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Abstract—Real social networks can be described using two
dimensions: first a structural dimension that contains the social
graph, e.g. the actors and the relationships between them,
and second a compositional dimension containing the actors’
attributes, e.g. their profile. Each of these dimensions can be used
independently to cluster the nodes and explain different phenom-
ena occurring on the social network, whether from a connectivity
or an individual perspective. In the case of community detection
problem, an emergent research field explores how to include
relationships and node attributes in an integrated clustering
process. In this paper, we present a novel approach which
integrate two partitions, one structural and one compositional,
after they habe been generated by dedicated and specialized
clustering steps.

We rely on a contingency matrix with structural groups in rows
and compositional ones in columns. The problem is to manipulate
rows and columns to provide a new partition which maintains
a good trade-off between both dimensions. In this paper we
propose two strategies to control the combination. Tested on
real-world social networks, the final partitions are evaluated in
terms of entropy and density, and compared to pure structural or
compositional partitions. The unified partitions show interesting
properties, such as cohesive and homogeneous groups of actors.
The method offers fine control on the combination process, giving
new search capabilities to analysts without requiring the re-
computation of the partitions.

Index Terms—Graph clustering; contingency matrix.

I. INTRODUCTION

According to Wasserman and Faust [1] social networks are

represented by two dimensions or variables. The structural

variable is used to describe the network in terms of the links

between the actors. The composition variable describes each

actor individually with attributes such as origin, preferences,

number of sent messages or other profile information.

Each variable has been defined in different spaces (friend-

ship vs. competencies for example) making unfeasible their

direct comparison, and therefore the definition of a unique

distance measure, in the case of clustering, where the goal is

to group close objects. Additionally, the approaches differ for

each variable. Clustering graphs or clustering attribute/value

tables involve different techniques and different measures of

quality.

Most of the existing methods for clustering attributed graphs

propose an integrated process to find a partition based on both

the links and the attributes. But if the combination of the

variables does not fit the goal, the analyst has to recalculate the

partition with different parameters or try another appproach.

The idea of this preliminary work is to de-correlate the stages

of clustering and combination of variables. First, favoring

specialized techniques for each type of variable that produces

good quality partitions. Second, a method offering the reuse

of partitions is valuable in huge networks in terms of com-

putational complexity. In this work, we present a method that

is able to combine existing good structural and compositional

partitions to find a new groups of well-connected and similar

nodes.

We rely on a contingency matrix to describe the agreements

between the partitions. We assume that each partition can

be explained in terms of the other one. By manipulating the

rows and columns, we offer opportunities to control how to

decompose the structural groups according to the composition

information (or vice versa).

The paper is organized as follows: Section II presents

some important works in community detection in attributed

graph, in Section III the problem and some basic notation are

introduced. Section IV presents the algorithm and Section V

presents some experiments on real-world networks, before the

conclusion.

II. RELATED WORK

Several methods have been developed to detect communities

in an attributed graph. Neville et al. [2] present a clustering

approach that uses a similarity metric Sij to compare the

attributes of each socially linked pair of nodes i and j. They

modify the weights of the edges according to Sij , and then

compute the communities using either a Monte-Carlo recursive

clustering or a k−means based algorithm. The proposed

similarity function is called matching coefficient; this function

will set the weight of each edge e(u, v) ∈ E as the count of

common attributes between u and v. Steinhaeuser et al. [3] use

different similarity measures to value the edges: two structural

measures (based on Jaccard or clustering coefficient) and one

measure involving either discrete or continuous attributes. If

the edge weight exceed a threshold, the linked nodes are

assigned the same cluster. The authors gauge the quality of the



partition with the modularity function proposed by Newman

and Girvan [4].

We have also proposed a way to modify the weights of

the edges before the application of the community detection

process (see Cruz et al. [5], [6]). Our approach differs on how

the compositional information is exploited: we do not compute

a similarity function between pairs of nodes, but we use a

clustering method on the attributes of the nodes. We propose

the use of a self-organizing map (SOM), a neural network

trained to find low-dimensional latent information about the

attributes; our choice fell on SOM because of its robustness

to noise and its capability to translate high dimensionality

into low dimensionality spaces [7] (attributes may represent

textual personal web page for example). During the second

stage, we change the weights of the edge according to the

groups revealed by the compositional clustering: for each edge

e(u, v) ∈ E, if u and v belong to the same group in the SOM,

the weight of e(u, v) ∈ E is changed to a value proportional

to a constant α > 1. In a last step, the graph is clustered using

the Louvain method [8] which optimizes the modularity and

takes the weights into account.

Recently Villa-Vialaneix et al. [9] present another SOM-

based approach. Their idea is to rely on kernels to map

the original data into an (implicit) Euclidean space where

the standard SOM can be used. They define a multi-kernel

similarity function to compute the distance between the graph

i.e., the structure and the nodes attributes, and the neurons of

the SOM. This multi-kernel is a linear combination of several

functions allowing to integrate the structural and the attribute

similarity of the nodes in the graph, i.e., in this case the kernel

is composed by two functions. The use of a kernel allows to

automatically tune the combination. This approach takes also

advantage of the visual representation of the SOM, that is a

bi-dimensional grid in which each neuron (represented as a pie

chart) represents a group of nodes and the size of each neuron

is proportional to the number of observations associated with

the neuron.

Combe et al., [10], [11] present two approaches for clus-

tering attributed graphs. The first one is similar to the one

presented in [3] but with a different similarity function and as

in [6], authors use the Louvain method to cluster the resulting

graph. The second approach is the use of a linear combination

of an attribute similarity measure and a structural measure.

Additionally, authors define a framework for comparing the

resulting partition with other ground truth methods with the

Rand Index.

Li et al., [12] present an algorithm to find groups of papers,

i.e., the nodes are documents and the links are defined by the

coexistence of a reference between papers and the additional

information is given by the text which is clustered using LDA.

The algorithm is composed of four steps: detection of cores,

core merging, affiliation and classification. The first step is

designed to identify documents that are frequently referenced,

seen as the community seeds. On the second step the algorithm

merges the cores based on their similarity. During the third

step the nodes are assigned to one or more cores according to

a relationship propagation. The last step is used to fine-tune

the communities and remove nodes that may be false hits.

Ge et al., [13] present an approach for clustering attributed

graphs, using at the same time the structure and the attributes

of the nodes. Authors propose the connected k centers –

CkC method. This method is composed of three main steps:

first pick k random nodes as clusters centers, second all the

nodes are assigned to one of the k clusters by traversing the

graph using breadth-first search, and third the centroids of

the clusters are recalculated. The second and third steps are

repeated until there are not further changes in the clusters

centroids. This approach is based on the k−means method.

Zhou et al., [14], present an algorithm that uses a random

walk through a predefined set of k clusters, and try to maxi-

mize the distance between clusters by moving nodes according

to their similarity. First, they create an augmented graph from

the node attributes, then they execute the random walk over

the transition matrix generated by the augmented graph. This

leads them to find k groups of semantically close nodes. To

measure the clustering from a structural point of view, they

use the density of edges within the clusters.

The approach proposed in this work is a community de-

tection framework which integrates the two dimensions that

describe a social network. Here, the process takes into account

the very different nature of these dimensions; each dimension

has an adapted representation, and we preserve also adapted

treatments and optimization criteria: graph techniques for the

graph, data mining techniques for the attributes, according

to their nature. Our main contribution intervenes after the

clustering step, and considers the resulting partitions of these

adapted treatments as an input.

III. PROBLEM DEFINITION

In attributed graphs [14], the structural variable is repre-

sented as a graph. and the compositional variable describes

each actor as a vector of features, a bag of words or images for

example. Due to the differences in their representation these

variables cannot be compared directly.

Our basic idea is to use clusterings produced for each

one of the variables, providing adapted though very different

knowledge about the networks and its actors. Our problem

is then: how to use that knowledge in an integrated way?

And how to offer opportunities of control on this integration

without replaying the costly clustering step? We need first to

represent both dimensions within the same space in order to

manipulate them.

A. Notation and definitions

Let G (V,E, F ∗) be an attributed graph where V and E are

the set of nodes and edges respectively and the composition

variable represented by F ∗, is defined as F ∗ : V → R
r. Let

fG : G (V,E, F ∗) → CG be a function that finds a partition

CG of the nodes according to G and let fF∗ : G (V,E, F ∗)→
CF∗ is a function that finds a partition CF∗ of the nodes

according to the compositional information. Without loss of

generality we define these partitions CG and CF∗ as affiliation

matrices.



B. Partitioning the nodes according to each dimension

The functions fG and fF∗ produce a partition of the graph G

and the compositional information respectively. Each function

has to be designed to optimize a specific quality index.

Typical quality indexes for the fG function are based on

the connectivity and structural configuration of the graph, for

example those presented by Brandes et al. [15]. On the other

hand, function fF∗ is defined over the features space of the

nodes. These features are typically represented as vectors for

which the distance may be measured, among others, by the

cosine or the Euclidean distance.

Since the partitions in each case are generated using the

adapted measures, they cannot be directly compared.

C. Comparing the structural and composition partitions

As mentioned before, partitions CG and CF∗ are expressed

as affiliation matrices of size |V |×m and |V |×r respectively,

where m is the number of structural groups and r is the

number of compositional groups.

All n nodes have been allocated twice (in each partition).

A contingency matrix C, as presented in Table I, is a matrix

where each entry nij represents the number of common nodes

between groups i ∈ CG and j ∈ CF∗ .

Paritition CF∗

Class v1 v2 . . . vr Sums
u1 n11 n12 . . . n1r n1·

u2 n21 n22 . . . n2r n2·

Partition CG

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

um nm1 nm2 . . . nmr nm·

Sums n·1 n·2 . . . n·r n

TABLE I
CONTINGENCY MATRIX OF THE AGREEMENTS OF TWO PARTITIONS CG

AND CF∗

The matrix C can be calculated as:

C = C
T
GCF∗ (1)

In our previous work, we have demonstrated that the effect

of modifying the weights in the graph according to some

attribute similarity, results in a division of the structural

partition according to the compositional groups. The process

tends to group homogeneous attributed nodes while keeping

some of the connectivity properties, but as a result, the density

is lower than in exclusive structural clustering (idem for the

entropy compared to SOM groups with attributes only).

To quantify this trade-off between two partitions, we use

ARI on the contingency matrix. The Adjusted Rand Index

proposed by Hubert and Arabie [16] gives us a notion of

distance between two partitions.

IV. INTEGRATED PARTITION

The community detection process proposed in this work

takes advantage of the configuration of the partitions generated

from each type of variable in the network.

The matrix generated by equation 1 represents the relation-

ships between 2 partitions; the rows of this matrix represent the

groups on the structural partition while the columns represent

the groups on the compositional partition. The idea of our

algorithm is to manipulate the configuration of the rows of

the matrix C in order to decompose the structural partition

according to the compositional partition.

Data: CG, CF∗

Result: C∗

C∗ ← ∅;1

C ← C
T
GCF∗ ;2

i← 0;3

while i < rows (C) do4

Ci ← row process (Ci·);5

C∗ ← C∗ ⊕Ci;6

i← i+ 1;7

end8

C
∗ ← rebuild partition (C∗);9

return C
∗

10

Algorithm 1: Row manipulation community detection algo-

rithm

Algorithm 1 outlines the row manipulation algorithm. The

algorithm starts by generating the contingency matrix (line 2).

Then each row of this matrix is processed (line 5) to evaluate

the compositional characteristics of the structural community

represented by that row. This process produces a matrix Ci of

s × r, where 1 ≤ s ≤ r is the number of subgroups that can

be created from the i−th structural community. This matrix

Ci is concatenated (line 6) to the matrix C∗ that contains the

new configuration of the partition.

The division of each row can be made according to different

criteria depending only on the configuration of the contingency

matrix, specially on the columns of the matrix which represent

the composition partition.

For evaluating the line 5 in the algorithm in this paper we

propose two approaches: the naive one and the variance based

one.

• Naive approach: in this approach, for each row Ci, if

Cij > 0 then the nodes belonging to the structural group i

and the composition group j will form a community, i.e.,

for each entry greater than 0 in the contingency matrix

there will be a community in the new partition.

• Variance based approach: in this approach, for each

element j of Ci, if
(Cij−µi)

σi
≥ 1 that element will be

a new community. Here µi and σi are the average and

the standard deviation of the row i respectively. Thus

the structural communities are splitted according to the

representativity of the compositional categories, i.e., those

with greater positive variance.

These methods allow us to evaluate the structural groups

under the light of the compositional variable and to decompose

them if the condition is fulfilled.

A. Algorithm example

For this example we use a small social network composed

of 24 nodes and 63 edges. This network has been divided

into four structural groups and three compositional groups.



Each node in the social network belongs to one of three

compositional categories. The first step is hence to construct

the contingency matrix C which uses the structural and com-

position partitions, CG and CF∗ respectively. This matrix is

presented in Table II.

CF∗

3 3 0
CG 2 3 1

3 2 1
0 0 6

TABLE II
CONTINGENCY MATRIX FOR THE SOCIAL NETWORK EXAMPLE

The ARI of these partitions is 0.1998. Each entry i, j of

the matrix shows the agreements between partitions. The next

step is the processing of each row of C. The criterion used in

this example is the basic one in which the group is subdivided

into groups representing each composition community.

Following this naive approach the new partition is composed

of 9 groups as presented in Table III. The ARI computed

from this matrix is 0.4232, meaning that both partitions are

more similar than before. The next step is to rebuild the

affiliation matrix using C∗ and the original affiliation matrices

(algorithm’s line 9.)

Table IV presents a summary of the results for this basic

example. We use three measures to compare the final results.

First we use the ARI to measure the similarity between

partitions, second, the density, measuring the partition from

a structural partition perspective and last, the entropy, which

measures the order, i.e., the attribute homogeneity of the

groups of the final partition.

The ARI between the new partition and the original compo-

sition partition shows that the distance between them has been

reduced, which means that the new groups are more aligned

with the compositional variable. This is also observed on the

entropy value, which drops to 0 indicating that each new group

is composed of nodes with similar attributes; however, the cost

of the reduction of the entropy is the loss of the density, which

implies a reduction of the quality of the partition in structural

terms.

CF∗

C0 3 0 0
0 3 0
2 0 0

C1 0 3 0
C∗ 0 0 1

3 0 0
C2 0 2 0

0 0 1
C3 0 0 6

TABLE III
RESULTING CONTINGENCY MATRIX ONCE THE STRUCTURAL

COMMUNITIES HAVE BEEN MODIFIED

When the variance criterion is used, the density of the

partition is greater than the one of the naive case, hence

the nodes within groups are still well connected. The groups

are also more similar than in the pure structural partition

Partition Groups ARI (w.r.t CF∗ ) Density Entropy

CG 4 0.1998 0.9365 4.9467

C∗

Naı̈ve 9 0.4232 0.4444 0

C∗

Variance 6 0.3229 0.6508 2.6593

TABLE IV
SUMMARY OF RESULTS OF THE ALGORITHM FOR THE EXAMPLE SOCIAL

NETWORK

(fortunately), providing the desired effect.

V. EXPERIMENTS AND RESULTS

To test the algorithm we have performed experiments with

two real-world social networks, one from Facebook and an-

other from DBLP representing co-authorship relations. Table

V describes the configuration of the social networks.

Network Nodes Edges Composition information

Facebook 334 5394 Information about the academic
and professional competences of
each actor

DBLP 10000 65734 Information about the topics,
knowledge fields and intellectual
production volume of each author.

TABLE V
DESCRIPTION OF THE SOCIAL NETWORKS USED DURING THE

EXPERIMENTS

From each social network the two partitions have been

derived. The structural partition CG has been generated with

the Louvain method [8] which is designed to optimize the

modularity. The compositional partition CF∗ has been created

with Self-Organizing Maps – SOM [7] which optimizes a

distance measure such as the Euclidean distance.

A. Experiments with the Facebook network

In this network, the structural partition contains 6 groups

corresponding to the following categories: (1) Math and sci-

ence, (2) Business administration, (3) Law, (4) Social sciences,

(5) Software eng., (6) Other eng. fields and (7) Arts. These

categories are defined according to the areas of expertise of

each actor in the network. The 6 structural groups are: (1)

Group of former coworkers in a research project, (2) Family

and family friends, (3) Group of students and researchers from

the university where the network’s owner made its undergradu-

ate and graduate studies, (4) Group of former students from the

school and high school, (5) Group of people from a consulting

firm where the network’s owner worked before starting its

PhD, (6) Group of people known during PhD studies.

For this study, we have manually labeled the groups result-

ing from the clustering tasks. As we can see, the categories

reveal a real relevance, and comfort our double idea of

applying adapted process to specific data, and perform the

integration on valuable partitions. The contingency matrix CFB

for these partitions is presented in Table VI.

The ARI of this contingency matrix is 0.0189. We apply

algorithm 1 with both the naive and the variance separation

methods. In the first case each structural group is divided into

the number of composition groups with size greater than zero,

producing in this case, 40 groups.



CF∗

9 10 2 1 2 0 3
20 1 4 7 10 1 4

CG 15 8 0 10 21 12 2
8 8 1 11 14 5 3

11 9 1 9 25 7 5
13 6 1 15 17 17 6

TABLE VI
CONTINGENCY MATRIX FOR THE PARTITIONS OF THE FACEBOOK

NETWORK

Partition Groups ARI (w.r.t CF∗ ) Density Entropy

CG 6 0.0189 0.9718 15.1475

C∗

naive 40 0.2819 0.1294 0

C∗

Variance 12 0.1063 0.6511 4.5502

TABLE VII
SUMMARY OF RESULTS OF THE ALGORITHM FOR THE FACEBOOK SOCIAL

NETWORK

The second approach extracts only the more representative

compositional communities included in the structural group.

Algorithm results are presented in Table VII. The original

structural partition is composed by 6 groups and it has the

best density value but it has also the worst entropy for this

network.

Using the variance approach we obtain 12 communities. In

this case, the obtained density value is less than the optimal

value; this is due to the division of the structural groups.

Although the entropy is greater than 0, it still represents 30%

of the reference value (pure compositional partition entropy),

gaining here on the similarity of the nodes without destroying

all the community structure.

The variance approach produces interesting results between

two extreme cases: on the one hand a partition produced with

solely structural criteria i.e., maximizing the modularity in this

case, on the second hand the naive approach, that minimizes

the entropy of the partition, but at the expense of density.

Figure 1 shows the distribution of composition categories

for the pure structural partition. Note that each community

is heterogeneous in terms of these composition categories.

Friendship relationships in this Facebook sample seem not to

be related to professional competencies.
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Fig. 1. Distribution of competences for the partition CG

With the integration of variables we obtain more and smaller

groups, but these groups are more homogeneous regarding

the profiles, as presented in Figure 2. Some groups represent

one or a few categories. But if we focus on the competency

5 (Software engineering), we find that it is well spread in

almost each group with an important number of members. This

knowledge would have been discarded with pure structural

techniques.
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V ariance

B. Experiments with the DBLP network

Each actor is described first in terms of her type: highly

prolific, prolific and little prolific (according to its publica-

tions). Secondly each actor belongs to one of the 99 clusters

of topics, given in the dataset, and used in [14].

In this case the structural partition contains 838 groups and

the compositional partition contains 53 groups. Therefore the

contingency matrix CDBLP contain 44414 entries. 2496 are

non zero. Table VIII shows the summary of the results of the

algorithm for the DBLP network.

Partition Groups ARI (w.r.t CF∗ ) Density Entropy

CG 838 3.98× 10−4 0.8353 665.6368

C∗

naive 2496 56.4× 10
−4

0.2079 0

C∗

Variance-I 1662 49.7× 10
−4

0.2638 6.5743

C∗

Variance-II 893 4.39× 10
−4

0.8304 523.9579

TABLE VIII
SUMMARY OF RESULTS OF THE ALGORITHM FOR THE DBLP

CO-AUTHORSHIP SOCIAL NETWORK

The first row shows the partition created with only the

structural information. The ARI indicates that the configu-

ration of this partition is far from the configuration of the

composition partition. Additionally this partition has the best

density and worst entropy of all the configurations. The second

partition, generated using the naive approach, produces 2496

groups, zero entropy and the lowest density. However, this

configuration has the highest (possible for this configuration)

ARI value, suggesting a more similar configuration to the

composition partition.

We use the variance approach to mix the variable types of

the social network. The results are on the third row. In this

case ARI is not a significant different from the naive approach,

which means that the configuration of these partitions are

similar. The density of this partition is very low and very

close to the naive partition. This can be explained by analyzing



first CG; about the 60% of groups of the structural partition

contains only one and the 20% contains two nodes. Following

the variance rule, most of the groups with only two elements

are broken into singleton clusters, i.e., a two-nodes structural

group will be decomposed into two communities of only one

node.

To overcome this issue we use an additional constraint over

the variance method consisting in taking only non-zero values

to calculate the average and the standard deviation. The results

of this modification are reported on the fourth row. In this case

we obtain a new configuration with a high density. However it

is important to note that the entropy level, a little lower than

pure structural partition, is still high. We face here again the

trade-off between the density and the entropy. The strategies

deployed here to manipulate the rows of the contingency

matrix are efficient on Facebook dataset, but not on DBLP.

This work does not go very deep in the design of strategies.

We feel here that the analysis of the networks should guide

the design of the integration process.

VI. CONCLUSION AND FUTURE WORK

We have presented in this paper a novel approach to the

community detection problem that integrates the two variables

contained in a social network. Each one of these variables

is represented as a partition, one from the structure and the

other from the composition information. This approach takes

advantage of the summarization of the two variables of the

social network made with the contingency matrix. This matrix

contains the agreements between two partitions issued from

different types of information, making them comparable. The

rows of the contingency matrix represent the groups of the

structural partition while the columns represent the groups

of the compositional partition; therefore manipulating the

rows in function of the columns yields to a new partition

configuration where the structural sub-groups are relevant in

the compositional space.

We proposed two ways to divide the structural communities.

First a naive method that converts every non-zero entry of the

contingency matrix into a new community: these communities

are composed of nodes of one type only. Second a method

based on the variance of each composition category composing

the structural community: a row is split to keep the compo-

sitional groups that contribute the most to the variance. This

last criterion allows us to decompose the structural partition

in terms of the composition variable while keeping a good

trade-off between the density and entropy.

Results on real-world networks, when using the variance

method, show improvements in both measures, producing

partition of well connected and similar nodes. The results

could be improved by changing the row manipulation method

in such a way the final density can be improved.

One important advantage of this method is the ability to take

two partitions already built with existing, suitable methods

for each dimensions. This is especially interesting with large

scale networks, but also for the analyst who has to try different

strategies of analysis in reasonable computional time. This use

case illustrates a second advantage which is the opportunity to

control the integration phase. Finally this method is extensible.

Future work includes the study of the row division method

to take into account the distribution of the composition

partition and to select which and how structural groups to

divide. Additionally a way to fusion two or more structural

groups would allow us to explore different configurations of

the structural groups. But before, we have to investigate to

understand the difference of performance on our datasets. The

comparison with other existing methods on synthetic networks

would of course be valuable.

REFERENCES

[1] S. Wasserman and K. Faust, Social Network Analysis: Methods and

Applications. No. 8 in Structural Analysis in the Social Science,
Cambridge University Press, 1994.

[2] J. Neville, M. Adler, and D. D. Jensen, “Clustering relational data using
attribute and link information,” in Proceedings of the Workshop on Text

Mining and Link Analysis, Eighteenth International Joint Conference on

Artificial Intelligence, (Acapulco, Mexico), 2003.
[3] K. Steinhaeuser and N. Chawla, “Community detection in a large real-

world social network,” in Social Computing, Behavioral Modeling, and

Prediction (H. Liu, J. Salerno, and M. Young, eds.), pp. 168–175,
Springer US, 2008.

[4] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical Review. E, Statistical Nonliner and Soft

Matter Physics, vol. 69, p. 026113, Feb 2004.
[5] J. D. Cruz, C. Bothorel, and F. Poulet, “Point of view based clustering of

socio-semantic network,” in EGC (A. Khenchaf and P. Poncelet, eds.),
vol. RNTI-E-20 of Revue des Nouvelles Technologies de l’Information,
pp. 309–310, Hermann-Éditions, 2011.
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