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XSS Vulnerability Detection Using
Model Inference Assisted Evolutionary Fuzzing*

Position Statement

Fabien Duchene, Roland Groz, Sanjay Rawat, Jean-Luc Richier
UJF-Grenoble 1/Grenoble-INP/UPMF-Grenoble2/CNRS
Laboratoire d’Informatique de Grenoble UMR 5217
Grenoble F-38402, France {duchene, groz, rawat, richier}@imag. fr

Abstract—We present an approach to detect web injection
vulnerabilities by generating test inputs using a combination of
model inference and evolutionary fuzzing. Model inference is used
to obtain a knowledge about the application behavior. Based on
this understanding, inputs are generated using genetic algorithm
(GA). GA uses the learned formal model to automatically
generate inputs with better fitness values towards triggering an
instance of the given vulnerability.

Index Terms—Black-Box Security Testing, Genetic Algorithm,
Test Automation, Model Based Fuzzing, Model Inference

I. INTRODUCTION

Web vulnerabilities such as Cross Site Scripting (XSS) and
SQL injections have been among the most targeted ones for
several years [[L]. Given the complexity of modern web based
applications, naive blackbox fuzzing approches may not be
sufficient to detect deeply nested vulnerabilities [2]. Indeed
one of the problems of traditional fuzz testing is that it focuses
more on data than on state transition. In the realm of blackbox
testing, observing the state transition and generating inputs
that traverse those states are not straightforward, which makes
fuzzing less effective.

To address aforementioned problems, we propose to build
a model of the SUT by using model inference techniques and
guiding the fuzzing process by Evolutionary Algorithm. EA
have already been used for generating test cases [3]. Our
proposal is a smart-fuzzing approach for exhibiting deeply
embedded injection vulnerabilities.

II. APPROACH OVERVIEW
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Fig. 1. Overview of our approach
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Currently, we only focus on detecting type-1 reflected XSS
faults. shows the various components. SUT is a web
application server. Model inference is responsible for learning
the SUT state automaton. Based on the learned model, the
evolutionary fuzzing component generates input sequences
that are likely to exhibit XSS faults. During this second
process, model inference can also enhance the SUT automaton.

A. Model Inference

Model inference is used to obtain a state model of the
SUT. We use techniques developed in [4]]. By learning a SUT
formal w.r.t. some abstraction and concretization functions, we
become aware of its state transitions and therefore can fuzz
from some appropriate state.

B. Evolutionary Fuzzing

A candidate solution is a sequence of input parameters
values. We use GA to generate malicious inputs sequences.
The first generation is created using already accepted input
sequences, the attack grammar, known attack inputs[S] -
that worked for other SUT - and random sequences. Each
individual is a sequence of input parameters values. Several
populations evolve in parallel pools. Similar to [6], mutations
and crossovers are performed both inside a given population
and between different pools. Our fitness function is specific
to XSS attacks and depends on the traversed states and the
corresponding outputs. We use elitism for creating the next
generation input.

We manually write an attack grammar G; in order to guide
both the mutation and crossover operators. It generates a subset
of the inputs that attackers would attempt to submit to the SUT.

III. A DEEPER TECHNICAL INSIGHT
A. Web Application
Let X be an alphabet. A transition u of a web application is

a mapping from n user inputs i) € ¥*: I, = 4f,...,7; to an

ceey by

output ¢ = q1-qgz2-...-qx, ¢ € X*. Each g; is either a webserver
filtered input parameter i} - i.e. 3f, € Filters,q; = f-(i}") -

or a string g, surrounding one or two ¢;. An individual is a

sequence [ = (I, ..., I,;,) where each I,, adheres to the above



definition. F'ilters is a finite set of functions from X* — ¥*
for example PHP addslashes(). A web application is modeled
as an Input Output Labelled Transition System, in which each
transition u conforms to the above definition.

B. Step 2 - Potential XSS detection

if: kalimu
/
q, e, q3
>( s3

Fig. 2. When the value of an input parameter ¢; is observed in the output
q, the fuzzing starts from that initiating state on that very same i;

The dash part contains some states that are accessible from
the initial state Sy. The value of zil)’ (kalimu) is observed in
q, the output of the transition So — S3. Thus we intuit that
there is a possibility of reflected XSS on that transition. We
then start fuzzing on i3 from Ss.

C. An XSS Fuzzing Attack Grammar

We describe an input grammar to impose some restrictions
on EA to generate inputs by constraining mutations and
crossovers. This helps to be closer to attackers’ behavior who
would modify an interesting input parameter value to bypass
filters f,.

Let g be the following extract of the SUT output:

<a name="[USER_INFLUENCED_INPUT]">Hola!</a>
In this example ¢ = ¢; + g2 + g3 meaning ¢ is the result of

a filtering function applied to an input parameter 4; (i3 in that
case). [Grammar fragment I| shows an extract of the written
attack grammar for guiding input mutations:

HTML_XSS_FIELD ::= HTML_TEXT_SIMPLE HTML_TAG_QUOTE
HTML_TAG_SPACE HTML_TAG_EVENT HTML_TAG_EQUAL
HTML_TAG_QUOTE JS_PAYLOAD

HTML_TAG_QUOTE =" | *

HTML_TAG_SPACE == \n | \t | \r | =

HTML_TAG_EQUAL ::= =

HTML_TAG_EVENT ::= onabort | ... | onclick | ... | onwaiting

Grammar fragment 1. Injecting into an HTML attribute field value

Figure 3| shows an input parameter value 7; (thus a subset
of an input sequence) generated using that grammar:

HTML HTML  HTML HTML  HTML
_TEXT _TAG _TAG HTML.TAG -TAG  _TAG
_VALID _QUOTE _SPACE ~ _EVENT  -EQUAL _QUOTE 5 pAYLOAD
kalimu || " \n [| onclick || = " alert(1)
1 input parameter value i
Fig. 3. An individual I is composed of several input parameters values

i%...iﬁ, each of them composed of at least one terminal in G;

D. Creating the First Generation

Individuals of the first generation are created from the attack
grammar and known attack inputs by reusing input sequences

learned during the inferencing step that led to a state for which
there is a potential injection on a given input parameter.

E. Character Classes

Exploiting an injection is about sending data and instruc-
tions to the SUT that does not use them in a safe way
and assumes those inputs as only data. In our approach, we
currently first submit only data for inferring a SUT formal
model. Then during the fuzzing step, a combination of data
and instructions is sent to the SUT. For now, the model is
not updated during the fuzzing step. In the case of XSS,
we consider the output grammar Go to be HTML. Client
browser parsers will render additional nodes in the parse
tree of the output ¢ depending of delimiting terminals, for
instance C7, Cb,... Thus input parameter values submitted
during the inference step will only contain characters from
Coalia = Cy U C7. We categorize symbols that appear in
HTML words into the following classes:

o Co: HTML Spaces: .|| \r || \t || \n

o Ci: HTML Attribute delimiter: " || * || *

o Co: HTML Tag delimiter: < || > || />

e C3: HTML Equal sign: =

o Cy: JavaScript code: (|)|I; [I{II}

o C5: URL related: /|| : ||?]|&

o Cg: Escaping character: \

e C: HTML_TEXT_SIMPLE: [a-Z] U [0-9]

During the fuzzing step, input parameter values from
Cluzsy = U?_,C; are submitted to the SUT.

F. Detecting XSS Attacks

The web application is vulnerable to XSS attacks if at
least one output contains an attacker controlled JavaScript
(JS) code. If the attacker succeeds in crafting an input i,
s.t. g2 = kalimu" onclick="alert (1), then 92 is not

syntactically confined - as defined in [[7] - w.r.t. the SUT output
grammar G, (HTMLS in that example):

<a
name
A_ATTR_NAME =
"kalimu"
A_LEFT AATTR,<; éﬁgigggj
A_ATTR_ONC =

>
Fig. 4. Extract of the Parse Tree Tz, (q(4;)) of the SUT output ¢

shows an extract of the parse tree T, (g(i1)),

where T(q) is the parse tree a word ¢ w.r.t. a grammar G.
This sufficient condition for detecting XSS attacks, however,

has some false negatives [5|] since modern browsers do accept

HTML code that does not respect all G production rules.

G. Evolutionary Fitness Function for XSS

The fitness function, denoted as F'it(I), assesses how well
a given individual [ is close to detect an XSS, i.e. individ-
vals with higher fitness value are prefered for creating next
generation.

First, an interesting candidate reflects, in the output gj,

many character classes Cinjected( ) that were present in the



fuzzed input ¢; for the very last transition: Cgent(I). Thus
Fit(I) should be an increasing function of the number of

Cinjectea(d . .
#&g) . In Fig. 3. and Fig. 4.,

Cy,C1,C5,Cy,Cr7 are present in 4; and are all successfully
injected, thus Cipjected(I) = Csent(I) = 5.

States reachable within few transitions from the initial state
are more likely to be sanitized than deeper ones, thus an
injection within a transition further away from the start node
is more likely to exist. We favor such individuals : ST#’;;(U
In Fig. 2., if I = ((i} = a), (i3 = b), (i} = kalimu)), then
Sreached(l) =3

A well formed output ¢, w.r.t. Gp, is more likely to be
executed by the client: Wy (I) = 1 if the ¢ is well formed,
Weu(I) = 0 otherwise.

Though an individual - I = ([y,...I,;,) for which a po-
tential reflection does exist for 7} - is able to inject several
character classes C, it is not enough to ensure that the
reflections ¢(4;"*) will be interpreted as instructions. Additional

HTML nodes in Tg, (q(ij}, ) compared to Tg, (q(if"))

indicates i{;‘uncd was able to successfully inject HTML in-
structions. We intuit that an attack has a higher probability
to succeed in that case. Thus we make use of the proposed
metric N(I) that represents the improvement of I in terms
of HTML nodes that are reflected from ;7 = w.rt. its
predecessors Pred(I). If ¢(I,,) = ¢ - g2 - ... - qx, then
A(I) = maxje1.; Nodesa, (g; (il’;"wzed))

For instance, in Fig. 4., A(I) =3

L PePred(1) AP)

A== FreatnT
maxgeGen A(E)

classes present in g;:

Finally, we propose the XSS fitness function:

. S Cinjected({
Fit(I) = gk + “gess + Wen(I) + N(1)

Each of these component can have weight to tune its impact.

H. Evolving the Population

Following we define mutation and crossover operations that
tend to respect the Attack Input Grammar G 4;. Mutation
operations would add, delete or replace at least one non-
terminal or terminal w.r.t. G 4;.

Let I = (L,..I,n) and J = (Ji,...,J,) being two
individuals. A potential reflection does exist on I,,, (resp. Jy,),
for the input parameter ;" (resp. j,’). Crossover is performed
at two levels:

« transition level: a child would be

(I1y ooy I, (7 oy 151, 35))

« input parameter value level: so far, two cases are consid-
ered: either ¢;" and j,’ were generated using the same
production rule or not. In the first case, we perform a
classic 1 point crossover cutting on the same terminal
production rule. It is still an ongoing reflexion on how to
crossover input parameter values generated by different
production rules while still conforming to the attack input
grammar and wether there is an advantage of doing so
instead of performing a 1 point crossover at a random
position, as done in [8]].

IV. RELATED WORK

Being a combination of two techniques viz. inference and
genetic algorithm, our approach relates to several existing
black-box testing works. In [8]], the task of evolving malicious
scripts is akin to generating malicious inputs also using an
attack grammar. However, the absence of a SUT model (i.e.
state transition to achieve the goal) might have some adverse
effects, especially in the case of complex goals. The fitness
function defined in [9], though being similar in goal, may
not be effective in detecting deeply rooted vulnerabilities. KiF
[10] uses model inference with manually crafted inputs for
state transitions, whereas we tried to automatize this step using
GA and the attack grammar. [11] is similar to our proposal:
an abstract SUT model is inferred and concrete fuzzed input
sequences are sent to the SUT. Differences include their use of
passive inference and their only criteria for creating new input
sequences is to increase the state coverage, probably because
their targeted fault is SUT crash.

V. CONCLUSIONS AND FUTURE WORK

We propose an automated type-1 XSS search approach
that is based on model inference and evolutionary fuzzing
to generate test cases. Kameleon-Fuzz is a work in progress
implementation of our described approach. Our future work in-
volves experimenting on real world applications, observing the
influence of various GA parameters (elitism, pools, weights).
We also plan to extend this approach for detecting type-2 XSS
since current state of the art scanners detection capability is
low [12]. Also, by considering the DOM and webserver as
the SUT, it would be possible to detect type-0 XSS and non
conformant XSS w.r.t. the HTML grammar. In that process,
we will also tune our fitness function.
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