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Different properties of general linear descriptor systems are reviewed (existence of solution, consistency of initial condition, impulse controllability and controllability) and structurally characterized. The invariants are associated to a known feedback canonical form of descriptor systems. The aim is to sort the systems by inclusion properties depending on these characterizations.

INTRODUCTION

Descriptor systems provide a convenient and natural description of dynamical systems (see [START_REF] Duan | Analysis and Design of Descriptor Linear Systems[END_REF] for examples). However, even in the restricted case of linear time-invariant descriptor systems, that is considered here, they may present problems like solvability, initial condition consistency, impulsive response and different characteristics of controllability. The descriptor representation of the considered systems has the following form E ẋ = Ax + Bu (1)

where: E : X d → X eq , A : X d → X eq and B : U → X eq are linear maps. The linear spaces X d ≈ R n d , X eq ≈ R n eq , U ≈ R m , are called the descriptor, the equation, and the input spaces, respectively. No special assumptions are made on the matrix pencil sE -A, in the most general case it can be rectangular (n d = n eq ). This type of systems has attracted much attention during the last two decades [START_REF] Geerts | Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: The general case[END_REF], [START_REF] Ishihara | Impulse controllability and observability of rectangular descriptor systems. Automatic Control[END_REF], [START_REF] Hou | Causal observability of descriptor systems[END_REF], [START_REF] Hou | Controllability and elimination of impulsive modes in descriptor systems[END_REF], [START_REF] Zhang | Regularizability, controllability and observability of rectangular descriptor systems by dynamic compensation[END_REF], [START_REF] Duan | Generalized regularity and regularizability of rectangular descriptor systems[END_REF], . . . ). Most of the properties that will be considered here have been described in the previous cited references. The aim here is to give structural characterizations of theses properties as well as a classification of the systems in terms of the invariants of the feedback canonical form introduced in [START_REF] Loiseau | Feedback canonical-forms of singular systems[END_REF]. Section 2 states the properties that are considered and recalls their classical known characterizations. Section 3 brings back the definition of the feedback canonical form and its associated lists of invariants. Section 4 gives the structural characterizations in terms of these invariants. Section 5 shows how easily they can be applied on the analysis of the control problem of a constrained manipulator [START_REF] Mills | Force and position control of manipulators during constrained motion tasks[END_REF]. Section 6 is devoted to the conclusion.

SOME PROPERTIES OF SINGULAR SYSTEMS

Following [START_REF] Hautus | System structure and singular control[END_REF], [START_REF] Geerts | Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: The general case[END_REF] proposed a distributional framework to describe the solu-tion of (1) (the same framework was adopted in [START_REF] Özçaldiran | Structural properties of singular systems[END_REF] and [START_REF] Przyluski | Remarks on the theory of implicit linear continuous time systems[END_REF]).

The considered set of impulsive-smooth distributions, denoted C n d imp for the state (C m imp for the input) is decomposed as

C n d imp = C n d p-imp ⊕ C n d sm where C n d p-imp and C n d
sm denote the set of pure impulses and smooth distributions respectively. The distributional version of ( 1) is also presented: p Ex = Ax + Bu + Ex 0 where x 0 ∈ X d is the initial condition, Ex 0 stands for Ex 0 δ (δ denotes the Dirac delta function), p Ex stands for δ (1) * Ex (where * denotes the convolution and δ) and such that when p Ex is smooth, p Ex = E ẋ + Ex + 0 where E ẋ stands for the distribution that can be identified with ordinary derivative. For a given initial condition and a given input, the solution set of the state trajectories is

S C (x 0 , u) := x ∈ C n d imp [p E -A]x = Bu + Ex 0 (2)
It is well known that for the general systems (1), this set may be empty (existence of solution) or may have several solutions (non uniqueness). Moreover, the solutions may be impulsive or smooth and even in this case with jumps at the origin. (1993) proposed the following definitions for the solvability of (1) Definition 1. The system (1) is

Solvability, consistent initial conditions

Geerts

• C-solvable if ∀ x 0 ∈ X d , ∃ u ∈ C m imp : S C (x 0 , u) = ∅, • C-solvable in the function sense if ∀ x 0 ∈ X d , ∃ u ∈ C m sm : S C (x 0 , u) ∩ C n d sm = ∅.
Let us note that C-solvability is concerned with distributional (or impulsive) solutions whereas C-solvable in the function sense is concerned with ordinary (or smooth) solutions. But, even in the latter case, for some initial conditions there may exist jumps at the origin. [START_REF] Geerts | Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: The general case[END_REF] introduced the following definition to distinguish these two notions of consistent of initial conditions Definition 2. A point x 0 ∈ X d is called

• C-consistent if ∃ u ∈ C m sm ∃ x ∈ S C (x 0 , u) ∩ C n d sm : x(0 + ) = x 0 . The set of C-consistent points is denoted I c . • weakly C-consistent if ∃ u ∈ C m sm : S C (x 0 , u) ∩ C n d sm = ∅. The set of weakly C-consistent points is denoted I w c .
C-consistency avoids jumps at the origin for at least one smooth solution. Weak C-consistency enables jumps at the origin among the smooth (piece-wise continuous) solutions. Note that I w c = X d if and only if the system (1) is C-solvable in the function sense [START_REF] Geerts | Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: The general case[END_REF], proposition 4.2). Also note that [START_REF] Hou | Controllability and elimination of impulsive modes in descriptor systems[END_REF] introduced the notion of admissible initial condition for which there exists an u ∈ C m imp such that there exists x ∈ S C (x 0 , u); Clearly an arbitrary initial condition is admissible in and only if the system is C-solvable.

In his seminal paper Geerts (1993) also gave characterizations of these properties. Theorem 3. (Th. 3.5 of [START_REF] Geerts | Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: The general case[END_REF]). The system (1) is C-solvable if and only if

∀η(s) ∈ M 1×neq (s) : η(s) [sE -A B] = 0 ⇔ η(s) [E A B] = 0 (3) 
where M 1×n eq (s) is the set of 1 × n eq matrices with elements in the field of rational function R(s). Corollary 4. [START_REF] Ishihara | Impulse controllability and observability of rectangular descriptor systems. Automatic Control[END_REF], [START_REF] Hou | Controllability and elimination of impulsive modes in descriptor systems[END_REF] . 4.2 and Th. 4.5 of Geerts (1993)). Assume that in (1) [E A B] is full row rank. Then, the three following assertions are equivalent The system (1) is C-solvable in the function sense

I w c = X d ImE + AKerE + ImB = X eq
Note that Corollary 5 and Theorem 6 are the exact results of [START_REF] Geerts | Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: The general case[END_REF] under the assumption "[E A B] is full row rank". This condition is nothing else but the lack of redundant equations in (1). So there is no loss of generality with this assumption. However, it is possible to state general results: Theorem 3 and Corollary 4 come from [START_REF] Geerts | Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: The general case[END_REF] and [START_REF] Ishihara | Impulse controllability and observability of rectangular descriptor systems. Automatic Control[END_REF] for Csolvablility. The following one gives a general condition for the C-solvablility in the function sense. Corollary 7. The system (1) is C-solvable in the function sense, or is such that

I w c = X d if and only if ImA ⊂ ImE + AKerE + ImB (5) Proof. Suppose that [E A B] is full row rank. Then ImA ⊂ ImE + AKerE + ImB ⇔ ImE + AKerE + ImB = X eq . Suppose that [E A B] is not full row rank.
There exist n eq , Y , E, A and B such that

[E A B] = I n eq Y E A B (6)
with E A B full row rank.

The new system (1) defined with (E, A, B) (denote it Σ ) is obtained from (1) with (E, A, B) (denote it (Σ)) by removing the redundant equations. Clearly,

I w c(Σ) = I w c(Σ) . Also ImA ⊂ ImE + AKerE + ImB ⇔ ImA ⊂ ImE + AKerE + ImB. Now, since for Σ , E A B is full row rank and ImA ⊂ ImE + AKerE + ImB then I w c(Σ) = X d (see theorem 6) from which one deduces that ImA ⊂ ImE +AKerE +ImB ⇒ I w c(Σ) = X d . For the reverse part, if I w c(Σ) = X d then I w c(Σ) = X d which implies ImA ⊂ ImE + AKerE + ImB and then ImA ⊂ ImE + AKerE + ImB. Theorem 8. (Th. 4.5 of Geerts (1993)). Assume that in (1) [E A B] is full row rank. Then, I c = X d if and only if ImE + ImB = X eq (7)
Corollary 9. For the system (1), I c = X d if and only if

ImA ⊂ ImE + ImB (8)
The proof is very similar to the proof of the Corollary 7.

Note that the condition ( 8) is also the condition which in [START_REF] Frankowska | On controllability and observability of implicit systems[END_REF] characterizes strict singular systems which are such that for all x 0 ∈ X d there exists a trajectory,

x(t) ∈ C ∞ (R + , X d ) (infinitely differentiable functions from R + to X d ) satisfying x(0) = x 0 .

Controllability

If E = I (identity) (1) becomes a classical linear system for which only one clearly identified notion of controllability exists. If sE -A is square and invertible (regular continuous descriptor systems) things become more complicated. A system can be said controllable in the sense of [START_REF] Verghese | A generalized state-space for singular systems[END_REF] or Controllable in the sense of [START_REF] Cobb | Controllability, observability, and duality in singular systems[END_REF], [START_REF] Yip | Solvability,controllability, and observability of continous descriptor systems[END_REF] or [START_REF] Rosenbrock | Structural properties of linear dynamcal systems[END_REF].

In fact, [START_REF] Cobb | Controllability, observability, and duality in singular systems[END_REF] showed that these last three notions are equivalent. Our aim, in this section, is not to review all these notions defined for regular descriptor systems, but to recall the definition of different kinds of controllability that have been introduced for general rectangular systems (impulse controllability [START_REF] Geerts | Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: The general case[END_REF], [START_REF] Ishihara | Impulse controllability and observability of rectangular descriptor systems. Automatic Control[END_REF], [START_REF] Hou | Controllability and elimination of impulsive modes in descriptor systems[END_REF]), controllability [START_REF] Frankowska | On controllability and observability of implicit systems[END_REF], [START_REF] Özçaldiran | Structural properties of singular systems[END_REF]) and what will be called here strong controllability [START_REF] Özçaldiran | Structural properties of singular systems[END_REF]) and their known characterizations.

Originally, the idea and name of impulse controllability can be found in [START_REF] Cobb | Descriptor variable systems and optimal state regulation. Automatic Control[END_REF], for regular system and in [START_REF] Geerts | Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: The general case[END_REF] for more general systems, but the now established general definition appeared in [START_REF] Ishihara | Impulse controllability and observability of rectangular descriptor systems. Automatic Control[END_REF]. Definition 10. [START_REF] Ishihara | Impulse controllability and observability of rectangular descriptor systems. Automatic Control[END_REF]). The system (1) is called impulse controllable if for every initial condition there exists a smooth (impulse-free) control u(t) and a smooth state trajectory x(t) solution of (1).

In fact, this definition is nothing else but the definition 1 of C-solvable in the function sense. So the following corollary is an immediate consequence of Corollary 7, Corollary 11. The system (1) is impulse controllable or Csolvable in the function sense, or such that

I w c = X d iff ImA ⊂ ImE + AKerE + ImB (9)
In the case of general rectangular descriptor systems one finds the following definition of controllability. Definition 12. [START_REF] Frankowska | On controllability and observability of implicit systems[END_REF]). The system (1) is said to be controllable if for every pair of states x 1 , x 2 ∈ X d and every T > 0 there exists a trajectory of (1) such that x(0) = x 1 and x(T ) = x 2 .

Note that in [START_REF] Frankowska | On controllability and observability of implicit systems[END_REF], the solution was supposed to be an absolutely continuous function; in [START_REF] Aubin | Viability kernels of control systems[END_REF] the following theorem is stated with smooth trajectories (infinitely differentiable function).

Theorem 13. [START_REF] Aubin | Viability kernels of control systems[END_REF]). The system (1) is controllable if and only if the reachable subspace (defined below) is equal to the descriptor space R

* X d = X d (10) 
In this case, for every pair of states x 1 , x 2 ∈ X d and every T > 0 there exists a trajectory

x(t) ∈ C ∞ (R + , X d ) of (1) such that x(0) = x 1 and x(T ) = x 2 . R * X d = V * X d ∩ S * X d
where V * X d and S * X d are respectively the limits of the following algorithms,

V 0 X d =X d V µ X d =A -1 EV µ-1 X d + ImB -→ V * X d (11) S 0 X d =KerE S µ X d =E -1 A S µ-1 X d + ImB -→ S * X d (12) Remark 14. If R * X d = X d then V * X d = X d so
ImA ⊂ ImE+ ImB: naturally, the system is strict [START_REF] Frankowska | On controllability and observability of implicit systems[END_REF] or the set of C-consistent points is equal to the descriptor space (i.e. I c = X d ) [START_REF] Geerts | Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: The general case[END_REF]).

Note that the same definition and characterization can be found in [START_REF] Özçaldiran | Structural properties of singular systems[END_REF] but with the denomination complete controllability. In fact, [START_REF] Özçaldiran | Structural properties of singular systems[END_REF] contains a deeper study of controllability type properties: controllability (the ability to reach zero from any point) or reachability (ability to reach any point from zero) is considered, and the term complete in [START_REF] Özçaldiran | Structural properties of singular systems[END_REF] is associated to the idea that the trajectory, to reach zero from any point or a point from zero, is a smooth trajectory without any jump. Theorems 2.7 and 2.8 of [START_REF] Özçaldiran | Structural properties of singular systems[END_REF] state that complete controllability of (1) is equivalent to complete reachability of (1) and is nothing else but the controllability property of (1) defined by [START_REF] Frankowska | On controllability and observability of implicit systems[END_REF] and characterized by R * X d = X d .

Also note that Theorem 2.5 of [START_REF] Özçaldiran | Structural properties of singular systems[END_REF] contains the following characterization Theorem 15. [START_REF] Özçaldiran | Structural properties of singular systems[END_REF]). For the system (1), whatever are x 0 ∈ X d and T > 0 there exists a piece-wise continuous trajectory x(t) (with possible jumps) such that x(0) = x 0 and x(T ) = 0 if and only if

R * X d + KerE = X d (13) 
Note that, in this case, controllability and reachability are no longer equivalent. Because this property is said (in [START_REF] Özçaldiran | Structural properties of singular systems[END_REF]) to be equivalent to the strong controllability of [START_REF] Verghese | A generalized state-space for singular systems[END_REF] of the regular case (this will become clearer in section 4), this property will also be called strong controllability here, although in [START_REF] Özçaldiran | Structural properties of singular systems[END_REF] the term strong was associated to an other property . . .

Remark 16. If R * X d + KerE = X d then ER * X d + AKerE + ImB = ImE + ImA + ImB so ImA ⊂ ImE + AKerE + ImB:
as expected, the set of weakly C-consistent points is equal to the descriptor space (i.e. I w c = X d ).

Obviously, the characterizations (4) of C-solvablility, (5) or ( 9) of C-solvablility in the function sense, weak Cconsistency or impulse controllability, (8) of C-consistency, (10) of controllability and ( 13) of strong controllability are all invariant under the action of static state feedbacks. As a consequence, it is possible to give structural equivalent characterizations (section 4) using the invariants of the feedback canonical form of (E, A, B) triples introduced in Loiseau et al. (1991) (section 3).

THE FEEDBACK CANONICAL FORM OF (E, A, B) TRIPLES (Loiseau et al. (1991))

The group of transformation

The feedback canonical form of (E, A, B) triples is the canonical form under the action of the group T : T = {(W, V, G, F ) of appropriate dimensions/ W,V,G are invertible} where • V is a change of basis of the descriptor space (X d ),

• W is a change of basis of the equation space (X eq ),

• G is a change of basis of the input space (U),

• F is a proportional state feedback: X d → U

The canonical form and the list of invariants

For a given triple (E, A, B) there exists (

V, W, G, F ) ∈ T such that (W -1 EV, W -1 (A + BF )V, W -1 BG) = (E c , A c , B c ) (14)
where (E c , A c , B c ) is the canonical form under the action of the group T . This is the 6-block diagonal form described in figure 1. The blocks are characterized by indices which are invariant under the action of the group T . They can be obtained in a geometric way with the help of the algorithms (11), ( 12) and the following one

T 0 X d ={0} T µ X d =E -1 A T µ-1 X d + ImB -→ T * X d = S * X d (15)
introduced in Özçaldiran (1985) and [START_REF] Malabre | A structural approach for linear singular systems[END_REF]. One can find the following characterizations in [START_REF] Loiseau | Feedback canonical-forms of singular systems[END_REF] (or in [START_REF] Lebret | Proportional and proportional -derivative canonical forms for descriptor systems with outputs[END_REF], generalization of this canonical form to (E, A, B, C) quadruples : system (1) with an output equation y = Cx), Theorem 17. The invariants of the feedback canonical form are characterized by

sE c -A c =                                                                           s -α i 1 . . . . . . . . . 1 s -α i k ij k ij . . . s 1 . . . . . . . . . 1 s γ i γ i . . . s 1 . . . . . . s 1 σ i -1 σ i . . . s 1 . . . . . . s 1 ζ i ζ i -1 . . . 1 s . . . . . . . . . s 1 m i m i . . . 1 s . . . . . . 1 s n i n i -1 . . .                                                                           B c =                                                                          0 . . . 0 1 γ i . . . 0 . . . 0 1 n i . . .                                                                           Fig. 1. Feedback canonical form of (E, A, B) triple. V * X d A+BF ----------------------→ EV * X d     V * X d R * X d EV * X d ER * X d ||A+BF || V * X d R * X d ----------------------→ EV * X d ER * X d • 1 card{i/γ i ≥ µ}=dim V * X d ∩ T µ X d V * X d ∩ S µ-1 X d ∀µ ≥ 1 • card{i/σ i ≥ µ}=dim V * X d ∩ S µ-1 X d V * X d ∩ T µ-1 X d ∀µ ≥ 1 • card{i/ζ i ≥ µ}=dim S * X d ∩ V µ-2 X d S * X d ∩ V µ-1 X d ∀µ ≥ 2 card{i/ζ i ≥ 1}=dim X d AS * X d + ImB + ImE • card{i/m i = µ}=dim KerE ∩ V µ-1 X d KerE ∩ V µ X d ∀µ ≥ 1 • card{i/n i = µ} = dim KerE + E -1 (ImB) ∩ W µ-2 X d KerE + E -1 (ImB) ∩ V µ-1 X d ∀µ ≥ 2 card{i/n i = 1} = dim ImB ImB ∩ ImE 1 card{.} denote the "number of element of the set".
Note that these lists of invariants completely characterize the feedback canonical form. So to obtain it, one just has to compute the different steps of the algorithms ( 11), ( 12), (15) and then the above lists. One does not have to find the changes of bases and the state feedback that would lead to the canonical form.

STRUCTURAL CHARACTERIZATION OF THE PROPERTIES

Corollary 18. The system (1) is C-solvable if and only if card{i/ζ i ≥ 2} = 0 (16)

Proof. Note that the invariants ζ i = 1 are associated to blocks with one row without column. This corresponds to an empty row of the pencil sE c -A c and of the matrix B c . This is the characteristic of a redundant equation for (1). Note that card{i/ 

ζ i = 1} = dim (X eq )-rank [E A B]. If [E A B] is full row rank, card{i/ζ i = 1} = 0,
i ≥ 2} = card{i/ζ i ≥ 1} = 0 (see Corollary (5)).
In the most general case, the equivalent characterization of Corollary ( 4) is ( 16).

Corollary 19. The system (1) is

• C-solvable in the function sense • or with I w c = X d (weak-C-consistent initial condition) • or impulse controllable if and only if card{i/ζ i ≥ 2} = 0 card{i/m i ≥ 2} = 0 card{i/n i ≥ 2} = 0 (17) 
Proof. Once again, it is easy to check with each of the six block of the feedback canonical form that ( 5) is fulfilled if and only if the three conditions of ( 17) are.

To obtain an equivalent characterization of Theorem ( 6) one just has to add card{i/ζ i = 1} = 0.

The presence of possible jumps at the origin in the smooth trajectory x(t) solution of (1) corresponds here to the possible existence of invariant m i = 1; this will be clearer with the characterization of I c = X d (C-consistent initial condition) for which card{i/m i ≥ 1} = 0 (see Corollary 21).

Corollary 20. The system (1) is strong controllable (I w c = X d and "there exist an input such that the solution converges to zero in finite time with possible jump ") if and only if

The list of invariant factor is empty

card{i/ζ i ≥ 2} = 0 card{i/m i ≥ 2} = 0 card{i/n i ≥ 2} = 0 (18)
Proof. The geometric characterization of strong controllability (see Theorem ( 15

)) is R * X d + KerE = X d . Since R * X d
, is the domain of the blocks (sI -α j ) kij , γ i and σ i (see [START_REF] Lebret | Proportional and proportional -derivative canonical forms for descriptor systems with outputs[END_REF]) and since it is easy to identify KerE on the feedback canonical form, the structural characterization is easy to obtain.

Once again, the acceptance of jumps explains the presence of the invariants m i = 1. For other reasons (strong equivalence), these 1 × 1 blocks are also not excluded by [START_REF] Verghese | A generalized state-space for singular systems[END_REF] in their study of controllability of the case of regular systems. This explains that in accordance with their terminology, it was proposed in subsection 2.2 to call this controllability property strong controllability. Corollary 21. For the system (1),

I c = X d ( C-Consistent initial condition) if and only if card{i/ζ i ≥ 2} = 0 card{i/m i ≥ 1} = 0 card{i/n i ≥ 2} = 0 (19)
Remember that this is also the condition for a system to be strict [START_REF] Frankowska | On controllability and observability of implicit systems[END_REF]). The difference (AKerE) between ( 5) and ( 8) explains the disappearance of the invariants m i = 1. This is consistent with the property that for C-consistency initial conditions jump at the origin are not any more accepted in the trajectory solutions. Corollary 22. The system (1) is controllable (definition 12) if and only if

The list of invariant factor is empty

card{i/ζ i ≥ 2} = 0 card{i/m i ≥ 1} = 0 card{i/n i ≥ 2} = 0 (20)
The difference between Corollary (22) and Corollary (21) is the same as between Corollary (20) and Corollary (19). Strong controllability and controllability differ by the 1×1 blocks m i = 1.

One can verify that some of the above given characterizations appeared in [START_REF] Korotka | Controllability of non-square systems[END_REF]. Figure 2 gives a synthetic view of the inclusion subsets of descriptor systems depending on the above properties

• S is the set of all possible systems (1),

• S s is the set of C-solvable systems,

• S s-fct-sense is the set of C-solvable in the function sense systems, • S imp-ctrb is the set of impulse controllable systems, • S I w c is the set of systems such that I w c = X d , • S Ic is the set of systems such that I c = X d , • S strg-ctrb is the set of strongly controllable systems, • S ctrb is the set of controllable systems,

AN EXAMPLE

The following "force and position control of manipulators during constrained motion task" is fully described in [START_REF] Mills | Force and position control of manipulators during constrained motion tasks[END_REF] (also referenced in Loiseau andZagalak (2009) (p. 1190)). In Duan (2010) (p. 12), one can find a three-link planar version (three bodies, three actuators) in the (x,y) frame. The robot has to clean a surface defined by x = l, the end effector has to be perpendicular to this surface. In the very general case, one has to model the motion of the free robot (classical equations are here in the joint coordinates) one can easily found that it has just 5 invariants, γ 1 = 2, γ 2 = 2, σ 1 = 0, σ 2 = 0, n 1 = 3, n 2 = 3.

M θ ( θ) + C θ (θ, θ) + G θ (θ) = u θ + ∂ψ θ /
Since card{i/ζ i ≥ 2} = 0, the system is C-solvable. But since card{i/n i ≥ 2} = 2, the system is not C-solvable in the function sense or equivalently it is not impulse controllable (and consequently it is not strongly controllable and not controllable). This means that there exist some initial conditions for which there does not exist smooth input (u ∈ C m sm ) such that the state solution is smooth. In other words, for some initial conditions impulsive behavior is unavoidable. This statement confirms the result of Mills and Goldenberg (1989) (see (61) which says that "to exhibit no impulsive behavior, initial conditions should belong to a particular subset"; more development, here, would have shown that δx(0)=0 and δφ(0)=0 should be strictly respected. This statement also confirms the statement of [START_REF] Loiseau | On pole structure assignment in linear systems[END_REF]: "the impulse behavior of this system cannot be removed by state feedback".

CONCLUSION

Some properties of solvability, consistency of initial condition and controllability have been listed for continuous linear time invariant descriptor systems. For each of them the known definition and known characterizations in terms of a matrix pencil, space inclusions or geometric algorithms has been given. The new point here is the unified simple characterization which have been given in terms of the invariants of the feedback canonical form of (E, A, B) triple. An example taken from the literature illustrates the idea that for mechanical systems with constraints these characterizations can be obtained easily without numerical code to compute the canonical form or its invariants.

S

  Fig. 2. Inclusions based on the properties of descriptor systems.

  ∂θ.µ and adds the equation of the constraint function ψ θ = 0 In the three-link planar version θ ∈ R 3 and the Lagrangian multiplier which defined the generalized constraint force is µ ∈ R 2 . Note that in Cartesian coordinates defined by the position and orientation of the end effector (z = [x, y, φ]), the equations would have the same structure (1.25, 1.26 of Duan (2010)). One can linearize the model with the following working pointz wp = [ x wp =l y wp =cste 1 φ wp =0 ] T żwp = ẋwp =0 ẏwp =cste 2 φwp =0 T zwp = ẍwp =0 ÿwp =0 φwp =0 T µ wp = [ µ wp1 =cste 3 µ wp2 =0 ]T With the following state vector δz T δ żT δµ T T where δz = z-z wp , δµ = µ-µ wp , the linearized model is a descriptor system (M wp , S wp are invertible 3 × 3 matrices and F wp =

  and one can easily check with each of the six types of blocks of the feedback canonical form that rank [sE -A B]=n eq or equivalently [sE -A B] is right invertible if and only if card{i/ζ

• {s -α i } kij is the list of invariant factor of EV * X d / ER * X d A + BF V * X d /R * X d , the map induced in the quotient spaces V * X d /R * X d and EV * X d /ER * X d where F is such that (A + BF )V * X d ⊂ EV * X d
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