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9-NUMERICAL METHODS

Solution of Static Field Problems with Random
Domain:

D.H. Mac-®, S. Clénet?, J.C. Mipd, and O. Moredl
Y 2EP/Art et Métiers ParisTech, Lille, 59046 Lilledex-France
2L2EP/LAMEL/Art et Métiers ParisTech, 59046 Lilledex-France
%VALEO-Systémes Electriques, 94000 Créteil-France
LAMEL/EdF R&D, 92141 Clamart Cedex-France

Abstract — A method to solve stochastic partial differentialequations on random domains consists in using a ero one
random mapping function which transforms the random domain into a deterministic domain. With this mettod, the
randomness is then supported by the constitutive tationship of the material. In this paper, this mehod is applied in
electrokinetics in the case of scalar potential andector potential formulations. An example is treatd and the proposed
method is compared to a Non Intrusive Method basedn the remeshing of the random domains.

The electrokinetics problem with uncertainties dme t

I. INTRODUCTION behavior law defined in deterministic domain D &enwritten:
The finite element method (FEM) has been widelyduse _
solve the Maxwell equations leading to valuablelgofor divJ(x,0)=0
understanding and predicting the features of elewdignetic curl E(x,0)=0 1)
devices. 3(%.6) = o (x,0) [E(x6)

In several cases, the available input data are kneith a . . .
finite level of confidence. These uncertainties eaise for | N€ uncertainty on the behavior law is represeingdhe

instance from the aging of the materials or frorpémfiections fandom fieldo(x,0) , whered is the outcome belonging to the
of the manufacturing processes. Since the numenalels spaceQ. The current density and the electric fielé are then
are more and more accurate due to the improvemént aso random fields.

numerical methods (in 3D for example) and also thu¢he We assume that the domain D is bounded by the curfa
increasing of computer performances, some of thede=I,T [T ,where the boundary conditions are given by:
uncertainties can not be considered negligible @uoye. In J(x0)=0 onT

several works, a probabilistic approach using ramgtariables { ' ! (2)

is used in order to take into account these unicgda [1]. In E(x8)xn=0 onT, andr,

[2], methods to account for uncertainties on thetema Wwhere n is normal unit vector and the electromotive force
behavior were used to solve static field probleriswever, betweerl, andI'; is imposed td/ . Equation(1) can be solved
the case of uncertainties on the geometry is mesh $tudied. by either the scalar potential formulation or by thector

In [3], a method to solve differential equations ramdom potential formulation. If we denoteg(x,8) the scalar
domains based on a one to one random mapping émnctipotential that is a random field such that:

which transforms the random domain into a deterstimione E(x,6) = —grad¢(x,6) (3)

is proposed.

In this paper, we propose to use such approacholte &
static field problem with random dimensions. Fivgg present
the problem to solve in the case of random linestnalior
laws. Second, we show how a random domain probkembe
transformed into a random behavior law problem gisirone J'grad‘qb(xﬂ) r(x,60)gradA(x).dQ (x)= 0 (5)
to one random mapping. Then, methods, proposechén t D
literature to treat the case of random materialapin laws, Whered(x)is a scalar test function that is equal to zero on
can be applied to solve the problem with randomedsion . andr,. In FEM, to approximate the scalar potential, noda
suc_:h as the projection method th"."t is shortly m Finally, shape functions are commonly used. This problem lman
to |IIustrat_e thg method,_a numerical ex*’?‘mp'e espnted and studied using Monte Carlo Simulation Method (MCSM)

a comparison is done with a Non Intrusive Methoselolaon a that is a very reliable method but very time conisigm
remeshing procedure. Alternative methods can also be used that weraestud [1],
[2] and [5]: Spectral Stochastic Finite Element Mt

Il. PROBLEM WITH UNCERTAINTIES ON THE BEHAVIOR LAW (SSFEM) and Non-Intrusive Method (NIM). SSFEM andVN

In this part, we will recall shortly how uncertdes on the consist in projecting the field ¢(x,8) on space

behavior law can be taken into account. K(D,Q)=S(D)0 HQ ) where S(D) is the space spanned by

Equation (1) can be written:
div(o(x,6) grad¢(x,8)) =0 4)
The weak formulation becomes:
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the set of nodal shape functiol(g) (see section Il) andi (Q)
is spanned by a set of orthogonal polynomifit(6)} (the
polynomial chaos) [7]. The main difference betw&SFEM
and NIM is that with SSFEM, the projectig(x,d) is
undertaken directly onK(D,Q)=S(D)O HQ ) while with
NIM, ¢(x,8) is firstly projected onS(D) and after o (Q) .

Ill. PROBLEM WITH UNCERTAINTIES ON GEOMETRY

With SSFEM, MCSM and NIM, one difficulty in the easf
random domains compared to the case of random lmeHaw
is that, a priori, geometric variation leads to aedification of
the mesh. Since the boundaries of the domain a@om so
does the position of the nodes located on that denyn The

approximated inT(D)O HQ ) with T(D) the edge element
space.

To solve the new problem given by (6) or (8), metho
presented in section Il can be used. One can hatetd use
one of these methods, a one to one random mappitgidn
has to be defined.

IV. NUMERICAL APPLICATION

We focus now on the electrokinetic problem defined
random domain O¥) presented in Fig. 2. It is a cubic domain
D, with a conductivityo, = 1 Q.m)*with an edge length (2a =
4m). This domain holds another cube; With random
dimensions ¢ I, I;) with a conductivitys, = 10 @.m)%.The

shape functionsi(x,6) associated to these nodes becom@mensions |B), 1(8) and L(®) are independent uniform
random fields. The spacgD) is no longer independent of fandom variables in the interval [1;1.5](m). On tepposite

H(9), therefore with SSFEM, the random scalar potenti&@ides of the domain{an electromotive force V = 4 (Volt) is
#(x,8) can not be directly approximated by the projectioRrescribed. Since the dimensions afdde random so does the

inK(D,Q)=S(D)0 HR ). To overcome that difficulty, an idea

based on a one to one random mapping function that

transforms the random domain to a deterministic alons
proposed in [3]. We will transpose that approach
electrokinetics.

in

power. The aim is to calculate the powert)Vdissipated in
the domain Df). The power is approximated by:

W)= wH (@) ©

where H(0) is the multi-dimensional orthogonal Legendre

Let consider a domain BY with random boundaries and letPolynomials and wa real coefficient. To calculate these
suppose that it exists a one to one random mappifgefficients, we use a NIM that is based on a tme

X = X(8, X) which transforms the random domainélpto a
reference domaik for each outcom8 (see fig.1).

X=X (x,6)
—

Fig. 1. Transformation method

Thus, applying the random mapping, the weak fortrana
(5) written on D can be written on E and becomes:
MY(X,0).0(X).M(X,0)
d'¢(X,0
Jorad g O et x 0

gradA(X)dX=0 (6)

where M is the Jacobian matrix of the mapping. ¢f denote
the conductivity tensor:
M*'(X,0) [&r(X) IM( X, 0)
|det(M(X ,0)|
the problem with uncertain dimensions on the doniioan
be considered equivalent to a problem with uncetits on a
modified behavior law with a conductivitg'(X,8) on the
reference domain E. In a similar way, the prob(éjcan be
solved using a vector potential formulation writihg curl T
with T the vector potential.
problem is then:
qurI‘(T(X,e)) [’ (X,0) [Turl (@(X))@X=0 (8)
E

o'(X,0) = ()

with w(X) is test function ands’(X,0) is inverse matrix of
conductivity tensore’(X,6). The vector potential can be

The weak formulation of the

method [2]. The coefficients are given by:
_ E[W(B)EHi (9)]
E[H’(©)]

where E[X0)] is the expectation of the random variablé)X(
The calculation of the denominator can be doneyénally
whereas the calculation of the numerator can jestdbne
numerically using a quadrature method. For the riacke
method, we consider several specific realizatiofisthe
random dimensiong(B), 1,(8) and (8). For each realization
we solve the problem (6) on the reference domaapjying
random mapping that will be describe below. The
conductivities on each sub-domain &nd D are reevaluated
using (7) for each point of quadrature. The calitais
undertaken on a unique mesh of the reference doEaimly
the conductivity distribution changes from a quad@ point
to another.

In an opposite way, with a remeshing method (nopimeapis
required), to each quadrature point which corredpda a new
geometry, the problem (5) is solved with a new mesh

(10)

2a
< >
2a 1 N
g 2l;
2 4 < ' 2ar v
F:g=0——p & 219 =
' u «—
213 Dio1
M A\
D262

Fig. 2. Electro-kinetic system
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In the following, we will detail the definition dhe random
mapping. Because of the symmetry of the device,car
divide the domain O§) into 8 identical sub-domains M)
where the problem will be studied.

We define the random mapping X = Xgxthat transforms
the domain D’ into a domain E with= [,=I3= 1m.

D'(6)

For example, for the transformation of the subdonfi, into

the sub-domain Ewith dimensions 0.5a x 0.5a x 0.5a we have

the following Jacobian matrix (cf Fig. 3):

~

X=X(x, 0)

[~

A

3
Y134

<

> k|,

»

_a 0
200,
- _a
M. = 20a-1,) (13)
0 _a
20a-1,) |

Therefore, the equivalent conductivity of this sldmmain

can be written under the form:

Iy
Fig. 3. The transformation X
We divide the domain D’ and E into several sub-dosa
D’; and E (8i>1) (Fig. 4). The mapping will be defined for
each sub-domain Pby a linear transformation (dilation)
which is presented in Fig. 5.

Fig. 4. Division of the random domain E

2@-L)a-k) 0
afl,
— 2'1(3-_'3)
o. =0, ala-L) (14)
0 2,a-1,)
| alfa-1l) |

Finally, the initial weak formulation which was W&n on
D(6) under the form:

i j grad'g(x,0) [, (¥) [oradA(x0) [@x=0  (15)

i=1 D!
can be written using the mapping on E:

8
Z I grad'¢(X,6) o (X,0) [gradA(X)[@X=0 (16)
i=1 E‘
The same approach can be used to solve the vemtemtal
formulation.

X3

X2

X1

L &

X =X(x,0)

X3

—

bs
v

A

4

<

o7

Fig.5. The linear dilation

The linear dilation which transforms a cube of disiens
X & X g into a cube of dimensiong b b, x b; is:

Lbl

X2

h 0 O
Xy 2 X
X,|=]0 b, 0| x|+C (11)
X % X
3
0 O b
& |

For the expression(9), we use an expansion of eradithe

multivariate Legendre polynomials. A tensorial Ledee
Gauss quadrature method is used to calculate tbificients
of the polynomial expansions®# 64 points are calculated).
The quadrature points are then given by the rodtshe
Legendre polynomial of order 4. The domain E haenbe
meshed with 316 tetrahedra (Fig. 6).

which C is a constant vector linking the positions of the
centers of the cubes. We obtain the Jacobian mafritis

transformation:

By oo
a
M=o 2 o (12)
a,
0o o 2
L 8, |

Fig. 6. Mesh of 316 elements

The MCSM has been also used. In that case, a diomsns
sample of size 100004(ll,, I5) is determined using a random
number generator. For each realization, the prolitesolved
using the FEM coupling with the random mapping. yé¢ at
the end a sample of power values of size 10000 sTdtestical
moments are then estimated.
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The statistical moments obtained with the NIM ame t
MCSM by using the scalar potential formulation eeported
in the Table I. We notice that the NIM gives stita
moments that belong to the 95% confidence intevahined
with the MCSM. The expansion (9) enables to obtziod
results and much faster than the MCSM.

TABLE 1
MONTECARLO SIMULATION METHOD COMPARED WITH NON-
INTRUSIVE METHOD

Monte Carlo method Non-intrusive method
Information (95% confidence interval)
Power (W) Power (W)

Mean [28.86 : 28.99] 28.91
gta."d."’“d [3.34 :3.42] 3.38

eviation
Skewnes [0.43:0.56 0.4¢
Kurtosis [2.40:2.69 2.5¢

A remeshing method can also be used to approxithate
expansion (9) of the power B)( In fact, for each point of
guadrature, a new mesh is generated directly oddahgain D
and the problem is solved using both potential fdations.
With the mapping method, the geometry and the nalestit
change whereas with the remeshing method, the ctinifies
in the subdomains don’t change. With the mappinthot we

use four meshes with M1=228, M2=1729, M3=2951, and

M4=6825 elements. With the remeshing method, itoaim
impossible to keep the number of elements constant the
geometry changes from a quadrature point to andibeme

try to keep this number approximately constant.

Finally, solving the problem with the two methodsing
both potential formulations leads to four expansiai the
power. From each expansion, we can easily deterrfiae
mean and the standard deviation. In the Fig. 7Fgd8, we
give for the different meshes (Mi, i =1 to 4), tbeolution of
the mean and of the standard deviation. First wesege that
the scalar potential formulation gives a mean & fower
greater than the one given by the vector potefdaiahulation.
This property can be deduced from the energy bquaperty
observed in the static electromagnetism in the rowtéstic
case [6]. The exact solution is in between theltegiven by
both formulations. The smaller the gap is betweathb
potential formulations, the more accurate the nicaemodel.
We can see that the gap is a decreasing functitimeeaiumber
of elements and also that the gap is smaller ighnhapping
method than with the remeshing method. This remarkalso
be done in the case of the standard deviation.

Since the mesh is modified from a quadrature ptint
another with the remeshing method, it appears alitiadal
noise on the output of the model (the powerBY)N( This
additional noise increases the numerical error. ddeer, the
mapping method is less time consuming since tren® ineed
to remesh.

V. CONCLUSION

We have presented a method to solve a static fieddlem
with uncertainties on the geometric dimensions.sThiethod
consists in using a random mapping that enablésnsfer the

randomness on the behavior law. We compare thisadetn
an academic example with a method that consisisnieshing
the domain. The results obtained show that the imgpp
method seems to be more accurate and less timeiroomgs
The key point of the mapping method is the deteatiom of
the transformation that can’'t always be determimedily.
Methods to determine these mappings are proposettiein
literature but need to be compared.

30 -8 Transformation-Scalar potential
Transformation-Vector potential
29 - -%:Remesh-Scalar potential
g I NGl ) Remesh-Vector potential
= | e
>
— 28’ Q_ _____o 7
s | Ay
P o—" g
= 27+ i
1 1 1 1
1 2 3 4
Mesh
Fig. 7. Mean value of the Power Bypbtained by different methods
-5 Transformation-Scalar potential
Transformation-Vector potential
o 3.6r ) )
p= =% Remeshing-Scalar potential
g x"~~.~~ * Remeshing-Vector potential
s ~3e
(5}
=
- 3.2r ]
©
=]
o
i
(%)
2.8r .
1 1 1 1
1 2 3 4
Mesh

Fig. 8. Standard deviation of the PowerB)Vpbtained by different methods
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