
HAL Id: hal-00857294
https://hal.science/hal-00857294

Submitted on 9 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

XSS Vulnerability Detection Using Model Inference
Assisted Evolutionary Fuzzing

Fabien Duchene, Roland Groz, Sanjay Rawat, Jean-Luc Richier

To cite this version:
Fabien Duchene, Roland Groz, Sanjay Rawat, Jean-Luc Richier. XSS Vulnerability Detection Us-
ing Model Inference Assisted Evolutionary Fuzzing. SECTEST 2012 - 3rd International Work-
shop on Security Testing (affiliated with ICST), Apr 2012, Montreal, Canada. pp.815-817,
�10.1109/ICST.2012.181�. �hal-00857294�

https://hal.science/hal-00857294
https://hal.archives-ouvertes.fr

XSS Vulnerability Detection Using
Model Inference Assisted Evolutionary Fuzzing*

Position Statement

Fabien Duchene, Roland Groz, Sanjay Rawat, Jean-Luc Richier
UJF-Grenoble 1/Grenoble-INP/UPMF-Grenoble2/CNRS

Laboratoire d’Informatique de Grenoble UMR 5217
Grenoble F-38402, France {duchene,groz,rawat,richier}@imag.fr

Abstract—We present an approach to detect web injection
vulnerabilities by generating test inputs using a combination of
model inference and evolutionary fuzzing. Model inference is used
to obtain a knowledge about the application behavior. Based on
this understanding, inputs are generated using genetic algorithm
(GA). GA uses the learned formal model to automatically
generate inputs with better fitness values towards triggering an
instance of the given vulnerability.

Index Terms—Black-Box Security Testing, Genetic Algorithm,
Test Automation, Model Based Fuzzing, Model Inference

I. INTRODUCTION

Web vulnerabilities such as Cross Site Scripting (XSS) and
SQL injections have been among the most targeted ones for
several years [1]. Given the complexity of modern web based
applications, naive blackbox fuzzing approches may not be
sufficient to detect deeply nested vulnerabilities [2]. Indeed
one of the problems of traditional fuzz testing is that it focuses
more on data than on state transition. In the realm of blackbox
testing, observing the state transition and generating inputs
that traverse those states are not straightforward, which makes
fuzzing less effective.

To address aforementioned problems, we propose to build
a model of the SUT by using model inference techniques and
guiding the fuzzing process by Evolutionary Algorithm. EA
have already been used for generating test cases [3]. Our
proposal is a smart-fuzzing approach for exhibiting deeply
embedded injection vulnerabilities.

II. APPROACH OVERVIEW

Fig. 1. Overview of our approach

*Work funded by project DIAMONDS (ITEA 2)

Currently, we only focus on detecting type-1 reflected XSS
faults. Figure 1 shows the various components. SUT is a web
application server. Model inference is responsible for learning
the SUT state automaton. Based on the learned model, the
evolutionary fuzzing component generates input sequences
that are likely to exhibit XSS faults. During this second
process, model inference can also enhance the SUT automaton.

A. Model Inference

Model inference is used to obtain a state model of the
SUT. We use techniques developed in [4]. By learning a SUT
formal w.r.t. some abstraction and concretization functions, we
become aware of its state transitions and therefore can fuzz
from some appropriate state.

B. Evolutionary Fuzzing

A candidate solution is a sequence of input parameters
values. We use GA to generate malicious inputs sequences.
The first generation is created using already accepted input
sequences, the attack grammar, known attack inputs[5] -
that worked for other SUT - and random sequences. Each
individual is a sequence of input parameters values. Several
populations evolve in parallel pools. Similar to [6], mutations
and crossovers are performed both inside a given population
and between different pools. Our fitness function is specific
to XSS attacks and depends on the traversed states and the
corresponding outputs. We use elitism for creating the next
generation input.

We manually write an attack grammar Gi in order to guide
both the mutation and crossover operators. It generates a subset
of the inputs that attackers would attempt to submit to the SUT.

III. A DEEPER TECHNICAL INSIGHT

A. Web Application

Let Σ be an alphabet. A transition u of a web application is
a mapping from n user inputs iul ∈ Σ∗: Iu = iu1 , ..., i

u
n to an

output q = q1 ·q2 ·...·qk, q ∈ Σ∗. Each qj is either a webserver
filtered input parameter iul - i.e. ∃fr ∈ Filters, qj

:
= fr(iul) -

or a string qh surrounding one or two qj
:

. An individual is a

sequence I = (I1, ..., Im) where each Iu adheres to the above

definition. Filters is a finite set of functions from Σ∗ → Σ∗

for example PHP addslashes(). A web application is modeled
as an Input Output Labelled Transition System, in which each
transition u conforms to the above definition.

B. Step 2 - Potential XSS detection

Fig. 2. When the value of an input parameter il is observed in the output
q, the fuzzing starts from that initiating state on that very same il

The dash part contains some states that are accessible from
the initial state S0. The value of i31 (kalimu) is observed in
q, the output of the transition S2 → S3. Thus we intuit that
there is a possibility of reflected XSS on that transition. We
then start fuzzing on i31 from S2.

C. An XSS Fuzzing Attack Grammar

We describe an input grammar to impose some restrictions
on EA to generate inputs by constraining mutations and
crossovers. This helps to be closer to attackers’ behavior who
would modify an interesting input parameter value to bypass
filters fr.

Let q be the following extract of the SUT output:

Hola!

In this example q = q1 + q2
:

+ q3 meaning q2 is the result of

a filtering function applied to an input parameter il (i31 in that
case). Grammar fragment 1 shows an extract of the written
attack grammar for guiding input mutations:
HTML XSS FIELD ::= HTML TEXT SIMPLE HTML TAG QUOTE

HTML TAG SPACE HTML TAG EVENT HTML TAG EQUAL
HTML TAG QUOTE JS PAYLOAD

HTML TAG QUOTE ::= ’ | ”
HTML TAG SPACE ::= \n | \t | \r |
HTML TAG EQUAL ::= =
HTML TAG EVENT ::= onabort | ... | onclick | ... | onwaiting

Grammar fragment 1. Injecting into an HTML attribute field value

Figure 3 shows an input parameter value il (thus a subset
of an input sequence) generated using that grammar:

Fig. 3. An individual I is composed of several input parameters values
i11...i

n
u , each of them composed of at least one terminal in Gi

D. Creating the First Generation

Individuals of the first generation are created from the attack
grammar and known attack inputs by reusing input sequences

learned during the inferencing step that led to a state for which
there is a potential injection on a given input parameter.

E. Character Classes

Exploiting an injection is about sending data and instruc-
tions to the SUT that does not use them in a safe way
and assumes those inputs as only data. In our approach, we
currently first submit only data for inferring a SUT formal
model. Then during the fuzzing step, a combination of data
and instructions is sent to the SUT. For now, the model is
not updated during the fuzzing step. In the case of XSS,
we consider the output grammar GO to be HTML. Client
browser parsers will render additional nodes in the parse
tree of the output q depending of delimiting terminals, for
instance C1, C2,... Thus input parameter values submitted
during the inference step will only contain characters from
Cvalid = C0 ∪ C7. We categorize symbols that appear in
HTML words into the following classes:
• C0: HTML Spaces: ‖ \r ‖ \t ‖ \n
• C1: HTML Attribute delimiter: " ‖ ‘ ‖ ’
• C2: HTML Tag delimiter: < ‖ > ‖ />
• C3: HTML Equal sign: =
• C4: JavaScript code: (‖)‖; ‖{‖}
• C5: URL related: /‖ : ‖?‖&
• C6: Escaping character: \
• C7: HTML_TEXT_SIMPLE: [a-Z] ∪ [0-9]

During the fuzzing step, input parameter values from
Cfuzzy = ∪7i=0Ci are submitted to the SUT.

F. Detecting XSS Attacks

The web application is vulnerable to XSS attacks if at
least one output contains an attacker controlled JavaScript
(JS) code. If the attacker succeeds in crafting an input il,
s.t. q2

:
= kalimu" onclick="alert(1), then q2

:
is not

syntactically confined - as defined in [7] - w.r.t. the SUT output
grammar Go (HTML5 in that example):

A LEFT

>

A ATTR
A ATTR ONC

::::::::::
"alert(1)"

:
=

::::::::
onclick

A ATTR NAME
"
::::::::
kalimu"

=
name

<a

Fig. 4. Extract of the Parse Tree TG0
(q(il)) of the SUT output q

Figure 4 shows an extract of the parse tree TGO
(q(il)),

where TG(q) is the parse tree a word q w.r.t. a grammar G.
This sufficient condition for detecting XSS attacks, however,

has some false negatives [5] since modern browsers do accept
HTML code that does not respect all G0 production rules.

G. Evolutionary Fitness Function for XSS

The fitness function, denoted as Fit(I), assesses how well
a given individual I is close to detect an XSS, i.e. individ-
uals with higher fitness value are prefered for creating next
generation.

First, an interesting candidate reflects, in the output qj
:

,

many character classes Cinjected(I) that were present in the

fuzzed input il for the very last transition: Csent(I). Thus
Fit(I) should be an increasing function of the number of
classes present in qj

:
: Cinjected(I)

Csent(I)
. In Fig. 3. and Fig. 4.,

C0, C1, C3, C4, C7 are present in il and are all successfully
injected, thus Cinjected(I) = Csent(I) = 5.

States reachable within few transitions from the initial state
are more likely to be sanitized than deeper ones, thus an
injection within a transition further away from the start node
is more likely to exist. We favor such individuals : Sreached(I)

Stotal
.

In Fig. 2., if I = ((i11 = a), (i21 = b), (i31 = kalimu)), then
Sreached(I) = 3

A well formed output q, w.r.t. GO, is more likely to be
executed by the client: Well(I) = 1 if the q is well formed,
Well(I) = 0 otherwise.

Though an individual - I = (I1, ...Im) for which a po-
tential reflection does exist for iml - is able to inject several
character classes Cx, it is not enough to ensure that the
reflections q(iml)

::::
will be interpreted as instructions. Additional

HTML nodes in TGO
(q(imlfuzzed

)) compared to TGO
(q(iml))

indicates imlfuzzed
was able to successfully inject HTML in-

structions. We intuit that an attack has a higher probability
to succeed in that case. Thus we make use of the proposed
metric N(I) that represents the improvement of I in terms
of HTML nodes that are reflected from imlfuzzed

w.r.t. its
predecessors Pred(I). If q(Im) = q1 · q2 · ... · qk, then
A(I) = maxj∈1..k NodesGO

(qj(i
m
lfuzzed

)
:::::::::

)

For instance, in Fig. 4., A(I) = 3.

N(I) =
A(I)−

∑
P∈Pred(I) A(P)

‖Pred(I)‖
maxE∈Gen A(E)

Finally, we propose the XSS fitness function:

Fit(I) = S(I)
Stotal

+
Cinjected(I)
Csent(I)

+ Well(I) + N(I)

Each of these component can have weight to tune its impact.

H. Evolving the Population
Following we define mutation and crossover operations that

tend to respect the Attack Input Grammar GAI . Mutation
operations would add, delete or replace at least one non-
terminal or terminal w.r.t. GAI .

Let I = (I1, ...Im) and J = (J1, ..., Jw) being two
individuals. A potential reflection does exist on Im (resp. Jw),
for the input parameter imx (resp. jwy). Crossover is performed
at two levels:
• transition level: a child would be

(I1, ..., Im−1, (i
m
1 , ..., imx−1, j

w
y))

• input parameter value level: so far, two cases are consid-
ered: either imx and jwy were generated using the same
production rule or not. In the first case, we perform a
classic 1 point crossover cutting on the same terminal
production rule. It is still an ongoing reflexion on how to
crossover input parameter values generated by different
production rules while still conforming to the attack input
grammar and wether there is an advantage of doing so
instead of performing a 1 point crossover at a random
position, as done in [8].

IV. RELATED WORK

Being a combination of two techniques viz. inference and
genetic algorithm, our approach relates to several existing
black-box testing works. In [8], the task of evolving malicious
scripts is akin to generating malicious inputs also using an
attack grammar. However, the absence of a SUT model (i.e.
state transition to achieve the goal) might have some adverse
effects, especially in the case of complex goals. The fitness
function defined in [9], though being similar in goal, may
not be effective in detecting deeply rooted vulnerabilities. KiF
[10] uses model inference with manually crafted inputs for
state transitions, whereas we tried to automatize this step using
GA and the attack grammar. [11] is similar to our proposal:
an abstract SUT model is inferred and concrete fuzzed input
sequences are sent to the SUT. Differences include their use of
passive inference and their only criteria for creating new input
sequences is to increase the state coverage, probably because
their targeted fault is SUT crash.

V. CONCLUSIONS AND FUTURE WORK

We propose an automated type-1 XSS search approach
that is based on model inference and evolutionary fuzzing
to generate test cases. Kameleon-Fuzz is a work in progress
implementation of our described approach. Our future work in-
volves experimenting on real world applications, observing the
influence of various GA parameters (elitism, pools, weights).
We also plan to extend this approach for detecting type-2 XSS
since current state of the art scanners detection capability is
low [12]. Also, by considering the DOM and webserver as
the SUT, it would be possible to detect type-0 XSS and non
conformant XSS w.r.t. the HTML grammar. In that process,
we will also tune our fitness function.

REFERENCES

[1] CWE and SANS, “Top 25 most dangerous software errors.”
[2] L. Butti and J. Tinns, “Discovering and exploiting 802.11 wireless driver

vulnerabilities,” Journal in Computer Virology, vol. 4, pp. 25–37, 2008.
[3] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-based

testing for non-functional system properties,” Information and Software
Technology, vol. 51, pp. 957–976, 2009.

[4] “SPaCIoS Project no. 257876, FP7-ICT-2009-5,” http://www.spacios.eu.
[5] M. Heiderich, “HTML5 security,” http://html5sec.org/.
[6] J. D. DeMott, R. J. Enbody, and W. F. Punch, “Revolutionizing the field

of grey-box attack surface testing with evolutionary fuzzing,” 2007.
[7] Z. Su and G. Wassermann, “The essence of command injection attacks

in web applications,” in Symposium on Principles of Programming
Languages, 2006, pp. 372–382.

[8] J. Budynek, E. Bonabeau, and B. Shargel, “Evolving computer intrusion
scripts for vulnerability assessment and log analysis,” in Genetic and
evolutionary computation, ser. GECCO ’05, 2005.

[9] H. Srinivasan and K. Sarac, “A sip security testing framework,” in
Proceedings of the 6th IEEE Conference on Consumer Communications
and Networking Conference, ser. CCNC’09, 2009.

[10] H. J. Abdelnur, R. State, and O. Festor, “Kif: a stateful sip fuzzer,” in
Proceedings of the 1st international conference on Principles, systems
and applications of IP telecommunications, ser. IPTComm ’07, 2007.

[11] Y. Hsu, G. Shu, and D. Lee, “A model-based approach to security flaw
detection of network protocol implementations,” 2008.

[12] J. Bau, E. Bursztein, D. Gupta, and J. C. Mitchell, “State of the art:
Automated blackbox web application vulnerability testing,” in IEEE
Symposium on Security and Privacy, 2010, pp. 332–345.

