ∈ H and ∂ r 2 K(•, x)α, u H = α • ∂ r u(x)
, for all u ∈ H. For fixed |p| take p = (p 1 , . . . , p m ) and q = p + e ℓ = (p 1 , . . . , p ℓ + 1, . . . , p m ) for some arbitrary index ℓ ∈ {1, . . . , m}. For any x ∈ Ω and α ∈ R d we have that K(•, x)α ∈ H ⊂ C s (Ω, R d ); by the symmetry K(x, y) = K(y, x) T we also have that

K(x, •)α is in C s (Ω, R d ). Whence if we take a sequence {ε n } in R with |ε n | → 0, the sequence ∆ n (•) := ∂ p 2 K(•, x + ε n e ℓ )α -∂ p 2 K(•, x)α /ε n ∈ H converges pointwise to ∂ q 2 K(•, x)α. For all u ∈ H we have ∆ n , u H = α• ∂ p u(x+ε n e ℓ )-∂ p u(x) /ε n , which converges to α•∂ q u(x) because H ⊂ C s (Ω, R d ).
Therefore, for a fixed u ∈ H, we have sup n | ∆ n , u H | < ∞, so by the Uniform Boundedness Principle [START_REF] Folland | Real Analysis: Modern Techniques and Their Applications[END_REF] the sequence ∆ n H is bounded. Together with the pointwise convergence of ∆ n , by Corollary 2.8 this implies that:

(i) ∂ q 2 K(•, x)α ∈ H. Since H ⊂ C s (Ω, R d ), ∂ q 1 ∂ q 2 K(•, x
) exists and it is continuous in its first variable; by the symmetry K(x, y) = K(y, x) T it is also continuous in the second variable. (ii) for all u ∈ H the sequence ∆ n , u H converges to ∂ q 2 K(•, x)α, u H . But we saw above that it also converges to α

• ∂ q u(x), whence ∂ q 2 K(•, x)α, u H = α • ∂ q u(x).
By the arbitrariness of ℓ ∈ {1, . . . , m}, this concludes the induction argument. To prove local boundedness of ∂ p 1 ∂ p 2 K for an arbitrary multi-index p with 0 ≤ |p| ≤ s, fix a compact subset D ⊂ Ω. For an arbitrary α ∈ R d consider the maps

{Λ x : H → R : u → ∂ p 2 K(•, x)α, u H | x ∈ D} ⊂ H * , parameterized by x ∈ D. For a fixed u ∈ H we have sup x∈D |Λ x u| = sup x∈D | ∂ p 2 K(•, x)α, u H | = sup x∈D |α•∂ p u(x)| < ∞, by the continuity of ∂ p u. So sup x∈D Λ x 2 H * = sup x∈D α•∂ p 1 ∂ p 2 K(x, x)α < ∞, again by the Uniform Bound- edness Principle; that is, the map x → α • ∂ p 1 ∂ p 2 K(x, x)α is locally bounded. Therefore ∂ p 1 ∂ p 2 K is locally bounded, since for all x, y ∈ Ω and α, β ∈ R d we have α • ∂ p 1 ∂ p 2 K(x, y)β = ∂ p 2 K(•, x)α, ∂ p 2 K(•, y)β H ≤ ∂ p 2 K(•, x)α H ∂ p 2 K(•, y)β H = α • ∂ p 1 ∂ p 2 K(x, x)α β • ∂ p 1 ∂ p 2 K(y, y)β. • (b ⇒ a & c).
Similarly, we will prove by induction on |p| that for all multi-indices p with 0 ≤ |p| ≤ s we have that H ⊂ C |p| (Ω, R d ), that the function ∂ p 2 K(•, x)α, with fixed x ∈ Ω and α ∈ R d , is in H and that (4) holds (the continuity of the inclusion, H ֒→ C s (Ω, R d ), will be proven separately). 4) is simply the reproducing property (2). To prove the continuity of the functions in H, fix x 0 ∈ Ω ⊂ R m and let {x n } be a sequence in Ω with x n → x 0 . Let α ∈ R d be arbitrary and define

If |p| = 0 then ∂ p 2 K(•, x)α = K(•, x)α ∈ H and (
v n := K(•, x n )α ∈ H. It is the case that (i) v n 2 H = α•K(x n , x n )α
is bounded, by the local boundedness of K, and (ii) v n (y) = K(y, x n )α → K(y, x 0 )α, for all y ∈ Ω, by the continuity of K in each of its variables. Since v n is bounded and it converges pointwise, by Corollary 2.8 it converges weakly to the same function: for any u ∈ H we have

K(•, x N )α, u H → K(•, x 0 )α, u H , that is α•u(x n ) → α•u(x 0 ). Therefore H ⊂ C(Ω, R d ) by the arbitrariness of u.
We now fix |p| and assume that H ⊂ C |p| (Ω, R d ) and that for any multi-index r with 0

≤ |r| ≤ |p| we have ∂ r 2 K(•, x)α ∈ H and ∂ r K(•, x)α, u H = α • ∂ r u(x)
, for all u ∈ H. So, for fixed |p|, assume that p = (p 1 , . . . , p m ) and q = p+e ℓ = (p 1 , . . . , p ℓ +1, . . . , p m ), for some ℓ ∈ {1, . . . , m}. Take an arbitrary u ∈ H and a sequence {ε n } in R, with |ε n | → 0. By (4), for all x ∈ Ω and α ∈ R d we have

ψ n := α • ∂ p u(x + ε n e ℓ ) -∂ p u(x) ε n = ∂ p 2 K(•, x + ε n e ℓ )α -∂ p 2 K(•, x)α ε n , u H . (5) 
For fixed x ∈ Ω and

α ∈ R d the sequence of functions ∆ n (•) := ∂ p 2 K(•, x + ε n e ℓ )α -∂ p 2 K(•, x)α /ε n converges pointwise to ∂ q 2 K(•, x)α.
Once again by (4), we have that

∆ n 2 H = 1 ε 2 n α • ∂ p 1 ∂ p 2 K(x + ε n e ℓ , x + ε n e ℓ )α -2α • ∂ p 1 ∂ p 2 K(x, x + ε n e ℓ )α + α • ∂ p 1 ∂ p 2 K(x, x)α , which converges to α • ∂ q 1 ∂ q 2 K(x, x)α as n → ∞, with q as above. Therefore ∆ n is bounded in H. By Corollary 2.8 it converges weakly in H to ∂ q 2 K(•, x)α, which must be an element of H. Whence ψ n = ∆ n , u H converges, i.e. the derivative ∂ q u(x) exists and α • ∂ q u(x) = ∂ q 2 K(•, x)α, u H .
To prove the continuity of ∂ q u, we proceed as in the case |p| = 0. Fix x 0 ∈ Ω ⊂ R m and let {x n } be a sequence in Ω with x n → x 0 . Let α ∈ R d be arbitrary and define

w n := ∂ q 2 K(•, x n )α ∈ H. It is the case that (i) w n 2 H = α • ∂ q 1 ∂ q 2 K(x n , x n )α is a bounded sequence, by the local boundedness of K, and (ii) w n (y) = ∂ q 2 K(y, x n )α → ∂ q 1 K(y, x 0 )
α, for all y ∈ Ω, by the continuity of ∂ q 2 K in each of its variables. By Corollary 2.8, w n converges weakly to ∂ q 2 K(•, x)α, i.e. for all u ∈ H we have

∂ q 2 K(•, x N )α, u H → ∂ q 2 K(•, x 0 )α, u H , or α • ∂ q u(x n ) → α • ∂ q u(x 0 ); whence ∂ q u ∈ C(Ω, R d ).
By the arbitrariness of u and the index ℓ we have H ⊂ C |p|+1 (Ω, R d ). This concludes the induction.

Consider now the map ι :

H → C s (Ω, R d ) : v → v, let {v n } be a sequence in H and assume that (v n , v n ) → (u, v) in H × C s (Ω, R d ). Since v n → u in H it converges to it pointwise (by Corol- lary 2.8) and since v n → v in C s (Ω, R d ) it also converges to it pointwise: whence u = v. Therefore the graph of ι is a closed subspace of H × C s (Ω, R d ),
and by the Closed Graph Theorem [START_REF] Folland | Real Analysis: Modern Techniques and Their Applications[END_REF] the map ι is bounded. We conclude that the inclusion is continuous, i.e. H ֒→ C s (Ω, R d ).

• We have thus proven that (a ⇔ b). We now introduce the further assumption that K α x ∈ C s 0 (Ω, R d ). Let {u n } be a sequence in H 0 that converges, in the H norm, to an arbitrary u ∈ H; therefore u n ⇀ u in H. For any multi-index p such that 0 ≤ |p| ≤ s we have

∂ p 2 K(•, x)α, u n H → ∂ p 2 K(•, x)α, u H i.e. α • ∂ p u n (x) → α • ∂ p u(x). Therefore u n → u in the topology of C s (Ω, R d ); but C s 0 (Ω, R d ) is closed in C s (Ω, R d ), therefore u ∈ C s 0 (Ω, R d ). In conclusion, H ֒→ C s 0 (Ω, R d ).
Example. An example of non-degenerate, s-admissible RKHS that is used in applications [START_REF] Younes | Shapes and Diffeomorphisms[END_REF] is the Sobolev space of vector fields

H := W ℓ,2 (R d , R d ) = H ℓ (R d , R d ) with the inner product: u, v H := R d Lu(x) • v(x) dx = R d ℓ j=0 ℓ j σ 2j |p|=j ∂ p u • ∂ p v dx. (6) 
In ( 6) the differential operator L := (1 -σ 2 ∆) ℓ (where σ > 0 is a scaling factor, ℓ ≥ 0 is an integer, and ∆ is the Laplace operator) is applied to each component of the vector field u

= (u 1 , . . . , u d ); if ℓ > s + d/2 then H ֒→ C s 0 (R d , R d
) by the Sobolev Embedding Theorem [START_REF] Folland | Real Analysis: Modern Techniques and Their Applications[END_REF], i.e. H is s-admissible. Regarding its reproducing kernel, first note that for any u ∈ H and x, α ∈ R d we must have

α • u(x) = K α x , u H = R d K α x (y) • Lu(y) dy = R d K(y, x)α T Lu(y) dy = α • R d K(x, y) Lu(y) dy, therefore u(x) = R d K(x, y) Lu(y)
dy for all u ∈ H. Since L is applied to each component of the vector field u (i.e. the differential operator does not mix the components of u) it must be the case that K(x, y) = G(x, y)I d , where G is the Green's function of L and I d is the d × d identity matrix. As reported in [START_REF] Itô | Encyclopedic Dictionary of Mathematics[END_REF],

since L = (1 -σ 2 ∆) ℓ we have that K(x, y)α = k( x -y R d )I d , with k(r) = C(σ, d, ℓ) r σ ℓ-d 2 K ℓ-d 2 r σ , r ≥ 0, (7) 
where

C(σ, d, ℓ) := 2 ℓ+ d 2 -1 π d 2 Γ(ℓ) σ d -1 and K ν , with ν = ℓ -d/2
, is a modified Bessel function [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] of order ν (this should not be confused with the symbol K that we use for kernels). Kernels of the type K(x, y) = k( x -y )I d with k given by [START_REF] Bergman | Functions satisfying certain partial differential equations of elliptic type and their representation[END_REF] are in fact referred to as Bessel kernels.

We have just seen an example of a RKHS with a "scalar" kernel, in that K is given by a scalar-valued function multiplied by the identity matrix. In the next section we shall explore a large class of (non-scalar) reproducing kernels, study their properties, and provide some significant examples.

Translation-and rotation-invariant metrics in RKHS

In the current and following sections we shall restrict our attention to RKHS whose kernel induces an inner product that is translation-and rotation-invariant; we shall call these TRI kernels. In this case it is natural to assume that Ω = R d , so that the representer functions K α x (•) are in fact vector fields in R d . From now on, unless otherwise explicitly specified, we shall assume that d ≥ 2.

TRI kernels

In Ω = R d we indicate the generic translation with τ : x → x + t, for some fixed t ∈ R d , and the generic rotation with ρ : x → Rx, for some fixed R ∈ O(R d ) (the orthogonal group).

Theorem 3.1 (translation invariance).

Let H be a RKHS with kernel K : Ω × Ω → R d×d . The map u → u • τ is an isometry in H for any translation τ if and only if there exists a function k :

R d → R d×d such that K(x, y) = k(x -y) for all x, y ∈ R d . Proof. Assume first that u → u • τ is an isometry for all translations τ : x → x + t. Let f := K α x and g := K β y ; their product is f, g H = α • K(x, y)β, while f • τ, g • τ H = K(•, x + t)α, K(•, y + t)β H = α • K(x + t, y + t)β. So it must be the case that K(x, y) = K(x + t, y + t) for all x, y and t ∈ R d ; in particular K(x, y) = K(x -y, 0) = k(x -y) for all x, y ∈ R d , where k(z) := K(z, 0), z ∈ R d . Conversely if K(x, y) = k(x -y) for all x, y ∈ R d then it is the case that K α x+t , K β y+t H = α • K(x + t, y + t)β = α • k(x + t -y -t)β = α • k(x -y)β = α • K(x, y)β = K α x , K β y H for all t ∈ Ω. Letting H 0 = span{K α x | x, α ∈ R d } we have proven that the linear map T : H 0 → H 0 : u → u • τ , with τ : x → x + t,
is an isometry in H 0 for arbitrary translations τ . This can be extended to an isometry T in H as follows. If u ∈ H, let {u n } be a Cauchy sequence such that u n → u in H and therefore pointwise; T is an isometry whence {T u n } is also Cauchy in H 0 , therefore it converges to some element of H which we call T u. If {u n }, {v n } are Cauchy in H 0 and respectively converge to

u, v ∈ H then T u, T v H = lim n T u n , T v n H 0 = lim n u n , v n H 0 = u, v H , so T : H → H is also an isometry. Finally, α • T u(x) = K α x , T u H = lim n K α x , T u n H 0 = lim n α • T u n (x) = lim n α • u n (x + t) = α • u(x + t), for all x, α ∈ R d , therefore T u = u • τ . This completes the proof.
We call a kernel with the properties described in Theorem 3.1 translation invariant; with a small abuse of terminology we shall also call k "kernel". We introduce the following matrices in R d×d :

Pr x := xx T x 2 and Pr ⊥ x := I d - xx T x 2 , x ∈ R d \ {0}, (8) 
which are, respectively, the projection operators onto vector x and onto the plane that is perpendicular to x (we indicate with I d the d × d identity matrix). In ( 8) we have indicated with x the Euclidean norm of a point in x ∈ R d , as we shall do, for simplicity, throughout the rest of the paper. The following lemma does not require k to be the kernel of a RKHS.

Lemma 3.2. Let k : R d → R d×d be a generic matrix-valued function. The following are equivalent:

i. for any point x ∈ R d and rotation R ∈ O(R d ) it is the case that k(-x) = k(x) T and k(Rx) = R k(x)R -1 ; (9) 
ii. there exist a scalar k 0 ∈ R such that k(0) = k 0 I d and two scalar functions k , k ⊥ : R + → R such that for all x ∈ R d , x = 0, one can write

k(x) = k ( x ) Pr x + k ⊥ ( x ) Pr ⊥ x . (10) 
Proof.

(i. ⇒ ii.) By choosing R = -I d in (9) we have k(x) = k(-x) for all x ∈ R d ; combining the latter with k(-x) = k(x) T yields the symmetry k(x) = k(x) T . So k(x) can be diagonalized, i.e. there exist ma- trices U (x) ∈ O(R d ) and Σ(x) = diag(σ 1 (x), . . . , σ d (x)) such that k(x)U (x) = U (x)Σ(x). Since k(0)R = R k(0) for all R ∈ O(R d ) by (9), we have k(0) = Σ(0) (diagonal matrix). If R ∈ O(R d ) is such that Re i = e j (for fixed indices i = j) then σ j (0)e j = k(0)e j = k(0)Re i = R k(0)e i = Rσ i (0)e i = σ i (0)e j , i.e. σ j (0) = σ i (0) (all eigenvalues are the same). So k(0) = k 0 I d , for some k 0 ∈ R. Now fix x ∈ R d , x = 0, and R ∈ O(R d ) such that Rx = x and dim {v ∈ R d | Rv = v} = 1. By (9) we have k(x)R = R k(x) for such choice of R, so R k(x)x = k(x)Rx = k(x)
x, i.e. both k(x)x and x are eigenvectors of R with eigenvalue 1. Whence they k(x)x = λ (x)x for some scalar λ (x). Therefore λ (x) is an eigenvalue of k(x); without loss of generality we assume that σ 1 (x) = λ (x). We now claim that σ i (x) = σ j (x) for i, j ≥ 2. Denoting the orthonormal columns of U (x), i.e. the eigenvectors of k(x), with u 1 (x), . . . , u d (x), for any pair of indices i, j ≥ 2 with i = j there exists a matrix R ∈ O(R d ) such that x = Rx and u i (x) = Ru j (x). By [START_REF] Bochner | Monotone funktionen, stieltjessche integrale und harmonische analyse[END_REF]

, k(Rx)R u j (x) = R k(Rx) u j (x), whence k(Rx) u i (x) = R k(Rx) u j (x), i.e. σ i (x) u i (x) = R σ j (x) u j (x) = σ j (x) u i (x); therefore σ i (x) = σ j (x). So there is a scalar λ ⊥ (x) such that k(x)β = λ ⊥ (x)β for all vectors β ⊥ x.
We claim that λ and λ ⊥ only depend on x . For all x ∈ R d and R ∈ O(R d ) we have, by [START_REF] Bochner | Monotone funktionen, stieltjessche integrale und harmonische analyse[END_REF], that k(Rx)Rx = R k(x)x, whence λ (Rx)Rx = Rλ (x)x, i.e. λ (Rx) = λ (x) for all x and R, which implies that λ (x) = k ( x ) for some k : R + → R. Similarly for any α ∈ R d we have, again by [START_REF] Bochner | Monotone funktionen, stieltjessche integrale und harmonische analyse[END_REF], that k(Rx)Rα = R k(x)α; if α ⊥ x then also Rα ⊥ Rx, whence λ ⊥ (Rx)Rα = Rλ ⊥ (x)α and in fact λ (Rx) = λ (x) for all x and R. This again implies that λ ⊥ (x) = k ⊥ ( x ) for some k ⊥ : R + → R.

(ii. ⇒ i.) The implication is obvious in the case x = 0. When x = 0, for any Theorem 3.5 (rotation invariance). Let H be a RKHS with a translation-invariant reproducing kernel, i.e. K(x, y) = k(x -y) for all x, y ∈ R d . The map v → ρv • ρ -1 is an isometry in H for any rotation ρ :

R ∈ O(R d ) it is the case that Pr Rx = R Pr x R -1 and Pr ⊥ Rx = R Pr ⊥ x R -1 ,
x → Rx, with R ∈ O(R d ), if and only if (9) holds for all R ∈ O(R d ). Proof. Assume that v → ρv • ρ -1 is an isometry in H for any rotation ρ : x → Rx, with R ∈ O(R d ). For fixed x, y, α, β ∈ R d and R ∈ O(R d ), let f := R -1 K Rα Rx • R and g := K β y ∈ H; then we have that f, g H = R -1 K(R • , Rx)Rα, K( • , y)β H = β T R -1 K(Ry, Rx)Rα,
by the reproducing property of the second factor. But for all α, β ∈ R d this must be equal to

Rf • R -1 , Rg • R -1 H = K( • , Rx)Rα, RK(R -1 • , y)β H ( * ) = (Rα) T RK(R -1 Rx, y)β = α T K(x, y)β = β T K(x, y) T α = β T K(y, x)α
in ( * ) we have used the reproducing property of the first factor. Whence we have R -1 K(Ry, Rx)R = K(y, x) for all x, y ∈ R d and R ∈ O(R d ), and (9) follows from translation invariance (Proposition 3.1). Now assume that (9) holds for all R ∈ O(R d ). Take take f := K α x and g := K β y , for arbitrary points x, y and and vectors α, β. [START_REF] Bochner | Monotone funktionen, stieltjessche integrale und harmonische analyse[END_REF], and a similar expression holds for Rg • R -1 ; therefore

For any R ∈ O(R d ) we have (Rf •R -1 )(•) = R k(R -1 •-x)α = R k(R -1 (•-Rx))α = k(• -Rx)Rα by
Rf • R -1 , Rg • R -1 H = k(• -Rx)Rα, k(• -Ry)Rβ H = β T R T k(R(y -x))Rα ( * * ) = β T R T R k(y -x)α = β T k(y -x)α = k( • -x)α, k( • -y)β H = f, g H ,
where we have used ( 9) in ( * * ). Whence rotations are isometries

H 0 = span{K α x | x, α ∈ R d }.
An argument that is in all similar to the last part of the proof of Theorem 3.1 can be employed to prove that rotations ρ : x → Rx, with R ∈ O(R d ), are in fact isometries on all of H = H 0 . Note that by "rotations" we intend all the elements of O(R d ) and not just the special orthogonal group SO(R d ), therefore we also include, for example, all permutations of the coordinates and reflections. By Definition 2.5, translation-invariant kernels K(x, y) = k(x -y) have the property that k(-x) = k(x) T for all x ∈ R d , whence they may be written in the form [START_REF] Bonaventura | Kernel-based vector field reconstruction in computational fluid dynamic models[END_REF]. Definition 3.6 (TRI kernels). The kernels of RKHS with translation-and rotation-invariant inner products, that may therefore be written in the form [START_REF] Bonaventura | Kernel-based vector field reconstruction in computational fluid dynamic models[END_REF], are called TRI kernels. Not all matrix-valued functions k of the form [START_REF] Bonaventura | Kernel-based vector field reconstruction in computational fluid dynamic models[END_REF] are positive definite, i.e. kernels. In the next section we will characterize the functions (k , k ⊥ ) that give rise to TRI kernels, and later in the paper we shall provide a method to construct such coefficients. Introducing the auxiliary function

k(r) := k (r) -k ⊥ (r) r 2 , r > 0, (11) 
we may write the generic element of a function k = (k ij ) i,j=1,...,d of the type (10) as follows, for x = 0:

k ij (x) = k ( x ) -k ⊥ ( x ) x i x j x 2 + k ⊥ ( x ) δ ij = k( x ) x i x j + k ⊥ ( x ) δ ij , i, j = 1, . . . , d. (12) 
If k(0) = k 0 I d we may define k and k ⊥ at zero by setting k (0) = k ⊥ (0) = k 0 ; in fact when k is continuous we have that lim r→0 + k (r) = lim r→0 + k ⊥ (r) = k 0 , thus this choice is justified. The result that follows states a simple property of TRI kernels, which is in fact an immediate generalization of a well known property of scalar-valued positive definite functions. Proposition 3.7. Let H be a RKHS with a TRI kernel k. Its coefficients k , k ⊥ and the number k 0 , introduced in Lemma 3.2, have the properties:

k 0 ≥ 0, k 0 ≥ |k (r)| and k 0 ≥ |k ⊥ (r)| for all r > 0. If H is non-degenerate then such inequalities are strict.
Proof. By Proposition 2.4 when expression [START_REF] Bonaventura | Kernel-based vector field reconstruction in computational fluid dynamic models[END_REF] holds it is the case that for all N ∈ N, points x 1 , . . . , x N ∈ R d and vectors α 1 , . . . , α N ∈ R d we must have

2 1≤a<b≤N k ( x a -x b )α T a Pr (x a -x b )α b + k ⊥ ( x a -x b )α T a Pr ⊥ (x a -x b )α b + k 0 N a=1 α a 2 ≥ 0.
For now we shall not assume the non-degeneracy of H. By choosing N = 1 we have

k 0 α 1 2 ≥ 0 for all α 1 ∈ R d ; therefore k 0 ≥ 0. We now fix N = 2. If we take α 1 = α 2 ⊥ (x 1 -x 2 ) then the above expression yields 2[k ⊥ ( x 1 -x 2 ) + k 0 ] α 1 2 ≥ 0 for all x 1 = x 2 and α 1 , so that k 0 ≥ -k ⊥ (r) for all r > 0; similarly, if we take α 1 = -α 2 ⊥ (x 1 -x 2 ) then we get 2[-k ⊥ ( x 1 -x 2 ) + k 0 ] α 1 2
≥ 0 for all x 1 = x 2 and α 1 , which implies k 0 ≥ k ⊥ (r) for all r > 0. Combining the two results yields k 0 ≥ |k ⊥ (r)|. To prove that k 0 ≥ |k (r)| one follows an analogous argument, by choosing α 1 = α 2 parallel to (x 1 -x 2 ) first, and α 1 = -α 2 parallel to (x 1 -x 2 ) later. It is immediate to see that when H is non-degenerate the inequalities (≥) become strict (>).

Remark. So far in this section we have not made any assumption of regularity. For now we shall limit ourselves to observing that if H is a RKHS with a translation-invariant kernel k and we also have H ֒→ C s (Ω, R d ), then by Theorem 2.11 it is the case that k ∈ C 2s (Ω, R d×d ); that is, the kernel is "twice as smooth" as the functions of the space that H is embedded into. Also, since

∂ q 2 K(•, x)α = (-1) |q| ∂ q k(•-x)α and ∂ p 1 ∂ q 2 K(•, x)α = (-1) |q| ∂ p+q k(• -x)α, property (4) implies that α • ∂ p+q k(x -y)β = (-1) |p| ∂ p k(• -x)α, ∂ q k(• -y)β H , (13) 
for all x, y, α, β ∈ R d and multi-indices p and q with 0 ≤ |p| ≤ s and 0 ≤ |q| ≤ s.

Characterization of TRI kernels

We shall now find conditions on k and k ⊥ for a function k for the type [START_REF] Bonaventura | Kernel-based vector field reconstruction in computational fluid dynamic models[END_REF] to be positive definite, whence a kernel. The following auxiliary result does not require k to be of the type [START_REF] Bonaventura | Kernel-based vector field reconstruction in computational fluid dynamic models[END_REF].

Theorem 3.8 (Bochner). Consider a matrix-valued function k ∈ L 1 (R d , R d×d ) whose Fourier transform k is also in L 1 (R d , R d×d ). Then K(x, y) := k(x -y) is positive definite if and only if k(ξ) is a self-adjoint positive definite matrix for all ξ ∈ R d .
The classical version of the above theorem holds for d = 1 and states that a function is positive definite if and only if its Fourier transform is nonnegative [START_REF] Bochner | Monotone funktionen, stieltjessche integrale und harmonische analyse[END_REF]. The proof of Theorem 3.8 is reported in Appendix B, and the result can be extended to L 2 functions with the usual density arguments [START_REF] Stein | Introduction to Fourier Analysis on Euclidean Spaces[END_REF].

In the particular case k = k ⊥ =: k we have the class of kernels that are simply referred to as scalar :

k(x) = k( x )I d , x ∈ R d .
In such case positive definiteness (Definition 2.3) is obviously equivalent to the following: for abitrary N ∈ N, x 1 , . . . , x N ∈ R d and r 1 , . . . , r N ∈ R, we have

N a,b=1 r a r b k( x a -x b ) ≥ 0; ( 14 
)
whence the scalar-valued function k( • ) must be positive definite; to apply Bochner's theorem we must compute its Fourier transform. We shall employ the next proposition (see Appendix C for a simple proof).

Theorem 3.9.

If f ∈ L 1 (R d ) is a radial function, i.e. f (x) = g( x )
for some g : R + → R, then so is its Fourier transform f . It is in fact that case that f (ξ) = G( ξ ) with

G(̺) = 2π ̺ µ ∞ 0 r µ+1 g(r) J µ (2π̺r) dr , ̺ > 0,
where

µ := d 2 -1.
We remind the reader that the Hankel transform [START_REF] Bracewell | The Fourier Transform and its Applications[END_REF][START_REF] Papoulis | Systems and Transforms with Applications in Optics[END_REF][START_REF] Sneddon | Fourier Transforms[END_REF] of order ν of a function f : R

+ → R is defined as H ν [f ](̺) := ∞ 0 rf (r) J ν (̺r) dr
, where J ν is the Bessel function of the first kind [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] of order ν (references [START_REF] Ditkin | Integral Transforms and Operational Calculus[END_REF][START_REF] Erdélyi | Tables of Integral Transforms[END_REF][START_REF] Oberhettinger | Tables of Bessel Transforms[END_REF] provide tables of Hankel transforms); in Appendix A we list relevant properties of J ν that we will be using throughout the rest of the paper. Here we note that if the function f : R d → R is radial, i.e. f (x) = g( x ) for some g : R + → R, then

R d |f (x)| p dx = σ(S d-1 ) ∞ 0 |g(r)| p r d-1 dr,
where σ(S n ) is the surface area of the unit n-sphere; therefore f ∈ L p (R d ) if and only if g ∈ L p (R + , r d-1 ), i.e. g is p th -power integrable with respect to the measure r d-1 dr.

An immediate consequence of the above proposition and of Bochner's theorem is that a scalar kernel

k(•) = k( • )I d ∈ L 1 (R d , R d×d ) is positive definite if and only if the function h(̺) := 2π ̺ µ ∞ 0 r µ+1 k(r) J µ (2π̺r) dr, defined for ̺ > 0, (15) 
is nonnegative, where we have set µ := d 2 -1. Also, we will have that k(ξ) = h( ξ )I d , with ξ ∈ R d . We should note that if k is in L 1 (R d , R d×d ) then the function h is (uniformly) continuous and vanishes at infinity, by the well-known properties of Fourier transforms [START_REF] Folland | Real Analysis: Modern Techniques and Their Applications[END_REF][START_REF] Stein | Introduction to Fourier Analysis on Euclidean Spaces[END_REF]. Also, by applying the Hankel's integral formula (74) in Appendix A to [START_REF] Carmeli | Vector-valued Reproducing Kernel Hilbert Spaces and Universality[END_REF], it is immediate to verify that

k(r) = 2π r µ ∞ 0 ̺ µ+1 h(̺) J µ (2π̺r) dr, r > 0, (16) 
i.e. the map L 1 (R + , r d-1 ) → C 0 (R + ) : k → h given by formula [START_REF] Carmeli | Vector-valued Reproducing Kernel Hilbert Spaces and Universality[END_REF] is in fact an involution (it is equal to its inverse, when inversion makes sense); here we have used the symbol C 0 (R + ) to indicate the set of real-valued continuous functions defined on R + that vanish at +∞.

Examples. At the end of Section 2 we already saw the example of (scalar) Bessel kernels, i.e. of the type k(x) = k( x )I d with k given by ( 7) for the Sobolev space H ℓ (R d , R d ); in this case the function ( 15) is given by h(̺) = (1 + 4σ 2 π 2 ̺ 2 ) -ℓ . This can be easily seen by observing that since k( • ) is the Green's function of the differential operator L = (1 -σ 2 ∆) ℓ , then its Fourier transform h( • ) must be given by 1/ L; here

L(ξ) = (1 + 4σ 2 π 2 ξ 2 ) ℓ , ξ ∈ R d , is the Fourier transform of L, intended as a distribution.
For fixed σ > 0, other popular examples are given by: Gaussian kernels:

k(r) = exp - 1 2 r 2 σ 2 , h(̺) = 2πσ 2 µ+1 exp -2π 2 σ 2 ̺ 2 ; ( 17 
)
Cauchy kernels:

k(r) = 1 1 + r 2 /σ 2 , h(̺) = 2πσ 2 σ ̺ µ K µ (2πσ̺), (18) 
where K µ is a modified Bessel function of order µ; in the above expressions µ = d 2 -1. The functions h in cases ( 17) and ( 18) are computed using [47, §1.5.9] and [47, §1.4.13]. Note that in all cases we have h ≥ 0. We refer the reader to [START_REF] Younes | Shapes and Diffeomorphisms[END_REF] for further examples and techniques to build scalar kernels.

To generalize the above result we first compute the Fourier transform of matrix-valued functions k of the type [START_REF] Bonaventura | Kernel-based vector field reconstruction in computational fluid dynamic models[END_REF], that are not necessarily kernels. First note that for all R ∈ O(R d ) we have

k(Rξ) = R d k(x) e -2πix•Rξ dx = R d k(Ry) e -2πiy•ξ dy ( * ) = R d R k(y)R T e -2πiy•ξ dy = R k(ξ)R T ;
in ( * ) we have used the property [START_REF] Bochner | Monotone funktionen, stieltjessche integrale und harmonische analyse[END_REF], which therefore also holds for k. Whence we may write k as

k(ξ) = h ( ξ ) Pr ξ + h ⊥ ( ξ ) Pr ⊥ ξ , ξ ∈ R d \ {0}, (19) 
for some functions h , h ⊥ : R + → R, by Lemma 3.2. When k ∈ L 1 (R d , R d×d ) is of the type [START_REF] Bonaventura | Kernel-based vector field reconstruction in computational fluid dynamic models[END_REF] we have that the coefficients k , k ⊥ are in L 1 (R + , r d-1 ) whereas, once again by the properties of Fourier transforms, the functions h and h ⊥ are continuous and vanish at infinity. Definition 3.10. We call the functions h , h ⊥ : R + → R in [START_REF] Ditkin | Integral Transforms and Operational Calculus[END_REF] the coefficients of k.

The above definition is in line with Definition 3.3; while this may be a bit redundant, we want to associate the symbols (k , k ⊥ ) with k and (h , h ⊥ ) with its Fourier transform k. The coefficients of k are expressed in terms of those of k by the following result, which generalize formula [START_REF] Carmeli | Vector-valued Reproducing Kernel Hilbert Spaces and Universality[END_REF]. [START_REF] Bonaventura | Kernel-based vector field reconstruction in computational fluid dynamic models[END_REF]. Its Fourier transform k is a matrix-valued function of the form [START_REF] Ditkin | Integral Transforms and Operational Calculus[END_REF], where h , h ⊥ : R + → R are the scalar functions:

Theorem 3.11. Consider a function k ∈ L 1 (R d , R d×d ) of the type
h (̺) = 2π ̺ µ ∞ 0 r µ+1 k (r)J µ (2π̺r) dr - 2µ + 1 ̺ µ+1 ∞ 0 r µ k (r) -k ⊥ (r) J µ+1 (2π̺r) dr, (20a) 
h ⊥ (̺) = 2π ̺ µ ∞ 0 r µ+1 k ⊥ (r)J µ (2π̺r) dr + 1 ̺ µ+1 ∞ 0 r µ k (r) -k ⊥ (r) J µ+1 (2π̺r) dr, (20b) 
both defined for ̺ > 0, where µ := d 2 -1.

Proof. Define k as in [START_REF] Bracewell | The Fourier Transform and its Applications[END_REF]. The Fourier transform of the generic element (12) of k is

k jℓ (ξ) = R d k jℓ (x)e -2πix•ξ dx = R d k( x ) x j x ℓ e -2πix•ξ dx + δ jℓ R d k ⊥ ( x ) e -2πix•ξ dx = - 1 (2π) 2 ∂ 2 ∂ξ ℓ ∂ξ j F (ξ) + δ jℓ F ⊥ (ξ), ξ ∈ R d , (21) 
where F , F ⊥ : R d → C are, respectively, the Fourier transforms of k( • ) and k ⊥ ( • ). It is convenient at this point to introduce the auxiliary Bessel-type function J ν (z) := z -ν J ν (z), which has the

property d dz J ν (z) = -z J ν+1 (z) (see [1, §9.1.30])
. By Theorem 3.9 we have

F (ξ) = 2π ξ µ ∞ 0 r µ+1 k(r)J µ (2πr ξ ) dr = (2π) µ+1 ∞ 0 r 2µ+1 k(r) J µ (2πr ξ ) dr, so that ∂ F ∂ξ j (ξ) = (2π) µ+2 ξ j ξ ∞ 0 r 2µ+2 k(r) J ′ µ (2πr ξ ) dr = -(2π) µ+3 ξ j ∞ 0 r 2µ+3 k(r) J µ+1 (2πr ξ ) dr.
Therefore the second partial derivatives of F are given by:

∂ 2 F ∂ξ ℓ ∂ξ j (ξ) = -δ jℓ (2π) µ+3 ∞ 0 r 2µ+3 k(r) J µ+1 (2πr ξ ) dr -(2π) µ+4 ξ j ξ ℓ ξ ∞ 0 r 2µ+4 k(r) J ′ µ+1 (2πr ξ ) dr = -δ jℓ (2π) µ+3 ∞ 0 r 2µ+3 k(r) J µ+1 (2πr ξ ) dr + (2π) µ+5 ξ j ξ ℓ ∞ 0 r 2µ+5 k(r) J µ+2 (2πr ξ ) dr,
which, inserting J ν (z) = z -ν J ν (z), may be rewritten as

∂ 2 F ∂ξ ℓ ∂ξ j (ξ) = -δ jℓ (2π) 2 ξ µ+1 ∞ 0 r µ+2 k(r)J µ+1 (2πr ξ ) dr + (2π) 3 ξ µ ξ j ξ ℓ ξ 2 ∞ 0 r µ+3 k(r)J µ+2 (2πr ξ ) dr.
Computing F ⊥ via Proposition 3.9 and inserting it into equation ( 21) finally yields:

k jℓ (ξ) = C( ξ ) ξ j ξ ℓ ξ 2 + D( ξ )δ jℓ = C( ξ ) + D( ξ ) ξ j ξ ℓ ξ 2 + D( ξ ) δ jℓ - ξ j ξ ℓ ξ 2 , (22) 
with

C(̺) := - 2π ̺ µ ∞ 0 r µ+3 k(r)J µ+2 (2πr̺
) dr, and D(̺) := h ⊥ (̺), i.e. expression (20b). Finally,

C(̺) + D(̺) ( * * ) = - 2π ̺ µ ∞ 0 r µ+1 k (r) -k ⊥ (r) 2(µ + 1) 2πr̺ J µ+1 (2πr̺) -J µ (2πr̺) dr + 2π ̺ µ ∞ 0 r µ+1 k ⊥ (r)J µ (2π̺r) dr + 1 ̺ µ+1 ∞ 0 r µ k (r) -k ⊥ (r) J µ+1 (2π̺r) dr = 2π ̺ µ ∞ 0 r µ+1 k (r)J µ (2π̺r) dr- 2µ + 1 ̺ µ+1 ∞ 0 r µ k (r) -k ⊥ (r) J µ+1 (2π̺r) dr = h (̺),
where in ( * * ) we have used the property (75), reported in Appendix A, of Bessel functions of the first kind. Rewriting equation ( 22) in matrix form using definitions (8) completes the proof.

Corollary 3.12. Under the assumptions of Theorem 3.11, by Bochner's theorem we have that k is positive definite, i.e. it is a kernel, if and only if h and h ⊥ are nonnegative functions.

As we said above, formulae (20a) and (20b) generalize ( 15): in fact the three coincide when k = k ⊥ , i.e. for scalar kernels, in which case we also have h = h ⊥ . By the form of equation ( 19), we have that, for a fixed ξ ∈ R d \ {0}, the numbers h ( ξ ) and h ⊥ ( ξ ) are the eigenvalues of the matrix k(ξ); the former has multiplicity 1 and eigenvector ξ, while the latter has multiplicity equal to d -1. Note that while the Fourier transform of a kernel k may be written in the form [START_REF] Ditkin | Integral Transforms and Operational Calculus[END_REF] it is not a "kernel", in that it is not positive definite itself (but just the Fourier transform of a matrix-valued positive definite function).

The two functions h and h ⊥ may be expressed in terms of Hankel transforms, as it is the case for formula [START_REF] Carmeli | Vector-valued Reproducing Kernel Hilbert Spaces and Universality[END_REF] in the scalar case. In fact in the examples that we shall work out we will write:

h (̺) = 2π ̺ µ H (2π̺), and h ⊥ (̺) = 2π ̺ µ H ⊥ (2π̺), (23) 
where:

H (̺) := ∞ 0 r µ+1 k (r)J µ (̺r) dr - 2µ + 1 ̺ ∞ 0 r µ+2 k(r)J µ+1 (̺r) dr, (24a) 
H ⊥ (̺) := ∞ 0 r µ+1 k ⊥ (r)J µ (̺r) dr + 1 ̺ ∞ 0 r µ+2 k(r)J µ+1 (̺r) dr. ( 24b 
)
The following proposition, proven in Appendix B, ensures that for any given TRI kernel k we have that as long as either h or h ⊥ are strictly positive somewhere (i.e. we are not dealing with the trivial case k = 0) the corresponding RKHS is in fact non-degenerate (see Definition 2.2).

Proposition 3.13. Let k ∈ L 1 (R d , R d×d ) be a TRI kernel such that k ∈ L 1 (R d , R d×d ).
Then k is strictly positive definite if and only if there exists r 0 > 0 such that either h (r 0 ) > 0 or h ⊥ (r 0 ) > 0.

A non-example: Gaussian k and k ⊥ . One may ask whether we can construct a positive definite translation-and rotation-invariant kernel k of the type [START_REF] Bonaventura | Kernel-based vector field reconstruction in computational fluid dynamic models[END_REF] with k (r) = exp(-c 1 r 2 ) and k ⊥ (r) = exp(-c 2 r 2 ), where c 1 > 0 and c 2 > 0. The answer is that a kernel of this type is positive definite if an only if c 1 = c 2 , which makes it of the form k(x) = exp(-c 1 x )I d , x ∈ R d , i.e. scalar and of the type [START_REF] Christensen | Deformable templates using large deformation kinematics[END_REF]. To see this, we compute h , h ⊥ and impose their nonnegativity.

We shall use the following Hankel transforms [47, §1.5.9 & §1.5.10]:

∞ 0 r ν+1 e -cr 2 J ν (̺r) dr = ̺ ν (2c) ν+1 exp - ̺ 2 4c , for ℜν > -1 and ℜc > 0, ( 25 
) ∞ 0 r ν-1 e -cr 2 J ν (̺r) dr = 2 ν-1 ̺ ν γ ν, ̺ 2 4c ,
for ℜν > 0 and ℜc > 0, [START_REF] Glaunès | Large deformation diffeomorphic metric curve mapping[END_REF] where γ(ν, x) :=

x 0 e -t t ν-1 dt, ℜν > 0, is the lower incomplete gamma function [1, §6.5.2]. Therefore when k (r) = exp(-c 1 r 2 ) and k ⊥ (r) = exp(-c 2 r 2 ) the expressions (24a) and (24b) become

H (̺) = ̺ µ (2c 1 ) µ+1 exp - ̺ 2 4c 1 - 2 µ (2µ + 1) ̺ µ+2 γ µ + 1, ̺ 2 4c 1 -γ µ + 1, ̺ 2 4c 2 , H ⊥ (̺) = ̺ µ (2c 2 ) µ+1 exp - ̺ 2 4c 2 + 2 µ ̺ µ+2 γ µ + 1, ̺ 2 4c 1 -γ µ + 1, ̺ 2 4c 2 .
Using formulae [START_REF] Evans | Partial Differential Equations[END_REF] and introducing for later convenience the upper incomplete gamma function Γ(ν, x)

:= Γ(ν) -γ(ν, x) = ∞ x e -t t ν-1 dt, ℜν > 0 (see [1, §6.5.3]
), we finally get:

h (̺) = π µ+1 c µ+1 1 exp - π 2 ̺ 2 c 1 - 2µ + 1 2π µ+1 ̺ 2µ+2 Γ µ + 1, π 2 ̺ 2 c 2 -Γ µ + 1, π 2 ̺ 2 c 1 , (27a) 
h ⊥ (̺) = π µ+1 c µ+1 2 exp - π 2 ̺ 2 c 2 + 1 2π µ+1 ̺ 2µ+2 Γ µ + 1, π 2 ̺ 2 c 2 -Γ µ + 1, π 2 ̺ 2 c 1 . (27b) 
We first consider the case d = 2 (i.e. µ = 0) since it is particularly simple. In fact Γ(1, x) = e -x and elementary manipulations lead to the following expressions for h and h ⊥ :

h (̺) = F (̺; c 1 , c 2 ) := 1 2π̺ 2 2π 2 c 1 ̺ 2 + 1 exp - π 2 ̺ 2 c 1 -exp - π 2 ̺ 2 c 2 , h ⊥ (̺) = F (̺; c 2 , c 1 )
i.e. each is obtained from the other by exchanging c 1 and c 2 . The condition h ≥ 0 is equivalent to

2π 2 c 1 ̺ 2 + 1 ≥ exp c 2 -c 1 c 1 c 2 π 2 ̺ 2 for all ̺ ≥ 0. ( 28 
)
This is certainly true if c 1 ≥ c 2 (in which case the graph of the function on the right-hand side of the above inequality is a Gaussian); in fact this is also necessary for [START_REF] Glaunès | Landmark matching via large deformation diffeomorphisms on the sphere[END_REF] to hold, since if c 1 < c 2 then such condition breaks down for large values of ̺. Similarly, h ⊥ ≥ 0 if and only if c 2 ≥ c 1 , so the functions h and h ⊥ are both nonnegative if and only if

c 1 = c 2 .
To prove that this is also true in higher dimensions (d > 2, or µ > 0) we rewrite (27a) as follows:

h (̺) = π µ+1 c µ+1 1 exp - π 2 ̺ 2 c 1 - 2µ + 1 2 π µ+1 1/c 1 1/c 2 τ µ e -τ (π̺) 2 dτ,
which is obviously nonnegative if c 1 ≥ c 2 . The latter condition is in fact also necessary for the nonnegativity of h . To see this, we use the asymptotic expansion of the upper incomplete gamma function [1, §6.5.31]:

Γ(ν, x) ∼ x ν-1 e -x 1 + ν -1 x + (ν -1)(ν -2) x 2 + • • • , as x → ∞,
so that for any c > 0 it is the case that (incidentally, note that if the dimension d is even then µ is integer and the asymptotic expansion on the right-hand side has a finite number of terms), so (27a) can be expanded at infinity as follows:

1 2π µ+1 ̺ 2µ+2 Γ µ + 1, π 2 ̺ 2 c ∼ π µ+1 2̺ 2 c µ exp - π 2 ̺ 2 c 1 + µ c π 2 ̺ 2 + µ(µ -1) c 2 π 4 ̺ 4 + • • • , as ̺ → ∞
h (̺) ∼ (2µ + 1) π µ-1 2̺ 2 1 c µ 1 exp - π 2 ̺ 2 c 1 2 2µ + 1 π 2 ̺ 2 c 1 + 1 + µ c 1 π 2 ̺ 2 + • • • - c µ 1 c µ 2 exp c 2 -c 1 c 1 c 2 π 2 ̺ 2 1 + µ c 2 π 2 ̺ 2 + • • • , as ̺ → ∞.
One can see that if c 1 < c 2 then the second exponential function diverges faster than ̺ 

with c > 0, define a positive definite k of the type [START_REF] Bonaventura | Kernel-based vector field reconstruction in computational fluid dynamic models[END_REF], i.e. a TRI kernel. In other words we assume that the function [START_REF] Bracewell | The Fourier Transform and its Applications[END_REF] is given by k(r) = a exp(-cr 2 ), so that both k and k are Gaussians with the same variance, but different values at r = 0 (on the other hand k and k ⊥ must have the same value at 0 by Proposition 3.7). In this example we have that

H (̺) = ̺ µ (2c) µ+1 b -(2µ + 1) a 2c exp - ̺ 2 4c , H ⊥ (̺) = ̺ µ (2c) µ+1 b -(2µ + 1) a 2c + a 4c 2 ̺ 2 exp - ̺ 2 4c .
In order to obtain the above expressions we have used the Hankel transform:

∞ 0 r µ+3 e -cr 2 J µ (̺r) dr = ̺ µ (2c) µ+3 4c(µ + 1) -̺ 2 exp - ̺ 2 4c
, for ℜµ > -2 and ℜc > 0, which is computed by inserting in the left-hand side the relation J µ (z) = 2(µ + 1)J µ+1 (z)/z -J µ+2 (z) (see (75)) and applying (25) twice, with ν = µ + 1 and ν = µ + 2 respectively. By [START_REF] Evans | Partial Differential Equations[END_REF] we get: 

h (̺) = π µ+1 c µ+1 b -(2µ + 1) a 2c exp - π 2 ̺ 2 c , h ⊥ (̺) = π µ+1 c µ+1 b -(2µ + 1) a 2c + aπ 2 c 2 ̺ 2 exp - π 2 ̺ 2 c . k k ⊥ h h ⊥ x → k(x)e 1 Figure 2: Graphs of k , k ⊥ , h , h ⊥ for
D 1 := (a, b) ∈ R 2 b ≥ (d -1) a 2c , a ≥ 0 (since 2µ + 1 = d -1
) which is the wedge-shaped domain shown in Figure 1(a). Note that the slope of the slanted boundary depends on the dimension d. The vertical boundary (a = 0) corresponds to scalar kernels, while the meaning of the other one shall be explored in later sections.

The graphs k , k ⊥ , h and h ⊥ (symmetrized with respect to r = 0 for clarity) are shown in Figure 2 for d = 2, a = 1.5 and b = c = 1. Note that h ≥ 0 and h ⊥ ≥ 0. The same figure shows the corresponding vector field x → k(x)α, x ∈ R 2 , with k given by [START_REF] Bonaventura | Kernel-based vector field reconstruction in computational fluid dynamic models[END_REF] and α = e 1 ∈ R 2 , also shown in the figure (the importance of vector fields of the type x → k(x)α is apparent from equation (1), on which we shall return later in Section 5). For α = e 1 the two "vortices" of the 2-dimensional vector field x → k(x)α are located at points (0, ± b/a); whence for positive definite k their mutual distance is at least 2/c. Example 2. We now modify the previous example and switch the roles of k and k ⊥ . In other words we want to find conditions on (a, b) ∈ R 2 such that the functions

k (r) = (b -ar 2 ) e -cr 2 and k ⊥ (r) = b e -cr 2 , r > 0, (30) 
with c > 0, define a positive definite k of the type (10), i.e. a TRI kernel. This means we assume that k(r) = -a e -cr 2 , hence both k and k ⊥ are Gaussian, with the same variance. Calculations that are similar to those of the previous example lead to the following expressions for h and h ⊥ :

h (̺) = π µ+1 c µ+1 b - a 2c + aπ 2 c 2 ̺ 2 exp - π 2 ̺ 2 c , h ⊥ (̺) = π µ+1 c µ+1 b - a 2c exp - π 2 ̺ 2 c .
The above are simultaneously nonnegative ̺, i.e. k is a TRI kernel, if and only if (a, b) is in

D 2 := (a, b) ∈ R 2 b ≥ a 2c , a ≥ 0
which is the wedge-shaped domain shown in Figure 1(b). The vertical boundary (a = 0) again corresponds to scalar kernels, while the meaning of the other boundary (whose slope this time does not depend on the dimension d of the domain) will be explored later. The graphs of the functions k , k ⊥ , h and h ⊥ (again, symmetrized with respecto to r = 0) are shown in Figure 3 for d = 2, a = 1.5 and b = c = 1, as well as the corresponding vector field x → k(x)α, x ∈ R 2 , with α = e 1 ∈ R 2 . For such α the apparent "sink" and "source" of the vector field (where it is equal to zero) are respectively located at points (± b/a, 0).

k k ⊥ h h ⊥ x → k(x)e 1

Inversion formulae

Let M be the functional that maps the coefficients (k , k ⊥ ) of a matrix-valued function k ∈ L 1 (R d , R d×d ) of the type [START_REF] Bonaventura | Kernel-based vector field reconstruction in computational fluid dynamic models[END_REF] to the coefficients (h , h ⊥ ) of its Fourier transform. That is,

M : L 1 (R + , r d-1 ) × L 1 (R + , r d-1 ) -→ C 0 (R + ) × C 0 (R + ) : (k , k ⊥ ) -→ (h , h ⊥ ), (31) 
where (h , h ⊥ ) are expressed in terms of (k , k ⊥ ) precisely by formulae (20a) and (20b). Once again, the symbol C 0 (R + ) indicates the set of real-valued continuous functions defined on R + that vanish at +∞. The map M is linear and by the proposition that follows it is in fact an involution, i.e. M -1 = M , in the sense that is specified by the following proposition (this generalizes the fact that ( 15) is an involution).

Proposition 3.14. Let k ∈ L 1 (R d , R d×d ) be of the type [START_REF] Bonaventura | Kernel-based vector field reconstruction in computational fluid dynamic models[END_REF], and also assume k ∈ L 1 (R d , R d×d ). Then the functions (k , k ⊥ ) can be computed from (h , h ⊥ ) as follows:

k (r) = 2π r µ ∞ 0 ̺ µ+1 h (̺)J µ (2π̺r) d̺ - 2µ + 1 r µ+1 ∞ 0 ̺ µ h (̺) -h ⊥ (̺) J µ+1 (2π̺r) d̺, (32a) 
k ⊥ (r) = 2π r µ ∞ 0 ̺ µ+1 h ⊥ (̺)J µ (2π̺r) d̺ + 1 r µ+1 ∞ 0 ̺ µ h (̺) -h ⊥ (̺) J µ+1 (2π̺r) d̺; (32b)
that is, (k , k ⊥ ) are obtained from (h , h ⊥ ) by applying once again formulae (20a) and (20b).

Proof. The claim may be proven by direct computation, i.e. by manipulating formulae (20a)-(20b) and by inverting Hankel transforms (using formula (74) in Appendix A). However, one can simply observe that the Fourier transform, when restricted to functions that are symmetric in their argument, i.e. k(x) = k(-x) for all x (and TRI kernels belong to this class), is an involution. The map M computes the functions (h , h ⊥ ), which provide the eigenvalues of k in terms of those of k, therefore it must be itself an involution.

The above proposition allows one to construct positive kernels by choosing nonnegative functions h and h ⊥ in L 1 (R + , r d-1 ) and applying the inversion formulae (32a) and (32b). This involves computing Hankel transforms, which may be done either by employing tables of transforms [START_REF] Ditkin | Integral Transforms and Operational Calculus[END_REF][START_REF] Erdélyi | Tables of Integral Transforms[END_REF][START_REF] Oberhettinger | Tables of Bessel Transforms[END_REF], or numerically. However, in Section 4 we shall illustrate a very simple, constructive method for building arbitrary TRI kernels from scalar kernels.

Remark: L 1 vs. L 2 . While it is well known that the Fourier transform is an isometry between L 2 and itself, we have assumed that the kernels are in L 1 (and that, sometimes, so are their Fourier transforms) to be able to use and manipulate the integral formulas in the definitions and proofs. We should note that one could employ the usual argument that L 1 is dense in L 2 [START_REF] Stein | Introduction to Fourier Analysis on Euclidean Spaces[END_REF] and extend the results, mutatis mutandis, to square integrable kernels. However, for computational convenience, we will keep assuming that the kernels are in L 1 when Fourier transforms are needed throughout the rest of the paper.

Divergence-free and Curl-free kernels

In this section we explore some properties of the vector fields x → k(x)α generated by the kernels k of RKHS. In particular we shall compute the functions div(k(•)α) and curl(k(•)α), and relate them to the coefficients h and h ⊥ of the Fourier transform of the kernel k.

Proposition 3.15. Let k ∈ C 1 (R d , R d×d ) be a TRI kernel. It is the case that div k(x)α = α • x x (d -1) k ( x ) -k ⊥ ( x ) x + dk dr ( x ) , x ∈ R d \ {0}.
Proof. For x = 0 define α (x) := Pr x α and α ⊥ (x) := Pr ⊥ x α = α -α (x), so that α = α (x) + α ⊥ (x). It is the case that:

div k(x)α = div k ( x ) α (x) + div k ⊥ ( x ) α ⊥ (x) = ∇ k ( x ) • α (x) + k ( x ) div α (x) + ∇ k ⊥ ( x ) • α ⊥ (x) + k ⊥ ( x ) div α ⊥ (x) = dk dr ( x ) x x • α (x) + k ( x ) div α (x) + k ⊥ ( x ) div α ⊥ (x) , (33) 
where we have used the fact that

x x • α ⊥ (x) = 0. Also, x x • α (x) = x x • α and div α (x) = div α • x x 2 x = 1 x 2 ∇(α • x) • x + (α • x) ∇ 1 x 2 • x + α • x x 2 divx = α • x x 2 + (α • x) -2 x 3 x x • x + α • x x 2 d = (d -1) α • x x 2 .
Moreover, div α ⊥ (x) = -div α (x) . Inserting these expressions into (33) completes the proof.

Corollary 3.16. Let k ∈ C 1 (R d , R d×d ) be a TRI kernel. The vector field x → k(x)α is divergence-free if and only if

(d -1) k (r) -k ⊥ (r) r + dk dr (r) = 0, for all r > 0. ( 34 
)
We want to find a similar result for the curl of the vector field x → k(x)α. Indicating with Ω k R d the space of differential k-forms in R d [START_REF] Lee | Introduction to Smooth Manifolds[END_REF], it is convenient to identify a vector field (v 1 , . . . , v d ) in R d with the 1-form v = v i d 0 x i , where d 0 is the differential of a function. In fact indicating with d k the exterior (Cartan) derivative of a k-form we may write the de Rahm complex for R d as follows:

Ω 0 R d d 0 ----→ Ω 1 R d d 1 ----→ Ω 2 R d d 2 ----→ • • • d d-2 ----→ Ω d-1 R d d d-1 ----→ Ω d R d .
We define curl := d 1 (so that it corresponds to the classical "curl" when d = 3). Proposition 3.17.

Let k ∈ C 1 (R d , R d×d ) be a TRI kernel. It is the case that curl k(x)α = α ∧ x x k ( x ) -k ⊥ ( x ) x - dk ⊥ dr ( x ) , x ∈ R d \ {0}, (35) 
where ∧ indicates the wedge product between differential forms.

Proof. As in the previous proof, let α (x) := Pr x α and α ⊥ (x) := Pr ⊥ x α = α -α (x). We consider them 1-forms, i.e. α (x) = i α (x) i d 0 x i and α

⊥ (x) = i α ⊥ (x) i d 0 x i . It is the case that curl k(x)α = d 1 k(x)α = d 0 k ( x ) ∧ α (x) + k ( x ) d 1 α (x) + d 0 k ⊥ ( x ) ∧ α ⊥ (x) + k ⊥ ( x ) d 1 α ⊥ (x) . (36) 
The first term is zero because d 0 k ( x ) = dk dr ( x ) x x and x ∧ α (x) = 0. We also have

d 1 α (x) = d 1 α • x x 2 x = d 0 α • x x 2 ∧ x + α • x x 2 d 1 x,
where

d 1 x = d 1 i x i d 0 x i = i d 0 x i ∧ d 0 x i = 0 and d 0 α • x x 2 = 1 x 2 d 0 (α • x) + (α • x) d 0 1 x 2 = α x 2 -2 α • x x 4 x. Since x ∧ x = 0 we conclude that d 1 α (x) = α ∧ x x 2 . Moreover x ∧ α ⊥ (x) = x ∧ α = -α ∧ x, whence d 0 k ⊥ ( x ) ∧ α ⊥ (x) = dk ⊥ dr ( x ) x x ∧ α ⊥ (x) = - dk ⊥ dr ( x ) α ∧ x x .
Finally,

d 1 α ⊥ (x) = -d 1 α (x)
. Insertion of such expressions into (36) completes the proof.

Corollary 3.18. Let k ∈ C 1 (R d , R d×d ) be a TRI kernel. The vector field x → k(x)α is curl-free in R d if and only if k (r) -k ⊥ (r) r - dk ⊥ dr (r) = 0, for all r > 0. (37) 
Note that while condition (34) depends on the dimension d of the space, condition (37) does not. The following fundamental theorem relates the incompressibility and irrotationality of vector fields of the type x → k(x)α with the coefficients h and h ⊥ of the Fourier transform of the kernel k.

Theorem 3.19. Let k ∈ C 1 (R d , R d×d ) ∩ L 1 (R d , R d×d )
be a TRI kernel whose Fourier transform k is also in L 1 (R d , R d×d ). Then the vector field x → k(x)α is divergence-free for all α ∈ R d if and only if h = 0. On the other hand, x → k(x)α is curl-free for all α ∈ R d if and only if h ⊥ = 0.

Proof. It is the case that h (̺) = 2πH (2π̺)/̺ µ and h ⊥ (̺) = 2πH (2π̺)/̺ µ , with H and H ⊥ respectively given by (24a) and (24b), and with µ = d 2 -1. Inserting ( 34) into (24a) yields

H (̺) = ∞ 0 r µ+1 k (r)J µ (̺r) dr + 1 ̺ ∞ 0 r µ+1 dk dr (r)J µ+1 (̺r) dr (note that 2µ + 1 = d -1
). We use integration by parts to compute the second term on the right:

∞ 0 r µ+1 dk dr (r)J µ+1 (̺r) dr = r µ+1 k (r)J µ+1 (̺r) ∞ r=0 - ∞ 0 k (r) d dr r µ+1 J µ+1 (̺r) dr = -̺ ∞ 0 r µ+1 k (r) µ + 1 ̺r J µ+1 (̺r) + J ′ µ+1 (̺r) dr = -̺ ∞ 0 r µ+1 k (r)J µ (̺r) dr, (38) 
where we have used the property (76) of Bessel functions. Therefore if [START_REF] Jost | Riemannian Geometry and Geometric Analysis[END_REF] holds then h = 0. Similarly, inserting (37) into (24b) gives

H ⊥ (̺) = ∞ 0 r µ+1 k ⊥ (r)J µ (̺r) dr + 1 ̺ ∞ 0 r µ+1 dk ⊥ dr (r)J µ+1 (̺r) dr.
and an identical integration by parts allows us to conclude that if [START_REF] Micchelli | On learning vector-valued functions[END_REF] holds then h ⊥ = 0. Assume now that h = 0. In this case k and k ⊥ , given by (32a) and (32b), are simply

k (r) = 2µ + 1 r µ+1 ∞ 0 ̺ µ h ⊥ (̺)J µ+1 (2π̺r) d̺, k ⊥ (r) = 2π r µ ∞ 0 ̺ µ+1 h ⊥ (̺)J µ (2π̺r) d̺ - 1 r µ+1 ∞ 0 ̺ µ h ⊥ (̺)J µ+1 (2π̺r) d̺,
therefore the auxiliary function ( 11) is given by k

(r) = 2π r µ+2 ∞ 0 ̺ µ+1 h ⊥ (̺) 2 µ + 1 2π̺r J µ+1 (2π̺r) -J µ (2π̺r) d̺ = 2π r µ+2 ∞ 0 ̺ µ+1 h ⊥ (̺)J µ+2 (2π̺r) d̺,
where we have used property (75) in Appendix A. On the other hand,

1 r dk dr (r) = -(2µ + 1) µ + 1 r µ+3 ∞ 0 ̺ µ h ⊥ (̺)J µ+1 (2π̺r) d̺ + 2µ + 1 r µ+2 ∞ 0 2π̺ µ+1 h ⊥ (̺)J ′ µ+1 (2π̺r) d̺ = -2π 2µ + 1 r µ+2 ∞ 0 ̺ µ+1 h ⊥ (̺) µ + 1 2π̺r J µ+2 (2π̺r)-J ′ µ+1 (2π̺r) d̺ = -2π 2µ + 1 r µ+2 ∞ 0 ̺ µ+1 h ⊥ (̺)J µ+2 (2π̺r)d̺,
where we have used property (77) in Appendix A. Since 2µ + 1 = d -1 we have that (34) holds and the vector field x → k(x)α is divergence-free. Similarly, when h ⊥ = 0 it is the case that

k (r) = 2π r µ ∞ 0 ̺ µ+1 h (̺)J µ (2π̺r) d̺ - 2µ + 1 r µ+1 ∞ 0 ̺ µ h (̺)J µ+1 (2π̺r) d̺, k ⊥ (r) = 1 r µ+1 ∞ 0 ̺ µ h (̺)J µ+1 (2π̺r) d̺, so that k(r) = 2π r µ+2 ∞ 0 ̺ µ+1 h (̺) J µ (2π̺r) -2 µ + 1 2π̺r J µ+1 (2π̺r) d̺ = - 2π r µ+2 ∞ 0 ̺ µ+1 h ⊥ (̺)J µ+2 (2π̺r) d̺,
by property (75) in Appendix A. On the other hand,

1 r dk ⊥ dr (r) = - µ + 1 r µ+3 ∞ 0 ̺ µ h (̺)J µ+1 (2π̺r) d̺ + 1 r µ+2 ∞ 0 2π̺ µ+1 h (̺)J ′ µ+1 (2π̺r) d̺ = 2π r µ+2 ∞ 0 ̺ µ+1 h (̺) - µ + 1 2π̺r J µ+2 (2π̺r) + J ′ µ+1 (2π̺r) d̺ = - 2π r µ+2 ∞ 0 ̺ µ+1 h (̺)J µ+2 (2π̺r) d̺,
again by (77). Whence [START_REF] Micchelli | On learning vector-valued functions[END_REF] holds and x → k(x)α is curl-free. This completes the proof.

Proposition 3.20. Let H ֒→ C 1 (R d , R d
) be a RKHS with a given TRI kernel k. It is the case that div(k(•)α) = 0 for all α ∈ R d if and only if div u = 0 for all u ∈ H. On the other hand, we have that curl(k(•)α) = 0 for all α ∈ R d if and only if curl u = 0 for all u ∈ H.

Proof. The "if" part is obvious. Conversely, let

H 0 := span{k(• -x)α | x, α ∈ R d }.
Take any u ∈ H and a sequence {u n } in H 0 with u n → u. For all indices i, j ∈ {1, . . . , d}, by formula [START_REF] Cao | Diffeomorphic matching of diffusion tensor images[END_REF] we have that

e i • ∂ j u n (x) = -∂ j k(• -x)e i , u n V , which converges to -∂ j k(• -x)e i , u V = e i • ∂ j u(x).
That is, the sequence of functions ∂ j u n converges to ∂ j u pointwise. Therefore we have div u n → div u and curl u n → curl u pointwise. Since u n ∈ H 0 for all n, if div(k(•)α) = 0 for all α ∈ R d then div u n = 0, whence div u = 0. A similar argument holds in the case curl(k(•)α) = 0.

The above results justify the following definition. Definition 3.21. Let H ֒→ C 1 (R d R d ) be a RKHS with a TRI kernel k. We call the space H and its kernel k divergence-free (or curl-free) if div u = 0 (respectively, if curl u = 0) for all u ∈ H.

Conditions on (k , k ⊥ ) Conditions on (h , h ⊥ ) k is div-free (d -1) k (r) -k ⊥ (r) r + dk dr (r) = 0 h = 0 k is curl-free k (r) -k ⊥ (r) r - dk ⊥ dr (r) ≡ 0 h ⊥ = 0 Table 1:
Table 1 summarizes the conditions on the coefficients (k , k ⊥ ) of k and on the coefficients (h , h ⊥ ) of its Fourier transform for a Reproducing Kernel Hilbert Space H with a TRI kernel to be either divergence-free or curl-free. We should note that if k is scalar , i.e. of the type k(x) = k( x )I d , then k = k ⊥ and h = h ⊥ ; therefore by Corollaries 3.16 and 3.18 the corresponding RKHS can be neither divergence-free nor curl-free (unless we are dealing with the trivial case k = 0).

Examples 1 and 2, revisited. In light of the above results, the boundaries of the domains D 1 and D 2 of Examples 1 and 2 in this section have an interesting interpretation. We already noted that in both cases choosing a = 0 (vertical boundary of the domains) yields scalar kernels, i.e. of the type k(x) = k( x )I 2 with k(r) = b exp(-cr 2 ) (Gaussian).

In Example 1, when b = (d -1) a 2c we have k(r) = a exp(-cr 2 ) and k (r) = (d -1) a 2c exp(-cr 2 ); therefore [START_REF] Jost | Riemannian Geometry and Geometric Analysis[END_REF] holds and the kernel is divergence-free. Similarly, in the case of Example 2 when b = a 2c we have k(r) = -a exp(-cr 2 ) and k ⊥ (r) = a 2c exp(-cr 2 ); whence [START_REF] Micchelli | On learning vector-valued functions[END_REF] holds and the kernel is curl-free. Thus the boundaries of the two domains may be interpreted as illustrated in Figure 4.

In the case d = 2 we have that D 1 = D 2 . Figure 5 shows the vector field x → k(x)α, α = e 1 , for both Example 1 and Example 2, with b = c = 1 and different choices of the parameter a. In particular, for a = 0 the point (a, b) is on the vertical part of the boundary of D 1 and D 2 ; this corresponds, in both cases, to a scalar kernel. As we move along the line b = 1 towards higher values of a, we note that we transition to a vector field x → k(x)α that is divergence-free (Example 1) or curl-free (Example 2); this occurs when (a, b) hits the slanted part of the boundaries of D 1 and D 2 , i.e. the line a = 2bc.

Hodge decomposition. Let k ∈ L 1 (R d , R d×d ) be a TRI kernel with coefficients (k , k ⊥ ), and let (h , h ⊥ ) be the coefficients of its Fourier transform, which we also assume integrable. Using the functional M introduced in (31), we have (k , k ⊥ ) = M -1 (h , h ⊥ ). By the linearity of M -1 we also have

(k , k ⊥ ) = (k 1 , k ⊥ 1 ) + (k 2 , k ⊥ 2 )
, where: With the above definitions, we let

(k 1 , k ⊥ 1 ) := M -1 (h , 0) (k 2 , k ⊥ 2 ) := M -1 (0, h ⊥ ) . ( 39 
)
k = k 1 + k 2 ,
where

k 1 (x) := k 1 (x) Pr x + k ⊥ 1 (x) Pr x and k 2 (x) := k 2 (x) Pr x + k ⊥ 2 (x) Pr x ; (40) 
by Theorem 3.19 we have that for all α ∈ R d we may write k(x)α = k 1 (x)α+k 2 (x)α, x ∈ R d , where the first term is a curl-free vector field and the second term is instead div-free. In other words, for any integrable TRI kernel k and any α ∈ R d this procedure allows one to perform the Hodge decomposition [START_REF] Chorin | A mathematical introduction to fluid mechanics[END_REF][START_REF] Jänich | Vector Analysis[END_REF] of the vector field x → k(x)α: the two terms, curl-free and divergence-free, may be respectively computed from the coefficients h and h ⊥ of the Fourier transform of k precisely by using the inversion formulae (32a) and (32b) twice, the first time with h ⊥ = 0 (to compute k 1 ) and then with h = 0 (to compute k 2 ); note that since k vanishes at infinity there is no harmonic component in the Hodge decomposition. We shall call k 1 and k 2 the curl-free and divergence-free components of the kernel k.

Incidentally, we note that if k ∈ L 1 ∩ L 2 then for any α ∈ R d the orthogonality in L 2 (R d , R d ) of the Hodge components k 1 (•)α and k 2 (•)α may be easily verified via Plancherel's theorem as follows:

k 1 α, k 2 α L 2 = k 1 α, k 2 α L 2 = R d h ( ξ )Pr ξ α • h ⊥ ( ξ )Pr ⊥ ξ α dξ = 0.
The computation of k 1 and k 2 from k via formulae ( 39) and ( 40) may be viewed as an orthogonal projection (in the L 2 sense) of k onto the spaces of curl-free and devergence-free kernels, respectively.

Example 3. We now consider the Gaussian scalar kernel k(x) = k( x )I d , x ∈ R d , with k(r) = e -cr 2 for some c > 0, and compute its Hodge decomposition. We saw earlier that its Fourier transform is

k(ξ) = h( ξ )I d , ξ ∈ R d with h(̺) = π c µ+1 exp - π 2 ̺ 2 c , where µ = d 2 -1. ( 41 
)
scalar curl-free divergence-free

x → k(x)e 1 x → k 1 (x)e 1 x → k 2 (x)e 1

Curl-free component

Given a s-admissible Hilbert space H of scalar -valued differentiable functions defined on R d , one can define the space V := {∇f | f ∈ H}. Note that (i) if s ≥ 2 all the elements of V are curl-free and (ii) for all v ∈ V there is a unique

f ∈ H such that v = ∇f (in fact if v = ∇f 1 = ∇f 2 then f 1 -f 2 ∈ H is a constant that must be zero because H ⊂ C s 0 (R d , R), i.e
. it vanishes at infinity). The proposition that follows shows that the kernel of H induces a reproducing kernel on V .

Notation. Given a scalar -valued differentiable function F : R d × R d → R we indicate with ∂ n,i F , n ∈ {1, 2}, i ∈ {1, . . . , d} the derivative of F with respect to the i th variable of the n th set of variables; with ∇ n F , where n ∈ {1, 2}, the gradient of F with respect to the n th set of variables; and with ∇ 1 ∇ T 2 F the matrix-valued function whose (i, j) th entry is ∂ 1,i ∂ 2,j F , for 1 ≤ i, j ≤ d. Finally, for a vector-valued function f : R d → R d , we indicate with ∇f the matrix whose (i, j) th entry is

∂ i f j , for 1 ≤ i, j ≤ d. Proposition 4.1. For fixed r ≥ 1, consider a Hilbert space H ֒→ C s 0 (R d , R) of scalar-valued functions, with kernel K H : R d × R d → R. Let V := {∇f | f ∈ H} be endowed with the inner product v 1 , v 2 V := f 1 , f 2 H , where v 1 = ∇f 1 and v 2 = ∇f 2 . Then V ֒→ C s-1 0 (R d , R d ), i.e.
it is a (s -1)-admissible Hilbert space of R d -valued functions, and its kernel is given by K

V = ∇ 1 ∇ T 2 K H . Proof. One can easily verify that •, • V is an inner product, that V is complete and continuously embedded in C s-1 0 (R d , R d ). So V is a RKHS, and for all x, α ∈ R d and v = ∇f ∈ V , its kernel K V must satisfy K V (•, x)α, v V = α • v(x) = α • ∇f (x) = d i=1 α i ∂ i f (x) = (by Theorem 2.11) = d i=1 α i ∂ 2,i K H (•, x), f H = α • ∇ 2 K H (•, x), f H = ∇ α • ∇ 2 K H (•, x) , v V , therefore K V (•, x)α = ∇ ∇ 2 K H (•, x) • α = ∇ 1 ∇ T 2 K H (•, x) α
, where we have used the the property that

∇(f • α) = (∇f )α for any differentiable vector-valued function f : R d → R d . By the arbitrariness of α ∈ R d we conclude that K V (y, x) = ∇ 1 ∇ T 2 K H (y, x), for y, x ∈ R d .
Remark. Before proceeding to the case of translation-and rotation-invariant kernels we note that if the kernel K of a s-admissible Hilbert space is translation-invariant, i.e. K(x, y) = k(x -y), then k is differentiable 2s times (see the remark at the end of Section 3.1).

Proposition 4.2. Under the assumptions of Proposition 4. 

1, if K H (x, y) = k H (x -y) for some func- tion k H : R d → R, then K V (x, y) = k V (x -y), with k V = -Hess k H (i.e. k ij V = -∂ i ∂ j k H ). Proof. We have that ∂ 2,j K H (x, y) = -∂ j k H (x-y) and ∂ 1,i ∂ 2,j K H (x, y) = -∂ i ∂ j k H (x-y), for all x, y ∈ R d
x → k V (x)α is curl-free. Proof. Using the fact that (∇f )α = ∇(f • α) for any differentiable vector-valued function f : R d → R d , we have k V (x)α = (-Hess k H (x))α = -(∇∇ T k H (x))α = -∇(∇k H (x)•α),
(x) = k H ( x ) for some k H : R + → R then the kertnel of V is TRI, i.e. k V (x) = k V ( x ) Pr x + k ⊥ V ( x ) Pr ⊥ x with k V (r) = - d 2 k H dr 2 (r) and k ⊥ V (r) = - 1 r dk H dr (r), r > 0. ( 45 
)
Proof. First note that we have

∂ j k H (x) = k ′ H ( x ) x j / x and -∂ i ∂ j k H (x) = -k ′′ H ( x ) x i x j x 2 -k ′ H ( x ) ∂ ∂x i x j x = -k ′′ H ( x ) x i x j x 2 -k ′ H ( x ) δ ij x - x i x j x 3 ,
where δ ij is Kronecker's symbol. Therefore by Proposition 4.2 it must be the case that

k V (x) = -k ′′ H ( x ) xx T x - k ′ H ( x ) x I d - xx T x 2 = -k ′′ H ( x ) Pr x - k ′ H ( x ) x Pr ⊥ x .
which are precisely the equations of the coefficients of the kernel in Example 2 with a = 2bc; that is, along the diagonal line of the domain D 2 , which corresponds to curl-free kernels. See Figure 4(b).

Example 4 (Bessel-type curl-free kernels). Consider the scalar-valued k H

(x) = k H ( x ), with k H (r) = C 0 r σ ℓ-d 2 K ℓ-d 2 r σ , r ≥ 0, (49) 
where K ν is a modified Bessel function of order ν.

When C 0 = C(σ, d, ℓ) := (2 ℓ+ d 2 -1 π d 2 Γ(ℓ) σ d ) -1 , as in (7), it is the Green's function of L = (1 -σ 2 ∆) ℓ . The corresponding Hilbert space H is s-admissible, i.e. H ֒→ C s 0 (R d , R), if ℓ ≥ s + d/2.
To apply our procedure, we must have at least s ≥ 1. By Lemma A.1 in Appendix A, applying [START_REF] Mumford | Pattern theory: the stochastic analysis of real-world signals[END_REF] to the kernel (49) yields

k V (r) = C 0 σ 2 r σ ν-1 (2ν -1) K ν-1 r σ - r σ K ν r σ and k ⊥ V (r) = C 0 σ 2 r σ ν-1 K ν-1 r σ , (50) 
where

ν = ℓ -d 2 .
From the asymptotic expansion for large arguments of K ν , given by (79) in Appendix A, one sees that the kernel with coefficients (50) has heavier tails than the "Gaussian" case (48).

Divergence-free component

We have seen how one can create the matrix-valued kernel a curl-free RKHS by taking the "double gradient" of a scalar-valued kernel. We will now illustrate how a the kernel of a divergence-free RKHS may be created by taking the "double curl" of a matrix-valued scalar kernel (i.e. with equal diagonal entries). For simplicity we shall limit ourselves to the case d = 3, which is the most relevant in applications.

Lemma 4.7. A 1-admissible Hilbert space W ֒→ C 1 0 (R 3 , R 3 ) is divergence-free if and only if the linear map curl : W → C 0 (R 3 , R 3 ) is injective.
Proof. First assume that W is divergence-free. If curl w = 0 then w = ∇f for some scalar function f ; therefore ∆f = div w = 0 because W is divergence-free, and in fact f must be zero because it is harmonic and it vanishes at infinity. Vice versa, assume that curl is injective on W . Take an arbitrary w ∈ W and let w = w 1 + w 2 be its Hodge decomposition (i.e. curl w 1 = 0 and div w 2 = 0). We have curl w = curl w 2 , so by the injectivity assumption w = w 2 , whence w 1 = 0. Therefore div w = div w 1 = 0.

Let s ≥ 1 and consider a s-admissible Hilbert space W ֒→ C s 0 (R 3 , R 3 ), and the space of vector fields V := {curl w | w ∈ W }. By Lemma (4.7) the "primitive" w ∈ W of v = curl w ∈ V is unique if and only if W is divergence-free. With this condition, we can certainly follow a path that is similar to the one described in the previous section and endow V with a reproducing kernel induced by the kernel of W .

Notation. Given a differentiable matrix-valued function

G : R 3 × R 3 → R 3×3 we indicate with curl C
n G the matrix-valued funcion whose i th column (with i = 1, 2, 3) is the curl of the i th column of G; the curl is computed with respect to the n th set of variables of G (with n = 1 or 2). The definition of curl R n G is obtained by substituting the word "column" with the word "row". If the matrix-valued functions of only three variables g : R 3 → R 3×3 is differentiable, curl C g (respectively, curl R g) simply indicates the matrix whose i th column (row) is the curl of the i th column (row) of g, for i = 1, 2, 3. Proposition 4.8. For fixed s ≥ 1, consider a Hilbert space W ֒→ C s 0 (R 3 , R 3 ) of divergence-free vector fields, with kernel

K W : R 3 × R 3 → R 3 . Let V := {curl w | w ∈ W } be endowed with the inner product v 1 , v 2 V := w 1 , w 2 W , where v 1 = curl w 1 and v 2 = curl w 2 . Then V ֒→ C s-1 0 (R 3 , R 3 ), i.e.
it is a (s -1)-admissible Hilbert space of R 3 -valued functions, and its kernel is given by K

V = curl C 1 curl R 2 K W .
Proof. We indicate with K i,• W and K •,j W the i th row and the j th column of K, respectively. One can easily verify that •, • V is an inner product, V is complete, and V ֒→ C s-1 0 (R 3 , R 3 ); therefore V is a RKHS. For arbitrary w ∈ W let v = curl w; for all x, α ∈ R 3 the kernel K V must be such that

K V (•, x)α, v V = α • v(x) = α • curl w(x) = α 1 ∂ 2 w 3 (x) -∂ 3 w 2 (x) + α 2 ∂ 3 w 1 (x) -∂ 1 w 3 (x) + α 3 ∂ 1 w 2 (x) -∂ 2 w 1 (x) = (by Theorem 2.11) = α 1 ∂ 2,2 K •,3 W (•, x) -∂ 2,3 K •,2 W (•, x) + α 2 ∂ 2,3 K •,1 W (•, x) -∂ 2,1 K •,3 W (•, x) + α 3 ∂ 2,1 K •,2 W (•, x) -∂ 2,2 K •,1 W (•, x) , w W = curl R 2 K W (•, x) α, w W = curl curl R 2 K W (•, x) α , v V = curl C 1 curl R 2 K W (•, x) α, v V ,
where in the last step we have used the fact that curl(gα) = (curl C g)α for any differentiable matrix-valued function g : R 3 → R 3×3 and any α ∈ R 3 . This concludes the proof.

In the translation-invariant case we have the following immediate consequence.

Proposition 4.9. Under the assumptions of Proposition 4.8, if

K W (x, y) = k W (x -y) for some func- tion k W : R 3 → R 3×3 , then K V (x, y) = k V (x -y) with k V = -curl C curl R k W .
Corollary 4.10. Under the assumptions of Propositions 4.8 with r ≥ 2 and 4.9, for any choice of α ∈ R d the vector field x → k V (x)α is divergence-free.

Proof. Since (curl C g)α = curl(gα) for any differentiable matrix-valued function g : R 3 → R 3×3 , we have

k V (x)α = (-curl C curl R k W (x))α = -curl[(curl R k W (x))α],
and we conclude immediately.

Lemma 4.11. For any twice differentiable matrix-valued function g = [g ij ] 1≤i,j≤3 : R 3 → R 3×3 we have:

curl C curl R g = curl R curl C g = ∂ 2 2 g 33 -∂ 2 ∂ 3 (g 23 + g 32 ) + ∂ 2 3 g 22 -∂ 1 ∂ 2 g 33 +∂ 1 ∂ 3 g 23 +∂ 2 ∂ 3 g 31 -∂ 2 3 g 21 ∂ 1 ∂ 2 g 32 -∂ 1 ∂ 3 g 22 -∂ 2 2 g 31 +∂ 2 ∂ 3 g 21 -∂ 1 ∂ 2 g 33 +∂ 1 ∂ 3 g 32 +∂ 2 ∂ 3 g 13 -∂ 2 3 g 12 ∂ 2 1 g 33 -∂ 1 ∂ 3 (g 13 + g 31 ) + ∂ 2 3 g 11 -∂ 2 1 g 32 +∂ 1 ∂ 2 g 31 +∂ 1 ∂ 3 g 12 -∂ 2 ∂ 3 g 11 ∂ 1 ∂ 2 g 23 -∂ 1 ∂ 3 g 22 -∂ 2 2 g 13 +∂ 2 ∂ 3 g 12 -∂ 2 1 g 23 +∂ 1 ∂ 2 g 13 +∂ 1 ∂ 3 g 21 -∂ 2 ∂ 3 g 11 ∂ 2 1 g 22 -∂ 1 ∂ 2 (g 12 + g 21 ) + ∂ 2 2 g 11 .
The above lemma may be proven by direct computation. We note that curl R and curl C commute, and if g is symmetric (i.e. g ij = g ji for 1 ≤ i, j ≤ 3) then so is the matrix-valued function curl C curl R g.

Remark.

Before proceeding further we should note that the above procedure and results require the s-admissible space of vector fields W (that we use to build the new space V ) to be divergence-free. This sounds like a severe limitation because, as we said at the beginning of the section, our goal here is to formulate a procedure that generates RKHS of divergence-free vector fields. Having to start from such a space does not seem very useful. The next results, that refer to the TRI case, solve this problem. In order to interpret the results in the Fourier domain, we shall assume that the kernels are integrable. Proposition 4.12. Let k 1 , k 2 : R 3 → R 3×3 be the TRI, integrable kernels of two s-admissible Hilbert spaces, with s ≥ 2. If their Fourier transforms have the the same divergence-free coefficient h ⊥ , i.e.

k 1 (ξ) = h 1 ( ξ ) Pr ξ + h ⊥ 1 ( ξ ) Pr ⊥ ξ and k 2 (ξ) = h 2 ( ξ ) Pr ξ + h ⊥ 2 ( ξ ) Pr ⊥ ξ , with h ⊥ 1 = h ⊥ 2 := h ⊥ , then -curl C curl R k 1 = -curl C curl R k 2 =: k, and k is a divergence-free kernel.
Proof. We first observe that if the Fourier transform a kernel k has coefficient h ⊥ = 0 then, for all α ∈ R 3 , it is the case that curl(kα) = 0; but curl(kα) = (curl C k)α, therefore curl C k = 0 and curl C curl R k = 0 (by the commutativity of curl C and curl R , see Lemma 4.11). Now, by the linearity of the operator M (and its inverse), introduced by equation ( 31), for i = 1, 2 we have

k i (x) = k i ( x )Pr ξ + k ⊥ i ( x )Pr ⊥ x , with (k i , k ⊥ i ) = M -1 (h i , h ⊥ ) = M -1 (h i , 0) + M -1 (0, h ⊥ ); (51) 
Space W : note that h ⊥ 1 = h ⊥ 2 = h ⊥ . We now apply curl C curl R to both k 1 and k 2 and, by the first part of the proof, we have that the component that corresponds to the first term on the right-hand side of (51) vanishes for both k 1 and k 2 ; what survives is the second component, which is the same for both kernels. Therefore curl

Space V : Space W 0 : k W : (k W , k ⊥ W ) k W : (h W , h ⊥ W ) = (0, h) k V : (k V , k ⊥ V ) = -2 r k ′ W 0 , -1 r k ′ W 0 -k ′′ W 0 k V : (h V , h ⊥ V ) = 0, (2π̺) 2 h k W 0 (x) = k W 0 ( x )I 3 , k W 0 = 1 2 k W + k ⊥ W k W 0 : (h W 0 , h ⊥ W 0 ) = (h, h) F F F -curl C curl R (-curl C curl R ) ∧ -curl C curl R (-curl C curl R ) ∧
C curl R k 1 = curl C curl R k 2 .
The resulting kernel is divergence-free because, for i = 1, 2, we have (curl

C curl R k i )α = curl[(curl R k i )α], for all α ∈ R d .
Consequently, if the coefficients of the Fourier transform k of a kernel k are (h , h ⊥ ), then the coefficients of the Fourier transform of curl C curl R k must be of the type (0, h * ), where h * only depends on h ⊥ . Going back to our original problem of inducing a RKHS structure on V := {curl w | w ∈ W } from the one on W (Propositions 4.8 and 4.9), this suggests an alternative way of computing the kernel k V .

Namely, we build a new auxiliary Hilbert space W 0 ֒→ C s 0 (R 3 , R 3 ), with a scalar kernel, i.e. of the form k W 0 (x) = k W 0 ( x )I 3 , x ∈ R 3 . Assuming k W is integrable and divergence-free, the coefficients of its Fourier transform k W are (h W , h ⊥ W ) = (0, h), for some nonegative function h : R + → R. We define the scalar kernel k W 0 via its Fourier transform, as

k W 0 (ξ) := h W 0 ( ξ )I 3 , ξ ∈ R 3 , with h W 0 := h; (52) 
in other words, the coefficients of k W 0 and k W 0 are respectively k W 0 = k ⊥ W 0 = k W 0 and h W 0 = h ⊥ W 0 = h W 0 , where we have set h W 0 = h, i.e. equal to the non-zero coefficient of the Fourier transform of k W . Equivalently, and perhaps more interestingly, k W 0 is the only scalar kernel whose divergence-free component is precisely k W . The next proposition relates the kernels k W and k W 0 explicitly in the spatial domain (as opposed to the Fourier domain); this is summarized by the first and third rows of the diagram of Figure 8. Proposition 4.13. Under the assumptions of Proposition 4.8, if the kernel of W is TRI and integrable, with Fourier transform k W = h( ξ ) Pr ⊥ ξ , ξ ∈ R d , then the kernel k W 0 , defined in the Fourier domain by [START_REF] Scholkopf | Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[END_REF], has the form

k W 0 = k W 0 ( x )I 3 , x ∈ R 3 , with k W 0 = 1 2 k W + k ⊥ W .
Proof. We have that k

W 0 (r) = 2π r µ ∞ 0 ̺ µ+1 h(̺) J µ (2π̺r)d̺, with µ = d 2 -1 = 1 2 (since d = 3
). In addition, since (h W , h ⊥ W ) = (0, h), by Proposition 3.14 it is the case that

k W (r) = 2µ + 1 r µ+1 ∞ 0 ̺ µ h(̺) J µ+1 (2π̺r) d̺ (where 2µ + 1 = d -1 = 2) and k ⊥ W (r) = 2π r µ ∞ 0 ̺ µ+1 h(̺) J µ (2π̺r) d̺ - 1 r µ+1 ∞ 0 ̺ µ h(̺) J µ+1 (2π̺r) d̺ = k W 0 (r) - 1 2 k W (r).
By Proposition 4.12, since k W and k W 0 have the same coefficient h ⊥ in the Fourier domain, it must be the case that curl C curl R k W = curl C curl R k W 0 ; the right-hand side is simpler to compute because k W 0 is characterized by only one coefficient (i.e. the function k W 0 ) in the spatial domain. This is done next. Proposition 4.14. If W 0 ֒→ C s 0 (R 3 , R 3 ), with s ≥ 1, has scalar kernel k W 0 (x) = k W 0 ( x )I 3 , x ∈ R 3 , and we define k

V := -curl C curl R k W 0 , then k V (x) = k V ( x )Pr x + k ⊥ V ( x )Pr ⊥ x with k V (r) = - 2 r dk W 0 dr (r) and k ⊥ V (r) = - 1 r dk W 0 dr (r) - d 2 k W 0 dr 2 (r), r > 0. ( 53 
)
Proof. We first compute the curl "by rows" of k W 0 :

curl R k W 0 (x) = k ′ W ( x ) x   0 x 3 -x 2 -x 3 0 x 1 x 2 -x 1 0   = f (x) v 1 (x) v 2 (x) v 3 (x) ,
where f (x) := k ′ W 0 ( x )/ x , and the v i 's are the columns of the above matrix. Now we have

∇f (x) = k ′′ W 0 ( x ) x 2 - k ′ W 0 ( x ) x 3 x and curl v i (x) = 2e i , for i = 1, 2, 3, so that curl(f v 1 ) = ∇f × v 1 + f curl v 1 = k ′′ W 0 ( x ) x 2 - k ′ W 0 ( x ) x 3   x 2 2 + x 2 3 -x 1 x 2 -x 1 x 3   + 2 k ′ W 0 ( x ) x e 1 .
Similar computations hold for curl(f v 2 ) and curl(f v 3 ), which lead to

k V (x) = -curl C curl R k W 0 = - k ′′ W 0 ( x ) x 2 - k ′ W 0 ( x ) x 3 x 2 I 3 -xx T -2 k ′ W 0 ( x ) x I 3 = -2 k ′ W 0 ( x ) x Pr x -k ′′ W 0 ( x ) + k ′ W 0 ( x ) x Pr ⊥ x .
Corollary 4.15. Under the assumptions of Proposition 4.14, the elements of V are divergence-free.

When s ≥ 2, we already knew that the above was true from Corollary 4.10. However (similarly to what happens in the construction of curl-free kernel, described in Section 4.1) one can easily verify that k V and k ⊥ V , given by ( 53), satisfy equation ( 34) for d = 3, and that once again the latter operation only involves two derivatives of k W 0 , which is twice differentiable when r = 1. Therefore Corollary 4.15 also holds when s = 1. The kernel k V can be characterized in the Fourier domain as follows.

Lemma 4.16. If g : R 3 → R is a twice-differentiable scalar-valued function and we define g = gI 3 , then it is the case that curl C curl R g = (∆I 3 -Hess)g.

Proof. By Lemma 4.11, curl C curl R g =   (∂ 2 2 +∂ 2 3 )g -∂ 1 ∂ 2 g -∂ 1 ∂ 3 g -∂ 1 ∂ 2 g (∂ 2 1 +∂ 2 3 )g -∂ 2 ∂ 3 g -∂ 1 ∂ 3 g -∂ 2 ∂ 3 g (∂ 2 1 +∂ 2 2 )g   = ∆I 3 -Hess g.
Proposition 4.17. Under the assumptions of Proposition 4.14, if k W 0 is integrable and

k W 0 (ξ) = h( ξ )I 3 , ξ ∈ R 3 , then k V (ξ) = h V ( ξ ) Pr ξ + h ⊥ V ( ξ ) Pr ⊥ ξ , with h V = 0 and h ⊥ V (̺) = (2π̺) 2 h(̺).
Proof. We have k W 0 (x) = g(x)I 3 with g(x)

:= k W 0 ( x ), x ∈ R 3 ; by Lemma 4.16, k V = -curl C curl R k W 0 = (Hess-∆I 3 )g. Since R d ∂ j ∂ ℓ g(x) e -2πiξ•x dx = -(2π) 2 ξ j ξ ℓ g(ξ)
and g(ξ) = h( ξ ), we may finally compute

k V (ξ) = (2π) 2 ξ 2 I 3 -ξξ T h( ξ ) = (2π ξ ) 2 h( ξ ) Pr ⊥ ξ .
The situation is completely illustrated by the commutative diagram in Figure 8. In summary, given an arbitrary s-admissible Hilbert space W of divergence-free vector fields with kernel k W (i.e. given the corresponding coefficient in the frequency domain h ⊥ W = h), we can always build another space W 0 with a scalar kernel k W 0 such that curl C curl R k W = curl C curl R k W 0 . Then by Proposition 4.9 the kernel of the space V := {curl w | w ∈ W } may simply be computed as k V = -curl C curl R k W 0 , i.e. by equations [START_REF] Schwartz | Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants)[END_REF].

In fact, given the arbitrariness of h ⊥ W = h, we may start from any Hilbert space W 0 ֒→ C s 0 (R 3 , R 3 ) with a scalar kernel, compute the new coefficients via [START_REF] Schwartz | Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants)[END_REF] and these will correspond to the kernel of V := {curl w | w ∈ W } for some s-admissible space W of divergence-free vector fields, whose kernel k W we do not need to make explicit. This provides us with a practical procedure for building kernels of divergence-free vector fields. Since h(̺) = (2π̺) -2 h V (̺), we finally note that by formula [START_REF] Chorin | A mathematical introduction to fluid mechanics[END_REF] we have

k W 0 (x) = k W 0 ( x )I 3 , x ∈ R 3 , with k W 0 (r) = 1 2πr µ ∞ 0 ̺ µ-1 h V (̺) J µ (2πr̺) d̺, r > 0 (54) (where µ = d 2 -1 = 1 2 )
. Therefore the procedure is general, in the sense that any integrable, TRI, divergence-free kernel k V of a (s-1)-admissible Hilbert space V may be derived by applying formulae [START_REF] Schwartz | Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants)[END_REF] to the a scalar kernel k W 0 of a certain Hilbert space W 0 ֒→ C s 0 (R 3 , R 3 ), in fact given by formula [START_REF] Sneddon | Fourier Transforms[END_REF].

Generalization to arbitrary dimensions. Thanks to the interpretation of the differential operator -curl C curl R in the Fourier domain provided by Proposition 4.17, we may actually extend the above procedure, and formulae [START_REF] Schwartz | Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants)[END_REF], to R d×d -valued TRI kernels, with arbitrary d.

Proposition 4.18. Let k W 0 ֒→ C s 0 (R d , R d ) be integrable and of the form k W 0 (x) = k W 0 ( x )I d , with Fourier transform k W 0 (ξ) = h( ξ )I d . If we define k V via its Fourier transform as k V (ξ) = h ⊥ V ( ξ )Pr ⊥ ξ with h ⊥ V (̺) = (2π̺) 2 h(̺), ̺ > 0, then the coefficients of k V are given by k V (r) = - d -1 r dk W 0 dr (r) and k ⊥ V (r) = - d -2 r dk W 0 dr (r) - d 2 k W 0 dr 2 (r), r > 0. (55) 
Proof. By (32a) with h = 0 we have k

V (r) = 2µ + 1 r µ+1 (2π) 2 ∞ 0 ̺ µ+2 h(̺)J µ+1 (2π̺r) d̺. We note that 2π ̺ µ+1 ∞ 0 r µ+2 1 r dk W 0 dr (r) J µ+1 (2π̺r) d̺ ( * ) = - (2π) 2 ̺ µ ∞ 0 r µ+1 k W 0 (r) J µ (2π̺r) d̺ = -2πh(̺);
in step ( * ) one uses an argument that is in all similar to the computation in [START_REF] Micheli | Sectional curvature in terms of the cometric, with applications to the Riemannian manifolds of landmarks[END_REF]. Since the transformation [START_REF] Carmeli | Vector-valued Reproducing Kernel Hilbert Spaces and Universality[END_REF], with µ + 1 instead of µ, is an involution, it must be the case that

1 r dk W 0 dr (r) = 2π r µ+1 ∞ 0 ̺ µ+2 -2πh(̺) J µ+1 (2π̺r) d̺,
which allows us to complete the computation of k V (note that 2µ + 1 = d -1). To calculate k ⊥ V we simply use formula [START_REF] Jost | Riemannian Geometry and Geometric Analysis[END_REF], which is valid for divergence-free kernels, rewritten as k ⊥ V = k V + r d-1 dk V /dr. By considerations that are in all similar to those above, we conclude that all divergence-free kernels, in arbitrary dimensions, may be obtained from scalar ones via formulae [START_REF] Stein | Introduction to Fourier Analysis on Euclidean Spaces[END_REF], which generalize [START_REF] Schwartz | Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants)[END_REF]. 

k V (r) = be -cr 2 and k ⊥ V (r) = b - 2bc d -1 r 2 e -cr 2 , (56) 
which are precisely the equations of the coefficients of the kernel in Example 1 with a = 2bc/(d -1), which is the line on the boundary of D 1 that corresponds to divergence-free kernels. See Figure 4(a).

Example 5 (Bessel-type divergence-free kernels). Consider the scalar kernel k W 0 (x) = k W 0 ( x )I d , with k W 0 given by the right-hand side of (49); if ℓ > s + d/2 then W 0 ֒→ C s 0 (R d , R d ). Using Lemma A.1, if we apply formulae [START_REF] Stein | Introduction to Fourier Analysis on Euclidean Spaces[END_REF] to such kernel k W 0 we get:

k V (r) = C 0 σ 2 (d-1) r σ ν-1 K ν-1 r σ , and k ⊥ V (r) = C 0 σ 2 r σ ν-1 (2ν+d-3) K ν-1 r σ - r σ K ν r σ , (57) 
where ν = ℓ-d 2 . Once again, the kernel with coefficients (57) has heavier tails than the Gaussian case [START_REF] Trouvé | Infinite Dimensional Group Action and Pattern Recognition[END_REF].

Application: matching of landmark points

To illustrate an application of the tools that we developed thus far, in this section we shall study the problem of matching feature points, or "landmarks" [START_REF] Glaunès | Landmark matching via large deformation diffeomorphisms on the sphere[END_REF][START_REF] Joshi | Landmark matching via large deformation diffeomorphisms[END_REF][START_REF] Micheli | Sectional curvature in terms of the cometric, with applications to the Riemannian manifolds of landmarks[END_REF][START_REF] Younes | Shapes and Diffeomorphisms[END_REF]. Let Ω be an open subset of R m . The set of N labeled landmark points in Ω is defined as:

L N (Ω) := (P 1 , . . . , P N ) :

P a ∈ Ω, P a = P b for a = b , (58) 
which is in fact a manifold of dimension n = N m. The generic element of L N (Ω) is called landmark set.

For any pair of elements of L N (Ω) we will look for a time-dependent velocity field of "minimal energy" (to be defined) that deforms the first landmark set into the other; we shall consider velocity fields in RKHS of the type described in this paper. This will result in the formulation of a Riemannian distance in L N (Ω). Before proceeding, we first review some some known results.

Hamiltonian dynamics

In the previous section we derived the Hamiltonian induced by the matching problem for landmark sets.

We shall now develop Hamilton's equations, i.e. the geodesic equations in L N (Ω) with respect to the metric tensor (66). Also, we will consider the particular case of TRI kernels.

Proposition 5.5. Let V ֒→ C 1 0 (Ω, R d ), with Ω ⊆ R d open and connected, be a RKHS with kernel K. Hamilton's equations for the manifold L N (R d ) equipped with the metric tensor (66) are given by:

qa = N b=1 K(q a , q b ) p b (69a) ṗai = - N b=1 d j,k=1 ∂ 1,i K jk (q a , q b ) p aj p bk (69b) 
for a = 1, . . . , N and i = 1, . . . , d.

As in Section 4, ∂ n,i K in (69b) indicates the partial derivative of (x 1 , . . . , x d , y 1 , . . . , y d ) → K(x, y) with respect to the i-th component (i = 1, . . . , d) of the n-th variable (n = 1, 2).

Proof. Computing qai = ∂H ∂p ai yields the first equation immediately. Also: ∂ ∂q ai K jk q b1 , . . . , q bD , q c1 , . . . ,

q cD = D ℓ=1 ∂ 1,ℓ K jk ∂q bℓ ∂q ai + ∂ 2,ℓ K jk ∂q cℓ ∂q ai = D ℓ=1 ∂ 1,ℓ K jk δ b a δ ℓ i + ∂ 2,ℓ K jk δ c a δ ℓ i = ∂ 1,i K jk (q b , q c ) δ b a + ∂ 2,i K jk (q b , q c ) δ c a . Since K jk (x, y) = K kj (y, x) it is also the case that ∂ jk 2,i K(x, y) = ∂ kj 1,i K(y, x), whence ṗai = - ∂H ∂q ck = - 1 2 N b,c=1 D j,k=1 ∂ 1,i K jk (q b , q c ) δ b a + ∂ 1,i K kj (q c , q b ) δ c a p bj p ck = - 1 2 D j,k=1 N c=1 ∂ 1,i K jk (q a , q c )p aj p ck + N b=1 ∂ 1,i K kj (q a , q b )p bj p ak = - D j,k=1 N c=1 ∂ 1,i K jk (q a , q c )p aj p ck
where, in the last step, we have simply relabeled the indices. This concludes the proof.

We now assume that Ω = R d and that the kernel of V is translation-invariant, i.e. K(x, y) = k(x -y), for some function k : R d → R d×d . In this case Hamilton's equations obviously become:

qa = N b=1 k(q a -q b ) p b (70a) ṗai = - N b=1 p a • ∂k ∂x i (q a -q b ) p b (70b) 
with a = 1, . . . , N and i = 1, . . . , d. In the translation-and rotation-invariant case (TRI kernels) the equations take a form that is determined by differentiating the general expression [START_REF] Bonaventura | Kernel-based vector field reconstruction in computational fluid dynamic models[END_REF].

Proposition 5.6. Consider a Hilbert space V ֒→ C 1 0 (R d , R d ) with a TRI kernel. Then

∂k ∂x i (x) = x i x dk dr ( x ) Pr (x) + dk ⊥ dr ( x ) Pr ⊥ (x) + x k( x ) e i x T + xe T i x -2 x i x Pr (x) , (71) 
for i = 1, . . . , d,
where k is given by [START_REF] Bracewell | The Fourier Transform and its Applications[END_REF].

scalar kernel curl-free kernel divergence-free kernel Figure 9: Plots of the vector field v(x) = 3 a=1 k(x -q a )α a for three different choices of the kernel, with the same landmarks q a and momenta α a , a = 1, 2, 3.

Proof. By differentiating the generic matrix element [START_REF] Cachier | Isotropic energies, filters and splines for vector field regularization[END_REF] with respect to x i we get

∂k jk ∂x i (x) = x j x k x 2 ∂ ∂x i k ( x ) -k ⊥ ( x ) + k ( x ) -k ⊥ ( x ) ∂ ∂x i x j x k x 2 + ∂ ∂x i k ⊥ ( x ) δ jk = dk dr ( x ) - dk ⊥ dr ( x ) x i x j x k x 3 + x 2 k( x ) δ j i x k + δ k i x j x 2 -2 x i x j x k x 4 + dk ⊥ dr ( x ) x i x δ jk ,
where δ j i is Kronecker's delta. We note that we have e i x T jk = δ j i x k and xe T i jk = x j δ k i , so we can rewrite the above in matrix form as follows:

∂k ∂x i (x) = x i x dk dr ( x )- dk ⊥ dr ( x ) xx T x 2 + x k( x ) e i x T + xe T i x - 2x i x xx T x 2 + dk ⊥ dr ( x ) x i x I d ;
the proof is completed by using the definitions of the projection operators (8).

Corollary 5.7. Under the assumptions of Proposition 5.6, if V is also divergence-free, i.e. if condition (34) holds, the partial derivatives (71) become

∂k ∂x i (x) = x i x d + 1 d -1 dk dr ( x ) Pr (x) + dk ⊥ dr ( x ) Pr ⊥ (x) - 1 d -1 dk dr ( x ) e i x T + xe T i x . (72) 
Corollary 5.8. Under the assumptions of Proposition 5.6, if V is also curl-free, i.e. if condition (37) holds, the partial derivatives (71) become

∂k ∂x i (x) = x i x dk dr ( x ) -2 dk ⊥ dr ( x ) Pr (x) + dk ⊥ dr ( x ) Pr ⊥ (x) + dk ⊥ dr ( x ) e i x T + xe T i x . (73) 
For any given choice of differentiable coefficients (k , k ⊥ ), the expression (71) can be inserted into (70b), and Hamilton's equations may be solved numerically to yield the landmark trajectories. Once these are known, the time dependent velocity field (62) can be computed (with x a = q a and α a = p a ), and numerical integration of the differential equation ∂ t ϕ v 0t (t, x) = v(t, ϕ v 0t (x)), with initial condition ϕ v 00 (x) = x, yields the diffeomorphisms ϕ v 01 . This is shown in the next section for different choices of the TRI kernel k.

Numerical results

Figure 9 shows the vector field u(x) = 3 a=1 k(x -q a )α a , which is of the type (62), with landmarks q 1 = (-1, 0), q 2 = (-1/2, 1), q 3 = (1, 0) in L 3 (R 2 ), and momenta , so that the two kernels are, respectively, curl-free and divegence-free. It should be apparent that given the completely different nature of the kernels and the corresponding vector fields, so should be the landmark trajectories obtained by integrating Hamilton's equation (70a) and (70b) as well as the corresponding diffeomorphisms of the ambient space. Here we shall give examples of such trajectories and diffeomorphisms for the above choices of the kernel. Shooting landmarks. Figure 10 shows the landmark trajectories that result from shooting landmarks, i.e. from solving Hamilton's equations (70a) and (70b) as an initial value problem, namely with specified initial landmark sets in L 2 (R 2 ) and initial momenta; the grid in each graph represent the corresponding diffeomorphism ϕ v 01 , which is obtained from the landmark trajectories by integrating numerically the differential equation

α 1 = (1/ √ 2, 1/ √ 2), α 2 = (-2/ √ 5, 1/ √ 5), α 3 = (-2/ √ 5, -1/ √ 5) (so in this case α a R 2 = 1 for a = 1, 2 , 
∂ t ϕ v 0t (t, x) = v(t, ϕ v 0t (x)) with initial condition ϕ v 00 (x) =
x, where v is given by equation (62). This is done for the above three choices of Gaussian kernels (scalar, curl-free, and divergence-free), with parameters c = 16, b = 1/(2c), a = 2bc and obviously d = 2 since we are working in two dimensions. Specifically, row (A) shows the numerical solution of the above problem when the initial landmark set is (q 1 , q 2 ) = ((0, 0), (0, 0.15)) and the momenta are parallel and both oriented to the right, namely (p 1 , p 2 ) = ((15, 0), (15, 0)). The geodesics in the scalar case had already been examined in [START_REF] Micheli | Sectional curvature in terms of the cometric, with applications to the Riemannian manifolds of landmarks[END_REF]; we note that their behavior in the curl-free case is qualitatively similar. By Liouville's Theorem [START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF] a time-dependent divergence-free vector field v generates a flow ϕ v 0t that preserves volume; such preservation shows clearly for the diffeomorphism in the last figure on the right, which is distinctly different from q 1 q 2 Figure 11: Exponential maps exp q t q(0) in L 2 (R 2 ) for scalar, curl-free, and divergence-free Gaussiantype kernels; the initial landmark configuration q = (q 1 , q 2 ) is shown in the first graph. The black and red grids illustrate the geodesic trajectories initiating from q 1 and q 2 respectively, for different choices of the initial momenta (p 1 and p 2 are chosen symmetrically with respect to the x-axis), and sampled in t ∈ [0, 1].

the previous two in the shape of the landmark geodesics as well. On the other hand, row (B) shows the geodesic curves resulting from shooting landmarks in parallel but opposite directions: that is, with initial configuration (q 1 , q 2 ) = ((-0.4, -0.125), (0.4, 0.125)) and initial momenta (p 1 , p 2 ) = ((20, 0), (-20, 0)).

Once again, we notice that volume is preserved in the diffeomorphism induced by the divergence-free kernel; the path followed by the landmarks in this case is also characteristically different, in that in order to avoid compression the two landmarks do not spiral but tend to steer away from each other. Exponential map. Finally, Figure 11 shows exponential maps exp q t q(0) [START_REF] Jost | Riemannian Geometry and Geometric Analysis[END_REF] in L 2 (R 2 ), for the above choices of the Gaussian kernel (scalar, curl-free, and divergence-free); with the same choice of parameters as in the landmark shooting examples. In all three cases, the initial landmark positions are fixed at q = (q 1 , q 2 ) = ((0, -0.125), (0, 0.125)), whereas the initial momenta are of the type p = (p 1 , p 2 ) = (50(cos θ, sin θ), 50(cos θ, -sin θ)) with θ ∈ [-π 2 , π 2 ] (the first of Hamilton's equations (70a) relates the momenta p and the landmark velocities), and the paramenter t is sampled in [0,1]. We observe that the exponential maps for the Gaussian scalar and curl-free kernels are qualitatively similar, in that they have one "folding": this illustrates the existence of conjugate points, i.e. landmark sets in L 2 (R 2 ) that are connected to the initial configuration q = (q 1 , q 2 ) by distinct geodesic paths. The situation becomes considerably more complex in the divergence-free kernel case, where we observe multiple foldings: the exponential map keeps adding extra folds as t increases, and the existence of several distinct trajectories connecting landmark sets to the initial configuration is apparent.

Figure 12 shows a detail of the same exponential map in the region where most foldings occur, and a single trajectory of landmarks in the divergence-free case (with initial horizontal momenta, θ = 0), at different spatial scales; note that the latter trajectory exhibits an apparent "periodic" behavior. Our interpretation of this phenomenon, that only appears in the divergence-free case, is that for two landmarks to move in the same direction in an incompressible fluid they have to "swim" in such fashion so that the fluid gets out of the way as they proceed along their paths. In any case, this is certainly a qualitative behavior that needs to be investigated more and suggests that the differential geometry of the manifold of landmark points L N (R d ) with the metric (66), with matrix-valued kernels, should also be studied further.

(A) (B) 

q 1 q 2 • • • • q 1 q 2

Conclusions

In this paper we have provided a thorough and systematic study of matrix-valued definite positive kernels that induce translation-and rotation-invariant metrics in the corresponding Reproducing Kernel Hilbert Spaces. We have conducted a novel analysis of such kernels in the Fourier domain: here the classification of spaces of curl-free and divergence free vector fields is very natural, in that each corresponds to one of the two coefficients of the Fourier transform of the kernel being equal to zero. This allows one to perform the Hodge decomposition in RKHS via the computation of Hankel transforms (which may be done analytically or numerically). We have also devised a method for building curl-free and divergencefree kernels via an appropriate differentiation of scalar kernels; we have also proven that this constructive procedure is general, in that any TRI kernel (more precisely, the terms of its Hodge decomposition) may be obtained this way. Such method may thus be used to design a large class of positive kernels. We have given a summary of the application of the LDDMM approach to the interpolation of vector fields and the matching of landmark points, together with the differential-geometric interpretation and the derivation of the corresponding Hamiltonian. Finally, we have given numerical examples of the dynamics of landmark points and the corresponding flow of diffeomorphisms for different choices of TRI kernels.

Future work should focus on the design of kernels that are appropriate for different applications, especially in computational anatomy and related fields. For example, the shape of geodesics should be studied in relation to the choice of the kernel; in particular, note that all the kernels that we have considered in the examples have a length constant (e.g. the parameter σ > 0 for Bessel-type kernels), so that the induced dynamics in the space of landmarks (and, for that matter, in the group of diffeomorphisms itself) is not scale invariant; furthermore, the regularity of the kernels at zero and the heaviness of their tails are also crucial in determining both the qualitative dynamics and the complexity of numerical implementations. Last, but not least, the visualizetion of the exponential map in the previous section (especially in the case of divergence-free TRI kernels) reveals the presence of several conjugate points, i.e. landmark configurations that are connected by distinct geodesics; the study of the dynamics of L N (R d ) induced by the action of diffeomorphism groups should be furthered, and the investigation of the differential geometry of the space of landmarks that was started in [START_REF] Micheli | Sectional curvature in terms of the cometric, with applications to the Riemannian manifolds of landmarks[END_REF] in the case of scalar kernels, which is useful for the ultimate goal of performing statistics on such manifold, should be extended to the case of generic TRI kernels. iii. for all ξ ∈ R m , it is the case that k(ξ) is a positive hermitian matrix.

Proof. We have that k(x) = R m k(ξ)e 2πi x,ξ dξ, x ∈ R m so we first note that for fixed N ∈ N, x = (x 1 , . . . , x N ) ∈ (R m ) N and α = (α 1 , . . . , α N ) ∈ (R d ) N we may write The above Fourier series converges uniformly, whence there exist M ∈ N, points p 1 , . . . , p M ∈ Z m such that f (ξ) -N a=1 exp -2πi pa 2A • ξ α a < ε for all ξ ∈ C A , where we have set α a := c pa , for a = 1, . . . , M . In other words, there exist x = (x 1 , . . . , x M ) and α = (α 1 , . . . , α M ) such that

sup ξ∈C A f (ξ) -N a=1 exp -2πix a • ξ α a < ε. Since f -f x,α C A ,∞ < ε we have f per -f x,α ∞ < ε, whence f x,α ∞ < f per ∞ + ε = f ∞ + ε. Now, R m f * x,α (ξ) k(ξ)f x,α (ξ) dξ - R m f * (ξ) k(ξ)f (ξ) dξ ≤ R m \C A f *
x,α (ξ) k(ξ)f x,α (ξ) dξ

I 1 + C A f * x,α (ξ) k(ξ)f x,α (ξ) dξ - C A f * (ξ) k(ξ)f (ξ) dξ I 2 , with I 1 ≤ R m \C A k(ξ) f x,α (ξ) 2 dξ < f ∞ + ε 2 R m \C A k(ξ) dξ < f ∞ + ε 2 ε and I 2 ≤ C A (f x,α (ξ) -f (ξ)) * k(ξ)f x,α (ξ) dξ + C A f * (ξ) k(ξ)(f x,α (ξ) -f (ξ)) dξ ≤ C A f x,α (ξ) -f (ξ) k(ξ) f x,α (ξ) dξ + C A f (ξ) k(ξ) f x,α (ξ) -f (ξ) dξ < ε k L 1 f ∞ + ε + f ∞ k L 1 ε,
where

k L 1 = R m k(ξ) dξ. Therefore I 1 + I 2 ≤ f ∞ + ε 2 ε + k L 1 f ∞ + ε ε + k L 1 f ∞ ε,
which concludes this part of the proof. (ii. ⇒ iii.) The matrix k(ξ) is self-adjoint for all ξ by the arbitrariness of f ∈ C ∞ c (R m , C d ). Assume now that for a ξ 0 ∈ R m the matrix k(ξ 0 ) has an eigenvalue λ 0 < 0, with eigenvector γ 0 ∈ C m . By the continuity of k there exists a neighborhood Ω 0 of ξ 0 such that γ * 0 k(ξ)γ 0 < 0 in Ω 0 ; let f (ξ) := ψ(ξ)γ 0 , ξ ∈ R m , where ψ ∈ C ∞ c (R m , R), with supp ψ ⊆ Ω 0 . Then R m f * kf dξ = Ω 0 ψ 2 γ * 0 kγ 0 dξ < 0, which is a contradiction.

(iii. ⇒ i.) If k(ξ) is self-adjoint with nonnegative eigenvalues for all ξ ∈ R m then the right-hand side of (80) is nonnegative for all x and α; whence the function K(x, y) is positive definite.

We now proceed with the proof of Proposition 3.13, that states that translation-and rotation-invariant kernels k of the type [START_REF] Bonaventura | Kernel-based vector field reconstruction in computational fluid dynamic models[END_REF] are strictly positive definite as long as at least one of the two coefficients h , h ⊥ : R + → R of the Fourier transform of k is positive somewhere. Proof of Prop. 3.13. In the TRI kernel setting m = d. Note that for any x = (x 1 , . . . , x N ) ∈ (R d ) N and α = (α 1 , . . . , α N ) ∈ (R d ) N (where at least one of the α a 's is nonzero), and for any ξ ∈ R d , the vector f x,α (ξ) ∈ C m introduced in the previous proof is neither parallel nor perpendicular to ξ.

First assume that there exists r 0 ≥ 0 such that h (r 0 ) > 0 or h ⊥ (r 0 ) > 0. Choose ξ 0 ∈ R d such that ξ 0 = r 0 , and arbitrary x = (x 1 , . . . , x N ) and α = (α 1 , . . . , α N ). We shall write: f x,α (ξ 0 ) = u 0 + u ⊥ 0 , with u 0 := Pr ξ 0 f x,α (ξ 0 ) and u ⊥ 0 := Pr ⊥ ξ 0 f x,α (ξ 0 ); by the remark above, we have that u 0 = 0 and u ⊥ 0 = 0. It is immediate to verify that f * x,α (ξ 0 )Pr ξ 0 f x,α (ξ 0 ) = u 0 2 > 0 and f * x,α (ξ 0 )Pr ⊥ ξ 0 f x,α (ξ 0 ) = u ⊥ 0 2 > 0, while f * x,α (ξ)Pr ξ f x,α (ξ) ≥ 0 and f * x,α (ξ)Pr ⊥ ξ f x,α (ξ) ≥ 0 for generic ξ ∈ R d . In conclusion

R d f * x,α (ξ) k(ξ)f x,α (ξ) dξ = R d h ( ξ )f * x,α (ξ)Pr ξ f x,α (ξ) + h ⊥ ( ξ )f * x,α (ξ)Pr ⊥ ξ f x,α (ξ) dξ > 0,
and by (80) the kernel is strictly definite positive. Vice versa, by (80) if k is strictly definite positive then the above strict inequality holds for all x = (x 1 , . . . , x N ) ∈ (R d ) N and α = (α 1 , . . . , α N ) ∈ (R d ) N where at least one of the α a 's is nonzero. Therefore either h or h ⊥ must be strictly positive somewhere in (0, ∞). This completes the proof.

C Proof of Proposition 3.9

Note that since f is symmetric so must be its Fourier transform, i.e. f (ξ) = f (-ξ). We now prove that it is actually radially symmetric. Using polar coordinates in R d [START_REF] Folland | Real Analysis: Modern Techniques and Their Applications[END_REF] we can write: inserting this expression into (82) and the latter into (81) finally completes the proof.

  and we conclude immediately. Definition 3.3. When a matrix-valued function k : R d → R d×d may be written in the form (10), we call the functions k , k ⊥ : R + → R the coefficients of k. Corollary 3.4. If the function k : R d → R d×d is such that (10) holds, then for x = 0 the eigenvalues of k(x) are k ( x ), with multiplicity 1 and eigenvector x, and k ⊥ ( x ), with multiplicity d -1.

Figure 1 :

 1 Figure 1: Domains D 1 and D 2 of positive definiteness for the kernels in Examples 1 and 2.

Example 1 .

 1 We now try a different route and verify for which values of (a, b) ∈ R 2 the functions k (r) = b e -cr 2 and k ⊥ (r) = (b -ar 2 ) e -cr 2 , r > 0,

Figure 3 :

 3 Figure 3: Graphs of k , k ⊥ , h , h ⊥ for Example 2 and the vector field x → k(x)α, with α = e 1 (shown).

Figure 4 :

 4 Figure 4: Interpretation of the boundaries of domains D 1 and D 2 in Examples 1 and 2.

1 Figure 5 :

 15 Figure 5: Transition from a scalar kernel to divergence-free (Example 1) and curl-free (Example 2) kernels by changing the parameter a in the range [0, 2], with b = c = 1, in d = 2 dimensions. The vector fields x → k(x)α are shown for α = e 1 , also shown in each graph.

  . The result follows by applying Proposition 4.1. Corollary 4.3. Under the assumptions of Propositions 4.1 with s ≥ 2 and 4.2, for any α ∈ R d the vector field

Figure 8 :

 8 Figure8: Construction of the divergence-free kernel k V from the divergence-free kernel k W , and (equivalently) from the auxiliary scalar kernel k W 0 , with interpretation in the Fourier domain.

Example 1 ,

 1 revisited again. Let W 0 ֒→ C s 0 (R d , R d ) be a RKHS and k W 0 (x) = k W 0 ( x )I d , where k W 0 (r) = b 2c(d-1) e -cr 2, with b > 0, c > 0; W 0 is s-admissible, for all s. Formulae (55) yield

Figure 10 :

 10 Figure 10: Landmark trajectories in L 2 (R 2 ) for three different choices of the kernel (scalar, curl-free, and divergence-free); bullets (•) and stars (⋆) are the initial and final configurations, respectively, and the arrows are the initial momenta. The grid represents the diffeomorphism ϕ v 01 of the ambient space. The bar at the bottom left of each graph represents the "width" 1/ √ c of each kernel.

Figure 12 :

 12 Figure 12: (A) Detail of the exponential map and (B) a landmark trajectory in the divergence-free case.

  i. K is a positive definite function;ii. for all f ∈ C ∞ c (R m , C d ) it is the case that R m f * (ξ) k(ξ) f (ξ) dξ ≥ 0;

  α a • k(x a -x b )α b = R m f * x,α (ξ) k(ξ)f x,α (ξ) dξ,(80)where f x,α (ξ) := N a=1 e -2πixa•ξ α a . We now proceed with the proof.(i. ⇒ ii.) Fix f ∈ C ∞ c (R m , C d ) and ε > 0.By the continuity of integration, there exists A > 0 such thatC A := [-A, A] m verifies R m \C A k(ξ) dξ < ε. We can choose A large enough such that suppf ⊆ C A .Consider now the periodic extension of f in R m and its Fourier series expansion:f per (ξ) := p∈Z m f (ξ -Ap) = p∈Z m c p e -2πi p 2A •ξ , ξ ∈ R m , with c p := R m f (ξ) e 2πi p 2A •ξ dξ, p ∈ Z m .

fS d- 1 e- 1 e 2πirs•η ds = S d- 1 eS d- 1 eS d- 1 eS d- 1 eS d- 1 e 0 e 1 - 1 e 2πi̺ru ( 1 -u 2 ) d- 3 2 1 0( 1 -u 2 ) d- 3 2) 1 0( 1 -, to get 1 0( 1 -u 2 )

 1111111011123112311112 (ξ) = f (-ξ) := R d f (x)e 2πix•ξ dx = ∞ 0 r d-1 g(r) 2πirs•ξ ds dr, ξ ∈ R d ,(81)where we use the symbol S n for the unit n-sphere. Fix ξ, and let η be such that η = ξ ; in other words η = Rξ for some R ∈ O(R d ). We have that f(η) = ∞ 0 r d-1 g(r) S d-1 e 2πirs•η ds dr, but S d2πirs•Rξ ds = 2πir(R T s)•ξ ds = 2πir s ′ •ξ ds ′ , since |det R| = 1. Whence f (η) = f (ξ), i.e. f (ξ) = G( ξ ), for some function G : R + → R. Without loss of generality in (81) we can choose ξ to be parallel to the standard basis vector e 1 . Letting ̺ = ξ and cos ϕ = s • e 1 we can write ξ • s = ̺ cos ϕ (note that s = 1 on S d-1 ). This yields: 2πir s•ξ ds = 2πi̺r cos ϕ ds = σ(S d-2 )π 2πi̺r cos ϕ (sin ϕ) d-2 dϕ ( * ) = σ(S d-2 ) du = 2σ(S d-2 ) cos(2π̺ru) du,(82)where σ(S n ) = 2π n+1 2 /Γ( n+1 2 ) is the surface area of the unit n-sphere; in ( * ) we have performed the substitution u = cos ϕ. We now use the integral representation of Bessel functions [1, §9.1.20]J ν (z) = 2( 1 2 z) ν √ π Γ(ν + 1 2 u 2 ) ν-1 2 cos(zu) du , valid for ℜν > -1 2

  1 1 ∂ p 2 2 . . . ∂ pm m : i.e. if p = (p 1 , . . . , p m ) then we set |p| := p 1 + . . . + p m . Also, we have used s instead of the more customary k to avoid confusion with a symbol that we will use later for kernels). The space C s 0 (Ω, R d ) is Banach with the W s,∞ (Sobolev) norm R d ) for any s ≥ 1. Also, C(Ω, R d ) and C s (Ω, R d ), respectively, have the topology induced by the convergence with respect to norms • ∞ and • s,∞ on compact sets.

	u s,∞ :=	|p|≤s	x∈Ω sup	∂ p u(x) R d ,
	and C s 0 (Ω, R d ) ֒→ C s-1 0 (Ω, Definition 2.10. Let s ≥ 0 be an integer. A Hilbert space H of R d -valued functions defined on a set Ω is called s-admissible if H ֒→ C s 0 (Ω, R d

  Example 1 and the vector field x → k(x)α, with α = e 1 (shown).

So h ≥ 0 if and only if b -(2µ + 1) a 2c ≥ 0, and h ⊥ ≥ 0 if and only if aπ 2 c 2 ̺ 2 ≥ -b -(2µ + 1) a 2c for all ̺. Whence h and h ⊥ are simultaneously nonnegative, i.e. k is positive definite, if and only if the pair (a, b) is in

  and we conclude immediately. Proposition 4.4. Under the assumptions of Propositions 4.1 and 4.2, if k H
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Figure 6: Hodge decomposition of x → k(x)e 1 , when k is scalar and Gaussian.

We let k = k 1 + k 2 , with k 1 (ξ) = h( ξ ) Pr ξ and k 2 (ξ) = h( ξ ) Pr ⊥ ξ . The coefficients (k 1 , k ⊥ 2 ) of k 1 are given by inversion formulae (32a) and (32b) with h = h and h ⊥ = 0, i.e.

We compute the integral (42b) with h as in [START_REF] Michor | An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach[END_REF] using the Hankel transform [START_REF] Glaunès | Large deformation diffeomorphic metric curve mapping[END_REF], which yields

where γ(ν, x) =

x 0 e -t t ν-1 dt, ℜν > 0, is the lower incomplete gamma function [1, §6.5.2]. The other coefficients of the kernels k 1 and k 2 are obtained from [START_REF] Miller | Group actions, homeomorphisms, and matching: a general framework[END_REF] simply as follows:

the first one is derived from (42a), while the other two follow from k = k 1 + k 2 and k = k ⊥ 1 + k ⊥ 2 (which, in turn, are a consequence of k = k 1 + k 2 and the fact that k is scalar). When d = 2 (i.e. µ = 0), since γ(1, x) = 1 -e -x we simply have k ⊥ 1 (r) = 1 2cr 2 (1 -e -cr 2 ), and the other coefficients are again derived from formulae [START_REF] Mumford | The geometry and curvature of shape spaces[END_REF] with µ = 0. It is interesting to note that k 1 and k 2 are not Gaussian like the curl-free and divergence-free kernels that we derived in Examples 2 and 1, respectively-in fact they have much heavier "tails" (they decay like 1/r 2 as r → ∞) than the original scalar and Gaussian kernel k; however, these heavy tails cancel each other when summed. In the case c = 1 and d = 2 the Hodge decomposition of x → k(x)e 1 into its curl-free and divergence-free terms is illustrated in Figure 6; as observed above, the two vector fields are orthogonal in the L 2 sense.

The discussion above also suggests that a seemingly simple way to generate curl-free (or divergencefree) kernels is to choose functions h (respectively, h ⊥ ) in L 1 (R + , r d-1 ) and apply formulae (32a) and (32b) with h ⊥ = 0 (respectively, h = 0). This is rather cumbersome because it involves the computation of Hankel transforms, analytically or numerically; in the next section we shall introduce a simple technique for generating all TRI kernels of interest while avoiding such tedious calculations.

Construction of matrix-valued kernels from scalar kernels

In this section we illustrate a method for constructing matrix-valued kernels from scalar kernels-in fact, it will turn out that virtually all matrix-valued kernels of interest can be built this way. We remind the reader that a s-admissible Hilbert space of R d -valued functions defined in Ω is also a RKHS, and its kernel is such that

Space H: When s ≥ 2, the above follows from Corollary 4.3. However, one can verify that k V and k ⊥ V , given by [START_REF] Mumford | Pattern theory: the stochastic analysis of real-world signals[END_REF], satisfy equation [START_REF] Micchelli | On learning vector-valued functions[END_REF], and that the latter operation only involves two derivatives of k H (and k H is twice differentiable when s = 1, by Theorem 2.11 and the remark at the end of Section 3.1). Therefore Corollary 4.5 also holds when s = 1. The curl-free property may be seen in the Fourier domain as follows.

Proposition 4.6. Under the assumptions of Proposition

Proof. Under the sole assumption of translation-invariance, for all j, ℓ ∈ {1, . . . , d} it is the case that

When k H is also rotation-invariant, by Proposition 3.9

we must have k H (ξ) = h H ( ξ ) with h H (̺) as in [START_REF] Mumford | On Euler's equation and 'EPDiff[END_REF], and we conclude immediately.

The construction of the curl-free kernel k V from the scalar-valued kernel k H is summarized in Figure 7. We have used the compact notation (k V , k ⊥ V ) to represent the coefficients of k V and (h V , h ⊥ V ) to represent those of its Fourier transform k V . The dual operator of the negative Hessian in the Fourier domain is the map h H → ((2π̺) 2 h H , 0). Under the assumptions of Proposition 4.6 we may actually compute the corresponding "initial" kernel k H in terms of the non-zero coefficient h V of k V ; in fact, using the inversion formula [START_REF] Chorin | A mathematical introduction to fluid mechanics[END_REF] and the fact that h H (̺) = (2π̺) -2 h V (̺) yields:

We conclude that any integrable, TRI, curl-free kernel k V (i.e. with nonnegative h V , and h ⊥ V = 0) of a (s -1)-admissible Hilbert space V may be derived with the procedure described in Propositions 4.1 and 4.4 (ultimately, by applying formulae (45)) from the kernel k H (x) = k H ( x ) of a s-admissible Hilbert space of scalar-valued functions, where k H is given by formula [START_REF] Oberhettinger | Tables of Bessel Transforms[END_REF]. This proves the generality of the above method for constructing RKHS of curl-free vector fields with TRI kernels.

Example 2, revisited again. Consider a RKHS of scalar valued functions defined in R d , denoted by H, with kernel k

As long as b > 0 and c > 0 it is the case that the Hilbert space is s-admissible, for all s. Formulae (45) yield

Ordinary differential equations and groups of diffeomorphisms

We briefly summarize some facts on ordinary differential equations where the time-dependent velocity fields take their values in RKHS of the type described in this paper, and on the deformations that such dynamical systems generate. The interested reader is referred to [START_REF] Younes | Shapes and Diffeomorphisms[END_REF] for further details and results. Consider a 1-admissible Hilbert space V ֒→ C 1 0 (Ω, R d ), where Ω is an open subset of R m ; for now we shall not introduce further assumptions of invariance. We indicate with

In particular, X 2 V is a subset of X 1 V and is Hilbert itself with the inner product u, v X 2

) and call it the flow associated to v; it has the group property

it was proven by A. Trouvé [START_REF] Younes | Shapes and Diffeomorphisms[END_REF]Theorem 8.15] that the function d V is a distance on G V , and that (G V , d V ) is a complete metric space. For any ψ 1 , ψ 2 ∈ G V , their distance may in fact be computed as follows:

, and it is such that v(t, Chapter 8] for details.

Interpolation of vector fields

Let V be a non-degenerate RKHS with kernel K : Ω × Ω → R d×d , where Ω is an open subset of R m ; for now we shall introduce no further assumption of translation-and rotation-invariance, or differentiability, of the kernel. We consider the following problem.

Interpolation Problem 1 (IP 1 ). For any landmark set S = (x 1 , . . . , x N ) ∈ L N (Ω) and any N -tuple of vectors (β 1 , . . . , β N ) ∈ (R d ) N , find a vector field u ∈ V such that u(x a ) = β a for 1 ≤ a ≤ N, and u V is minimal.

For this purpose, for a fixed S = (x 1 , . . . , x N ) ∈ L N (Ω) we define the linear subspace of V :

Its orthogonal complement with respect to the inner product •, • V is given by the following result.

has finite dimension (and whence it is closed), so the claim follows immediately. Proposition 5.2. Fix S = (x 1 , . . . , x N ) ∈ L N (Ω). For any u ∈ V , there exists a unique u * ∈ V ⊥ S such that u * (x i ) = u(x i ) for all i = 1, . . . , N ; it is given by the orthogonal projection of u onto V ⊥ S . Proof. Let u * be the orthogonal projection of u onto

Corollary 5.3. Let V be a RKHS. If a solution u to IP 1 exists, then u ∈ V ⊥ S . If u ∈ V ⊥ S is a solution to IP 1 restricted to V ⊥ S , then it is a solution to IP 1 on all of V . Therefore if the solution to IP 1 exists then it must be in V ⊥ S , i.e. of the form

for some choice of vectors α 1 , . . . , α N ∈ R d . The squared norm of such vector fields may be written as

Inserting x 1 , . . . , x N in the above expression and imposing the conditions u(x a ) = β a , a = 1, . . . , N , we see that we are looking for vectors α 1 , . . . , α N such that

Introducing now the vectors in R N d and the matrix in

we may rewrite (60) simply as β = K(x)α, while u 2 V = α • K(x)α. Note that the matrix K(x) is invertible (in fact if K(x)α = 0 for some α ∈ R N d then α • K(x)α = 0; but α • K(x)α is the left-hand side of (3), so if V is non-degenerate we must have α = 0). Therefore the only solution to β = K(x)α is α = K(x) -1 β. In conclusion, there exists a unique solution to IP 1 when this is restricted to V ⊥ S , which is the vector field (59) with α = K(x) -1 β. By Corollary 5.3 this is the only solution to IP 1 (on all of V ).

Landmark matching via diffemorphisms, with geometric intepretation

We will now formulate and provide a method for solving the more difficult problem of matching landmark sets with flows of diffeomorphisms. For Ω ⊆ R d open and connected, we introduce the further assumption that the non-degenerate RKHS is 1-admissible, i.e. V ֒→ C 1 0 (Ω, R d ).

Interpolation Problem 2 (IP 2 ). For any two landmark sets I = (x 1 , . . . , x N ) and J = (y 1 , . . . , y N ) in L N (Ω), find a time-dependent vector field v ∈ X 2 V such that

We also introduce the subset of X 2 V :

Theorem 5.4. Assume that V is a 1-admissible Hilbert space, and let S = (x 1 , . . . , x N ) ∈ L N (Ω). For any v ∈ X 2 V there exists a vector field

V , and for all t

; by Corollary 5.3 it is in fact the vector field of minimal norm

). Therefore, by the uniqueness of solutions to ordinary differential equations (discussed in §5.1), it must be the case that ϕ v * 0t (x a ) = ϕ v 0t (x a ), for all t ∈ [0, 1] and a = 1, . . . , N . This also implies that

Whence the solutions of the problem IP 2 must be searched among the vector fields of the form

for some set of functions α a : [0, 1] → R d , a = 1, . . . , N , where we have introduced for simplicity the notation x a (t) := ϕ v 0t (x a ), a = 1, . . . , N (the above equation is precisely expression (1) in the introduction). Note therefore that expression (62) for v is implicit, in that the trajectories x a , a = 1, . . . , N , also depend on v. So we can parametrize the search space X 2 V (S) of the solution to IP 2 by the functions α a , a = 1, . . . , N . Similarly to earlier, for all t ∈ [0, 1] we introduce the vectors in R N d and matrix in R N d×N d :

Note that since we assumed that V ֒→ C 1 0 (Ω, R d ) is non-degenerate, the matrix K(x(t)) is invertible for all t ∈ [0, 1]. Note also that the norm of the vector fields of the type (62) may be written as v(t, •) V = α(t) • K(x(t))α(t), by the reproducing property of K. Therefore the solutions to IP 2 must be searched in the space X 2 V (S), whose elements have norm that may also be parametrized by the functions α a , a = 1, . . . , N , as follows:

where, we remind the reader, x a (t) := ϕ v 0t (x a ), for t ∈ [0, 1] and a = 1, . . . , N . Therefore, by definition, it must be the case that ẋa (t) = v(t, x a (t)); by expression (62), we must have

or, with the compact notation introduced in (63), ẋ(t) = K(x(t))α(t), for t ∈ [0, 1]. We conclude that the squared norm (64) of vector fields in X 2 V of the type (62) may be rewritten as:

where x a : [0, 1] → L N (Ω), and a = 1, . . . , N , are the trajectories determined by the vector field v.

We note that the right-hand side of (65) may be interpreted in differential-geometric terms [START_REF] Jost | Riemannian Geometry and Geometric Analysis[END_REF][START_REF] Lee | Riemannian Manifolds: an Introduction to Curvature[END_REF] as the energy of a curve t → x(t) on the N d-dimensional manifold L N (Ω) with respect to a Riemannian metric (remember that Ω ⊆ R d in this section). In the coordinates of the landmark points, which we indicate here generically as (q 1 , . . . , q N ) ∈ L N (Ω) with q a = (q a1 , . . . , q ad ) ∈ R d for a = 1, . . . , N , the corresponding metric tensor is written as the N m × N m matrix-valued function:

We now introduce notation from mechanics [START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF], namely q a (t) := x a (t) ∈ R N d and p a (t) := α a (t) ∈ R N d , with t ∈ [0, 1] and a = 1, . . . , N , for landmark positions and momenta, respectively; also, we shall write q(t) := x(t) and p(t

which is nothing but the "sharp" isomorphism of differential geometry (raising of the indices) with respect to the metric tensor (66), that maps cotangent vectors into a tangent vectors (this justifies the upper location of the index in q a , a = 1, . . . , N ). From the energy of the curve (65) we deduce immediately the form of the Lagrangian function [START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF][START_REF] Jost | Riemannian Geometry and Geometric Analysis[END_REF] for landmarks, namely L(q, q) = 1 2 q • g(q) q, and the Hamiltonian function which we may write as follows:

where we have explicitly written the components of the momenta p a = (p a1 , . . . , p ad ), a = 1, . . . , N , and we have indicated with K ij the (i, j) th element of the matrix-valued kernel K. We shall use (68) in the next section to study the dynamics induced by the landmark matching problem.

Discussion. In light of the above, the landmark trajectories resulting from vector fields v ∈ X 2 V that solve IP 2 will be length-minimizing geodesics in L N (Ω), with respect to the metric tensor (66), that connect the landmark sets I = (x 1 , . . . , x N ) and J = (y 1 , . . . , y N ). Once such length-minimizing geodesics q : [0, 1] → L N (Ω) are known, the momenta are computed via the inversion of the equations (67) (i.e. by p(t) = K(q(t)) -1 q(t), t ∈ [0, 1]), while the corresponding v ∈ X 2

V is obtained via formula (62). We also have, by the results summarized in §5.1, that the resulting geodesic distance between the sets I = (x 1 , . . . , x N ) and J = (y 1 , . . . , y N ) in L N (Ω) is equal to d V (ϕ v 01 , id), i.e. the distance in the group of diffeomorphisms G V between the ϕ v 01 and the identity diffeomorphism. Finally, we note that the shape of the geodesics in L N (Ω) must clearly depend on the initial choice of the Hilbert space V ֒→ C 1 0 (Ω, R d ), i.e. on its kernel; some examples will be seen later. We refer the reader to [START_REF] Micheli | Sectional curvature in terms of the cometric, with applications to the Riemannian manifolds of landmarks[END_REF] for a study of the geometry (in particular, of the sectional curvature) of L N (R d ) equipped with the metric (66) in the case of scalar kernels, i.e. of the form K(x, y) = k( x -y )I d .

Appendices

A Relevant properties of Hankel transforms and Bessel functions 

• Recurrence relations for Bessel functions of the first kind [1, §9.1.7]:

• A result on modified Bessel functions of the second kind: 

B Bochner's Theorem and consequences

We shall reformulate the generalized version of Bochner's theorem as follows:

Theorem B.1 (Bochner). Consider a matrix-valued function k ∈ L 1 (R m , R d×d ) whose Fourier transform k is also L 1 , and define K(x, y) := k(x -y), x, y ∈ R m . The following facts are equivalent: