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Star shaped crack pattern of broken windows

Nicolas Vandenberghe,∗ Romain Vermorel,† and Emmanuel Villermaux‡

Aix-Marseille Université, IRPHE, 13384 Marseille, France
(Dated: March 27, 2013)

Broken thin brittle plates like windows and windshields are ubiquitous in our environment. When
impacted locally, they typically present a pattern of cracks extending radially outwards from the
impact point. We study the variation of the pattern of cracks by performing controlled transverse
impacts on brittle plates over a broad range of impact speed, plate thickness and material properties,
and we establish from experiments a global scaling law for the number of radial cracks incorporating
all these parameters. A model based on Griffith’s theory of fracture combining plate bending
elastic energy and fracture energy accounts for our observations. These findings indicate how the
post-mortem shape of broken samples are related to material properties and impact parameters, a
procedure relevant to forensic science, archaeology or astrophysics.

Patterns of multiple cracks, such as those appearing
on broken windows[1, 2], remain difficult to interpret,
because the crack extension and the inherent modifica-
tion of the stress field are intertwined. These networks
of cracks are however of prime importance to understand
fragment size distributions resulting from impacts[3], a
fundamental problem of interest for the crushing and
grinding process industry. Studies addressing the behav-
ior of a plate impacted by a projectile have been numer-
ous in relation to security applications[4, 5]. In this con-
text the emphasis is usually put on the damage or perfo-
ration of armor plates made of high strength ductile ma-
terials and different perforation mechanisms leading to
different post-mortem shapes have been identified[6, 7].
Numerous studies have also addressed the case of brit-
tle material such as glass and the difficult problem, even
in static configurations[8], of determining thresholds for
damage. We focus here on situations of dynamical im-
pacts on brittle plates, and to the formation of radial
cracks whose extension is in general much larger than the
size of the impactor, and perform controlled transverse
impact experiments on plates of PMMA (Poly-methyl
methacrylate) a brittle plastic, and glass.

The plates of PMMA (Young’s modulus Y = 3.3×109

Pa, density ρ = 1.19 × 103 kg m−3 and Poisson ratio
ν = 0.39) have thicknesses h in the millimeter range
(h = 0.5, 1.0, 1.5 and 3 mm) and side length of 15
cm. They are held on a square frame with magnets and
we focus on the response at short times for which the
boundary conditions on the sides of the plate do not af-
fect the dynamics. A steel cylinder of mass 16 g with a
hemispherical end of radius ri = 1.8 mm is accelerated
with a gas gun. It impacts the plates perpendicularly at
their center at speeds in the range 10 to 120 m/s. The
plate surface is observed from the face opposite to impact
and the dynamics is recorded with a high speed camera
recording 30000 frames per second.

After impact, the plate is deformed by a transverse
bending wave growing in amplitude and radius. For
speeds above a threshold (typically 15 m/s for h = 1
mm) a pattern of radial cracks is observed early in the

dynamics (Fig. 1). In most cases, the number of cracks is
set very early on (t ≤ 33 µs after impact) and it does not
vary as the radial cracks extend. Their angular distribu-
tion is quite regular and at a given time all the cracks
present approximately the same length. At later times,
waves interacts with the boundaries and the pattern loses
its regularity. As we increase impact speed from 15 m/s
to 120 m/s, the number of cracks increases from 3 to 11.
At low speeds (below 65 m/s for h = 1mm), radial cracks
extend until they reach the sides of the plate. At high
impact speeds, the petals delimited by the radial cracks
break to form circumferential cracks resembling the coni-
cal cracks characteristic of Hertzian fracture[8]. They ap-
pear at short times at radii comparable with the radius of
the impactor. Different stages of circumferential cracks
develop (Fig. 1c) together with radial cracks resulting in
the formation of very small fragments. At higher speeds,
a large number of small fragments (with a characteristic
size smaller than plate thickness) are ejected. Typically,
in this high speed regime, the impacted plate exhibits a
hole of the size of the impactor and thus the damaged
area on the plate is smaller than at low impact speeds.

For the lower range of impact speeds, the pattern
evolves in time. At short times two cracks extend out
of the point of impact, until new cracks form (Fig. 2a).
This scenario is consistently observed at the lower speeds
for thin plates (h = 0.5, 1 or 1.5 mm). For thicker plates
(h = 3 mm) we observe a reduction of the number of
cracks when the pattern expands. As shown on Fig. 2b,
initially a large number of cracks form but only some of
the cracks will expand to form well delimited petals.

Experiments were also performed on thin glass slides
(Y = 6.1 × 1010 Pa, ρ = 2.38 × 103 kg m−3, ν = 0.22)
with thickness h = 0.15 mm and side length 80 mm. The
plates rest on an annulus of inner diameter 60 mm. The
impactor is a cylinder of mass 3.3 g with a hemispherical
end of radius ri = 0.5 mm. At speeds in the range 5 to
40 m/s, we also observe patterns of radial cracks. After
impact, a large number of cracks is apparent, but as the
pattern extends, only some of them open and separate
distinct petals (Fig. 1d).
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FIG. 1. Star cracks pattern on impacted plates. PMMA plates of thickness h = 1 mm impacted transversely exhibit a
pattern of radial cracks that extend until they reach the side of the plate (a,b) while at higher speed (c) circumferential cracks
characteristic of Hertzian fracture are also observed. (d) Similar patterns are observed on a glass slide of thickness h = 0.15
mm impacted at V = 10.1 m/s. One identifies numerous cracks on the first panel of which only 11 will appear as extending
cracks on the other panels. For the purpose of visualisation, white paint coats the glass plate.
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FIG. 2. Evolution of the crack pattern on impacted plates.
(a) The augmentation of the number of cracks from 2 to 4 is
typical of low speed impacts on thin plates (here PMMA with
h = 1.5 mm). (b) For thicker plates (PMMA with h = 3.0
mm) Some of the cracks formed at short times do not extend
(here 7 cracks are initially formed but only 4 of them extend.

The number of radial cracks of the final pattern for
a given plate material shows a clear augmentation with
the impact speed V , and plate thickness h (Fig. 3).

The number of radial cracks on PMMA plates of differ-
ent thicknesses and of glass plates collapse when plotted
against the non-dimensional speed V̂ = (Eh/Γ)2/3(V/c)
where Γ is the fracture energy of the material (300 J/m2

for PMMA and 3 J/m2 for soda-lime glass, within the
range of values in the literature[9, 10]) and c = (E/ρ)1/2

with E = Y/(1−ν2) is the speed of sound in the material.

After contact with the plate, and after a short transient
involving compression in the bulk of the plate lasting tH ,
the impactor triggers bending waves[11]. Kinetic and
bending energies balance, ρΩV 2 ∼ E(κh)2Ω with curva-
ture κ ∼ w0/r

2
f , w0 = V t the indentation, and rf the

radius of the deformed region (the volume of deformed
material is Ω = πr2fh), yielding rf ∼ (cht)1/2. The cur-
vature κ ∼ V/(ch) is constant in time[12, 13]. Energies
have been estimated in a quasi-static fashion, time en-
tering in the description through boundary conditions
only, themselves a function of time. This implies that we
consider timescales long with respect to the propagation
time of the strain in the medium, and in particular to
the smallest, based on the plate thickness ts = h/c

The bending response holds as soon as the com-
pression energy stored at the contact of the impactor
E(V t/rH)2r3H with r2H = riV t given by Hertz the-
ory of contact[14, 15], overcomes the bending en-
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FIG. 3. Evolution of the pattern with impact speed. (a) The number of radial cracks increases with impact speed V for PMMA

plates (h = 1 mm) and for glass slides (h = 0.15 mm). The lines are n ∼ V 1/2. Inset: number of radial cracks versus impact
speed for PMMA plates of thickness 0.5 and 3.0 mm. (b) The results are conveniently rescaled using the non-dimensional

impact speed V̂ = (Eh/Γ)2/3(V/c). Impact experiments were performed on PMMA plates with h = 0.5 (•), 1.0 (•), 1.5 (•), 3.0
mm (•) and glass plates (h = 0.15 mm �). The continuous line is the scaling law in Eq. 3 with a prefactor equal to 1.7. Open
symbols are for impacts presenting circumferential cracks. (c) The short time response consist of a deformation in the bulk
and a bending deformation. (d) The impact speed VH at which circumferential cracks appear decreases with plate thickness.
(e) The radius of the first circumferential cracks is constant with V (for PMMA plates with h = 1.5 mm).

ergy E(V/c)2r2fh above. This occurs at tH ∼
(h/c)(c/V )1/3(h/ri)

1/3 larger than ts since V � c.

Comparing the stored elastic energy Er
1/2
i (V tH)5/2 at

tH with the energy needed to expand circumferential
cracks[16] across the plate ΓhrH yields a scaling law
for the critical speed at which the circumferential cracks
should appear V ∼ h−5/4 in agreement with observation
(Fig. 3d). The circumferential cracks appear at a radius
rH that does not depend on impact speed(Fig. 3e).

Finally we note that the transverse deformation is ac-
companied by stretching through geometric nonlineari-
ties. The stretching ε ∼ (w0/rf )2 becomes significant
when the stretching energy E(w0/rf )4r2fh becomes com-
parable with the plate bending energy, at time tf = h/V .

The bending energy Ub of an elastic plate with trans-
verse displacement w(r, θ) is

Eh3

24

∫∫ [
κ2r + κ2θ + 2νκrκθ + 2(1− ν)κ2rθ

]
rdrdθ (1)

where κr = ∂rrw, κθ = (1/r)∂rw + (1/r2)∂θθw, κrθ =
(1/r)∂rθw− (1/r2)∂θw. For a plate clamped at an outer
radius rf with n regularly spaced radial cracks which
extends to ξrf (with ξ < 1), the gain in elastic en-
ergy that is inherent to crack extension is mainly due
to the flattening of the petals in the orthoradial di-
rection and the corresponding reduction of the bend-
ing energy associated with the curvature κθ. Indeed
near r = 0, the impact response of a plate[13] yields
(κθ − κr)/κθ ∼ −(8/π)/ log(r/rf ) and radial cracks are
arguably favored since |κθ| > |κr|.

We perform indentation experiments of thin polycar-
bonate (PC) plate (Y = 2.3 × 109 Pa,ν = 0.35, h = 1
mm) clamped at an outer radius rf = 60 mm, on which
n radial cuts extending to ξrf (with ξ < 1) were made
with a thin (0.2 mm wide) saw blade, measuring the force
F to achieve indentation w0, thus inferring elastic energy
Ub = Fw0/2. The results is a parabolic relationship (for
displacement less than 1 mm) with a coefficient Ub/w

2
0

which can be used to compute the stiffness of the cracked
plate kb(ξ, n) =

(
Ub/w

2
0

)
(3r2f/πEh

3).

These results can be accounted for by a low dimen-
sional model. We consider two domains in the plate:
first an outer domain (r > ξrf ) which is uncut, where
the displacement is taken as the displacement for an un-
broken circular plate loaded at its center[17] fe(r) =
α[1− (r/rf )2 + 2(r/rf )2 log(r/rf )]. In the inner domain,
we add a non-axisymmetric displacement for the petals
r < ξrf . For the petal bounded by cracks at −π/n and
π/n, the displacement is of the form wi(r, θ) = fe(r) +
(1− α− βx) (1 − x2) with x = (r/ξrf ) cos θ/ cos(π/n).
Using this ansatz for the displacement w, we construct
the bending energy. The two parameters α and β are
then obtained by minimizing the bending energy, giv-
ing kb(1, n) ≈ 0.46 + 2.8/n2. We obtain a good agree-
ment between this simple model and our measurements
thus indicating that the flattening of the petals is a key
element to understand how the cuts alter the bending
rigidity of the plate (Fig 4c). Bending energy is mini-
mal when cracks are extended (ξ → 1). In this config-
uration, the energy can be estimated, neglecting trans-
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verse bending, by the energy of n triangular beams. The
bending energy of n triangular beams of length rf and
summit angle 2π/n is Eh3w2

0n tan(π/n)/(3r2f ) and thus

kb(1, n) ≈ 1/2 + π2/(6n2).
In Griffith’s theory of brittle fracture[18], the pattern

of cracks corresponds to the global energy (i.e. elas-
tic+fracture) minimum[19–22]. Using the bending en-
ergy previously computed in the limit of long cracks ex-
tending up to rf/cos(π/n) (optimization could be per-
formed on ξ as well leading to no significant difference)
and the fracture energy 2nΓhrf , the total energy can be
written

E
πr2fh

3

(
w0h

r2f

)2{
1

2
+

π2

6n2

}
+ 2nΓhrf (2)

with Γ the material fracture (surface) energy. Minimizing
with respect to n, with w0 = V t, the optimal number

of cracks is n ∼ (Erf/Γ)
1/3

(V/c)
2/3

. There are more
cracks in more brittle material (lower Γ), impacted more
violently (higher V ). The number n is also anticipated to
increase (slowly) with time, through rf ∼ (cht)1/2. This
is consistent with Fig.2, but at some point the increase
stops, and the pattern is frozen.

The freezing time, after which a global energy mini-
mization looses its sense, corresponds to the end of the
elastic connectivity of the pattern. The orthoradial cur-
vature of a petal is released when the crack tip has
reached rf/ cos(π/n). To drive the crack up to this
point, transverse displacement must occur in the area
between rf and rf/ cos(π/n). This is not possible as
long as wave propagation results solely from the bal-
ance between kinetic and bending energy. Stretching can
drive the transverse wave further than rf . Stretching en-
ergy E(V t/rf )4Ω dominates bending energy E(V/c)2Ω
for times larger than tf = h/V . At that time, the num-
ber of cracks is, and will remain

n ∼
(
Eh

Γ

)1/3(
V

c

)1/2

(3)

explaining the scaling n = 1.7 V̂ 1/2.
The study of patterns resulting from impact is a valu-

able source of information on past or distant events in
different fields[23–25]. Our results reveal that quantita-
tive insights on the nature of the impacted sample and
on the impact conditions can be obtained from the num-
ber of radial cracks. In astrophysics, impact patterns,
either natural or man made, are a mean of investigation
to infer properties of distant bodies[26]. Though thin
layers of brittle materials are often encountered on vari-
ous planets, these always lay on a soft or fluid substrate.
Finally we note the similarity between the patterns re-
sulting from impacts and the patterns observed on brittle
coatings on soft substrate[27]. In particular the coexis-
tence of radial and circumferential cracks is observed in
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FIG. 4. Bending of a cracked plate. (a) The wavefront is
located in rf , crack tips at ξrf and the impactor is at w0.
(b) When the cracks have reached the position rf/ cos(π/n),
the petals are flat in their transverse direction. (c) The
non-dimensional bending energy kb = Ub3r

2
f/(πEh

3w2
0) of a

clamped plate presenting n radial cracks decreases with n and
with the crack length ξ (inset). The lines are obtained from
theory and the dots are experimental points obtained on a 1
mm thick PC plate with radial cuts made with a thin blade.
(d) Squares reflected in a bent plate with 4 cracks show that
close to the centre, reflected lines are almost straight and thus
petals flatten near the centre. (e) An impacted plate exhibit
petals that are flat near the impact point.

both cases and the evolution of the number of cracks
with indentation load has been observed[28]. The anal-
ogy between these situations ought to the existence of
an intrinsic length scale, characterizing the radial exten-
sion of the deformed area, evolving with time in the case
of impact (like rf ), and which is equal to (Eh3/12k)1/4,
where k is the modulus of the foundation[17] in the case
of static indentation of brittle coatings.
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