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I. INTRODUCTION 

The numerical resolution of the Maxwell equations enables 
the development of accurate models of electromagnetic 
systems. To solve numerically these partial differential 
equations, the Finite Elements Method (FEM) has been widely 
used. In several cases, the available input data are known with 
a finite level of confidence. These uncertainties can arise for 
instance from the aging of the materials or from imperfections 
of the manufacturing processes. Since the numerical models 
are more and more accurate due to the improvement of 
numerical methods (in 3D for example) and also due to the 
increase in computer performances, some of these 
uncertainties cannot be considered negligible any more. In 
several works, a probabilistic approach using random variables 
is used in order to take into account these uncertainties [1]. 
Methods have been presented in the literature to take into 
account the uncertainties on the behavior law [2], [3]. 
However, the case of uncertainties on the geometry is much 
less studied. In [4] one method which transforms the problem 
with uncertainties on the geometry into a problem with 
uncertainties on the behavior law is proposed. The challenge 
of this method is how to determine an efficient one to one 
random mapping that transforms the random domain into a 
deterministic domain.   

In this paper, a comparison between two methods to 
calculate the random mapping is proposed. One is based on the 
resolution of the Laplace equations. The second is based on a 
geometric transformation. First, we present briefly the 
transformation method and we will show how the problem 
with uncertainties on the geometry can be transformed into a 
problem with uncertainties on the behavior law using a random 
mapping.  Second, we will detail the two methods proposed to 
determine the random mapping addressed above. Finally, these 
two methods are compared on a stochastic magnetostatic 
example. 

II.  TRANSFORMATION METHOD  

In this part, we will recall briefly the transformation method 
[5] used to solve electromagnetic problems with random 
domains.  

The stochastic magnetostatic problem on a domain D(�)  
with random inner interfaces or boundaries can be written:  
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where �, the outcome, refers to randomness of the problem. 
The uncertainties on the geometry can be taken into account by 
random interfaces �k(�) between two sub-domains Di and Dj. 
The permeability � depends on the position x and also on the 
outcome �. Actually, for a point x located close to a random 
interface �k(�), the value of the permeability depends on which 
side of �k(�) the point x belongs to. Therefore, the magnetic 
field H and the magnetic flux density B are also random fields. 

We assume that the domain D(�)  is bounded by the surface 

1 2 3Γ = Γ ∪ Γ ∪ Γ on which the boundary conditions are given 

by:  
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where n is normal unit vector. The magnetomotive force �0 

between �2(�) and �3(�)  is imposed. This problem can be 
solved by using either the scalar or the vector potential 
formulation. In the following, the scalar potential formulation 
will be developed. If we denote ( , )�Ω x  the scalar potential 

that is a random field such that: 
 ( , ) ( , )H � �= − Ωx xgrad  (3) 

equation (1) can be written:   
 ( ( , ) ( , )) 0div � �x xΩ =gradµµµµ  (4) 

We obtain the weak formulation:   
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where ( , )xλ θθθθ is a scalar test function that is equal to zero on 

2Γ and 3Γ and the superscript t indicates the transpose of a 

matrix. In [5] we show that if there exists a one to one random 
mapping ( , )�=X X x which transforms the random domain 

D(θ) to a reference domain E for each outcome θθθθ, the weak 
formulation (5) written on D can be written on E: 
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t

E
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where we have introduced the permeability tensor µµµµ’(X,θθθθ): 
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with M(X,θθθθ) is the Jacobian matrix of the random mapping. 
The initial problem (1) with uncertain dimensions on the 
domain D is equivalent to a problem with uncertainties on a 
modified behavior law (permeability �’ (X,θθθθ)) on the 
deterministic reference domain E. To solve this problem, one 
can use either intrusive methods (SSFEM) or non intrusive 
methods (NIM) [2], [3]. In this paper, a non intrusive method - 
projection method [2] - has been used and will be briefly 
presented in the following.  
 We are interested in calculating an output random variable 
W(�) (energy stored in D for example). This random variable 
is approximated by:   
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where {Hi(�)}, i=1,N a given orthogonal polynomial set 
(polynomial chaos) [6] and wi a real coefficient that is 
determined by the projection method:  
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where E[X(�)] is the expectation of the random variable X(�). 
The calculation of the denominator can be done analytically 
whereas the calculation of the numerator can only be done 
numerically using a quadrature method. For the quadrature 
method, we consider several specific realizations (quadrature 
points �q) of the random variable W(�) that corresponds to 
different deterministic geometries.  

One can use the classical remeshing method (no mapping is 
required): for each quadrature point corresponding to a new 
geometry, the problem (5) is solved with a new mesh. This 
method is very time consuming. With the transformation 
method, we solve the problem (6) on the reference domain E. 
The permeability is revaluated using (7) for each quadrature 
point. The calculation is undertaken on a unique mesh of the 
reference domain E, only the permeability distribution changes 
from a quadrature point to another. The difficulty is now how 
to determine the random mapping addressed above. In the 
following, we will discuss  this aspect.    

III.  RANDOM MAPPING DETERMINATION 

In the following, for simplicity, we will focus on the 2D 
case but an extension to 3D can be easily implemented. We 
consider a random domain D(�) which can be divided into n 
subdomains Di(�) (i=1,n) where the permeability is assumed to 
be constant. Each subdomain Di(�) is bounded by the random 
interface �Di(c,�) where c is the curvilinear coordinate. The 
random domain D(�) will be transformed by a one to one 
random mapping into a deterministic reference domain E. This 
reference domain is also divided into n subdomains Ei 
bounded by �Ei(c) (Fig. 1). This random mapping K (�)  is 
completely defined when n one to one random mappings 
K i(�) transforming Di(�) into Ei are determined. One 
constraint is that the common interface Dj DkΓ ∩ Γ  between two 

subdomains Dj(�) and Dk(�)  must be transformed into a same 
surface by K j(�) and by K k(�). The one to one random 
mapping transforming �Di(c,�) into �Ei(c) can be defined by 
following steps: 

 Di P P P EiP (c, c c c P (c�) )′ ′∈ Γ → → = → ∈Γ  (10) 

where cP and cP’ are the curvilinear coordinates of the points P 
and P’ on the interface �Di(c,�) and �Ei(c) respectively. The 
equality between the curvilinear coordinates cp’ and cp 
establishes a link between the boundaries of Ei and Di(�) that 
is required to calculate the transformation K j(�).   

 
Fig. 1. Random mapping 

We define K -1
i(�) the random mapping that transforms the 

domain Ei into the random domain Di(�). In the following, 
since it is easier to determine the random mapping K -1

i(�) than 
K i(�), we will detail the calculation of K -1

i(�). The Jacobian 
matrix Mi(X,θθθθ) of K i(�) is obtained easily by inverting the 
Jacobian matrix of K -1

i(�). We detail now two methods to 
determine this random mapping K -1

i(�). 

A. Laplace equations method  

This method was proposed by D. Xiu and D. Tartakovsky in 
[4]. The random mapping: 
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is determined by solving the Laplace equations:   
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inside Ei and satisfying the following boundary conditions: 
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These boundary conditions enable the random mapping K -1
i(�) 

that transforms the boundary �Ei(c) of Ei into the boundary 
�Di(c,�) of Di(�) to be imposed (see (10)). In [4] stochastic 
differential equations (12) and (13) are rewritten as several 
deterministic differential equations by decomposing f, g, xP 
and yP under an expansion of M mutually uncorrelated random 
variables Ai(�), for example with xp and f : 
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Equations (12) and (13) yield M deterministic equations: 
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inside Ei with the following boundary conditions: 
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A collocation method based on an approximation of fj and gj 
by a Tchebychev polynomial expansion is proposed to solve 
these deterministic differential equations: 
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where Tk (X,Y) is a Tchebychev polynomial of order k. ak and 
bk are scalar coefficients that we have to determine.  

The modeling of the boundary under the form (14) is not 
necessarily obvious. With the NIM method, it is not required 
to know K -1

i(�) for all outcomes � but only for the N 
quadrature points θθθθq (see section II). Therefore we are 
interested only in the solution of  (12) and (13) for N given 
realizations θθθθq. Equation (12) and (13) now become 
deterministic equations. The collocation method based on an 
approximation of f and g by a Tchebychev polynomial 
expansion (17) could be directly applied here.  

B. Geometric transformation method  

We aim at finding for each point, Q’, located inside the 
domain Ei its transformation point, Q, in the domain Di. For 
this task, we consider that the domain Ei is composed of a set 
S(Ei) of uncountable segments (straight or curved). The 
intersection point- if it exists- of two segments is located only 
at one of their end points (the point O’ in the Fig. 1). Except 
this point, all other points Q’ located inside domain Ei belong 
to only one segment of S(Ei). This constraint yields a one to 
one mapping K -1

i(�). The domain Di is also divided in the 
same way. K -1

i(�) is determined now by the one to one 
mapping defined onto S(Ei) to S(Di). The domain Di(�) in Fig. 
1 is divided by a set of segments OP(c,�) and Ei by a set of 
O’P’(c) where O is a fixed point located inside Di and O’ 
inside Ei. The image OP under K -1

i(�) of O’P’ is obtained by 
giving the same curvilinear coordinates c for P and P’(see (10)
). Consider a point Q’ inside Ei. There exists one O’P’ that Q’ 
belongs to. The image Q of Q’ under K -1

i(�) is located on OP 
and defined by:  
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There are obviously several ways to divide a domain into a set 
of uncountable segments. The best choice is the one that gives 
the smoothest mapping and it depends on the actual geometry 
of the system studied. The use of a fixed point O and O’ is not 
mandatory as we will see in the application (see IV). 
   With this method, it seems difficult to obtain an analytical 
form of K -1

i(�) and therefore, the Jacobian matrix can not be 
calculated explicitly. Each component of the Jacobian matrix 
at a point (X0,Y0,�q) is calculated numerically using a finite 
difference scheme where the mapping is calculated at 
(X0,Y0,�q) and (X0+� X0 ,Y0+� Y0 ,�q). 
 The main advantage of the transformation method compared 
to a method, based on the remeshing of each new geometry, is 

that it doesn’t modify the connectivity between nodes. The 
connectivity modification adds additional variability on the 
output data. Moreover, additional data processing (mesh 
calculation) of the remeshing method is required which 
increases the time of calculation.  

IV.  NUMERICAL  APPLICATION 

We consider now a magnetostatic problem defined in a 
random domain D(θ) presented in Fig. 2. The domain is 
divided in 4 areas Di, i=1,4 with relative permeability �1 = �2 = 
�3 =1000 and �4 = 1. We impose a magnetomotive force � = 
2A between �1 and �2 and B.n = 0 on the remaining boundary 
[8], [9]. The uncertain dimensions (Fig. 2) are modeled  by the 
uniform independent random variables r(θθθθ), r1(θθθθ), r2(θθθθ), x0(θθθθ), 
y0(θθθθ) where r and x0, y0 are the radius and the position of the 
disk D3, r1 and r2 are the radius of the inside surface of the two 
teeth fronting of disk D3. The information of uniform 
independent random variables r(θθθθ), r1(θθθθ), r2(θθθθ), x0(θθθθ), y0(θθθθ) is 
given by the Table I. The aim is to calculate the energy W(�) 
stored in the domain D(�).  

 
Fig. 2.  Magnetostatic system 

In the following, we will detail the determination of the 
mapping for one quadrature point �q (section II) for each 
method A (section III.A) and B (section III.B). We take the 
reference domain E with the following dimensions: r1=R1, 
r2=R2, r=R, x0=X0, y0=Y0 which are the mean values of these 
random variables (see Table I). The first step consists in 
dividing efficiently the reference domain E into several 
subdomains Ei. The domain decomposition for this problem is 
presented in Fig. 3.  

 
Fig. 3.  Division of domain E and the mapping defined by the method A 

We focus on a random mapping that transforms the 
subdomain E1 corresponding to r1=R1 (domain bounded by N-
F-G-P in Fig. 3) into subdomain D1 corresponding to the 
outcome θθθθq with r1=R1’. 
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For the method A, the mapping is obtained by solving 
equations (12) and (13) with the outcome θθθθq corresponding to 
r1=R’1. We take q1=q2=14 for (17). To calculate the 
coefficients ak and bk in (17), we have to choose 15 collocation 
points to obtain a non singular linear equation system (Fig. 3). 
The interior points (square points) satisfy (12) and the 
boundary points (round points) satisfy (13) providing that the 
relationship between P located on the boundary of D1 and P’ 
located on the boundary of E1 is determined by (10). 

 
Fig. 4.  The mapping based on the method B 

For the method B, domain E1 and D1 can be considered as a 
set of straight parallel segments P1’P2’ and P1P2 respectively. 
The curvilinear coordinate used here is the distance h with the 
left vertical side GP of E1 (Fig.1 and Fig. 4). The 
transformation Q’ into Q is defined by the following 
relationship: 
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 TABLE I 
INPUT DATA INFOMATIONS 

 r(cm) r1(cm) r2(cm) x0 (cm) y0(cm) 
 Lower bound 49.97 50.27 50.27 -0.003 -0.003 
Upper bound 50.03 50.33 50.33 0.003 0.003 
Mean value 50 50.3 50.3 0 0 

 
In Table II, we present the mean value and the standard 

deviation of the energy W(�) stored in the domain D(�) 
obtained by two method A and B using the scalar potential and 
the vector potential formulations [7]. A mesh of 4700 nodes 
has been used. In this magnetostatic problem the numerical 
error can be evaluated by the gap between the mean value of 
energy obtained by scalar potential and vector potential 
formulations [7]. We can notice that the errors obtained by two 
methods are relatively small and almost the same. This means 
that the choice of either method A or method B has few 
influences on the result. The main advantage of random 
mapping determined by method A is that it can be 
programmed systematically. However, this method has some 
drawbacks. It requires a numerical resolution of (12) and (13) 
where some numerical error can be generated. Therefore, the 
random mapping does not transform exactly Ei into Di. 
Moreover, a common interface between two subdomains Dj(�) 
and Dk(�)  can not be exactly transformed into a same surface 
by K j(�) and by K k(�). Furthermore, with non convex 
domains, it is possible that this mapping transforms the point 
P’ located inside Ei into a point P outside Di. This yields 
significant numerical error on the output. The geometric 
transformation (method B) can avoid the drawbacks of method 

A. It should be mentioned that for domains with complex 
geometries, it is possible to divide the domain into elementary 
subdomains (CAD tools naturally provide this decomposition) 
on which the method B can be applied to each of them. 
Finally, in our example with a mesh of 4700 nodes, the method 
B is faster than the method A with a time calculation ratio of 
about 2. However, we should mention that in the method B, an 
infinity of geometric transformations give the same solution in 
the continuous domain but not in the discrete domain. In fact, 
it can be shown that the numerical error strongly depends on 
the choice of the geometric transformation. Criteria should be 
defined in order to determine the transformation that 
introduces the smallest numerical error.  

TABLE II 
METHOD A COMPARED WITH METHOD B 

Method A Method B 
Information 

Scalar 
formulation 

Vector 
formulation 

Scalar 
formulation 

Vector 
formulation 

Mean  value 138.98 134.31 138.97 134.31 

Standard 
deviation 

9.25 8.83 9.22 8.82 

 

V. CONCLUSION 

We have presented and compared two methods to determine 
the random mapping used to solve the problem with random 
domain. The example presented above shows that the results 
obtained by the two methods are almost the same. However the 
method B is  simpler to implement and less time consuming. 
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