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ABSTRACT 
 

In this paper we present the development of the macroscopic model describing 
the hydro-mechanical coupling of damaged porous media containing cracks or/and 
vugs, by using the asymptotic expansion method. The analysis starts at the 
mesoscopic scale at which we assume a generic microstructure and the validity of the 
Biot model in the micro-porous domain saturated by a fluid. In the crack/vug domain 
the Stokes equation is assumed. After estimation of orders of magnitude of different 
terms, the description is rendered non-dimensional and the homogenization process is 
carried out. It leads to an extended Biot model that possesses the same mathematical 
structure as the initial Biot model. However, the macroscopic poro-elasticity and the 
macroscopic Darcy conductivity are modified. In order to illustrate the performance 
of the model, numerical computations of a macroscopic boundary value problem were 
performed. The results show practical importance of modifications introduced in the 
Biot model. 
 
INTRODUCTION 
 

Natural or damaged geomaterials (soils, rocks or cement-based materials) 
contain very often cracks and/or vugs. In such cases the classical Biot model cannot 
be directly applied, since it was initially developed for single porosity homogeneous 
materials (Biot, 1941) In this paper we present the macroscopic model describing the 
hydro-mechanical behaviour of such class of geomaterials which was obtained by 
using the asymptotic expansion method. An elastic porous material with isolated 
cracks and/or vugs that are periodically distributed in the whole medium, is 
considered. The porous material is completely saturated by an incompressible fluid 
(example: water). 
 
 
 
 



MESOSCOPIC PROBLEM 
 
The analysis starts at the mesoscopic scale (the crack/vug scale) at which we assume a 
generic microstructure, Figure 1, and the validity of the Biot model in the micro-
porous domain (matrix) saturated by a fluid. In the crack/vug domain occupied 
exclusively by fluid, the Stokes equation is assumed. The description is completed by 
the continuity conditions on the boundary between the porous medium and the 
crack(vug).  
 

 
Figure 1 Microstructue of a porous medium with a crack (vug) 

 
The dimensioless mesoscopic problem is formulated by Equations (1)-(11) 
(Lewandowska and Auriault, 2012): 
 
In the microporous domain: 
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where: mσ is the total stress, sσ is the solid partial stress,pp is the water pore 

pressure in the microporous matrix,pv is the average pore water velocity, su is the 

displacement, )(e s
x u is the deformation tensor, c is the elastic tensor, pφ is the 

porosity in the microporosity domain, µ is water dynamic viscosity and x is the non-



dimensional space variable (x=X/L).  For simplicity, the Biot tensor αααα  and the 
conductivity tensor K are assumed isotropic.   
 
In the crack (vug) domain: 
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where: cv is the fluid velocity, cp is the water pressure in the crack (vug), )v(e c
x is 

the rate of deformation tensor, ε <<1 is the homogenization parameter. The 

coefficient 4ε in Equation (6) results from estimations of orders of magnitude of 
different terms appearing in the description (Lewandowska and Auriault, 2012): 
 
At the microporous-crack (vug) interface: 
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where:  n is the unit normal vector which is exterior to mΩ . 

 
 
MACROSCOPIC PROBLEM 
 
By following the asymptotic expansions method (Sanchez-Palencia, 1980), we look 
for the unknown quantities in the form 
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where ε/xy =  and all the terms t)()i( y,x,ϕ  are y-periodic. Then, we introduce the 
expansions (11) into the problem (1)-(10) and equal the terms appearing at successive 
orders of ε . After the analysis of each problem we obtain the macroscopic description 
in the form (12)-(18) (Lewandowska & Auriault, 2012]: 
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macroscopic stress. The macroscopic tensors 
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ijα are defined as the volume 

averages over the period as follows: 
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cϕ is the volumetric fraction of cracks (vugs) in the period. The symbol <. > stands 

for the volume average. 
 
The macroscopic Darcy law is derived in the form: 
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where the macroscopic water conductivity is defined as the surface average 
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Finally, the macroscopic mass balance equation takes the form: 
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where the second macroscopic Biot parameter 
effβ is given by Eq. (19) (after 

correction of the exponent of (1-α ) ) 
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Note that the vectors ηξ , and τ are solutions of local boundary value problems in the 
period (see Lewandowska & Auriault, 2012).  
 
It can be seen that the macroscopic problem (11)-(18) presents the same form as the 
classical Biot model. However, the macroscopic parameters are modified  due to the 
damage of the porous medium. 
 
 



NUMERICAL EXAMPLE 
 
Let us consider a periodic porous medium with a period 1�1 which contains circular 
vug of diameter 0.4 in the center. The local (mesoscopic) parameters of the porous 
medium are: Young modulus E = 1GPa, Poisson ratio ν =0.3, porosity n=0.126, Biot 
parameters: α =0.334 and β =0.218 GPa-1. The numerical solutions of the local 
boundary value problems (see Lewandowska & Auriault, 2012) give the following 
values of the macroscopic Biot parameters of the damaged porous medium: 

5560= .effα and 3360= .effβ . 
 
Macroscopic boundary value problem 
 
We solve a macroscopic boundary value problem for the geometry presented in Figure 
2. The example was inspired by water pumping problem solved in (Leak and Hsiek, 
1997). Our example concerns water injection into the layer 2. The aim of the 
computations is to investigate the influence of the parameters of the layer 2 for which 
two sets of parameters were assumed: i) case 1: without damage (without vugs) and 
ii) case 2: with damage (with vugs). The layers 1 and 3 have the same mechanical and 
hydraulic parameters. All data are collected in Table 1. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 2. Definition of the macroscopic problem. 
 
The extended Biot problem (Equations 13-16-18) was solved in domain 
ABCDEFGHIJ with the following boundary conditions: 
 
Hydraulic problem: 
- Impervious boundary: DE, EF, FG, BC, GH, HI. 
- Constant hydraulic charge H = 0: AB, AJ, IJ. 
- Time dependent hydraulic charge: H(t)= +6 (m/year)�t 
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Mechanical problem: 
- Zero displacement boundary u = v = 0: DE, EF, FG. 
- Free of charge boundary: AJ 
- Symmetry condition  u = 0: AB, BC, CD, GH, HI, IJ. 
 
 
Table 1. Physical parameters of the layers. 
                

Quantity 
 

Layers 1 and 3 
 

Layer 2 
 

 
Hydraulic conductivity 
Young modulus 
Poisson ratio 
Biot parameters 
 
 
 
 
 
 

 
2.89�10-4 m/s 

800 MPa 
0.25 

α  = 1 
β  = 1.02�10-10 Pa-1 

 
1.16�10-7 m/s 

80 MPa 
0.25 

Case 1: 
         α  = 0.334 
         β  = 2.73�10-9 Pa-1 

Case 2: 
         α  = 0.556 
         β  = 4.12�10-9 Pa-1 
 

 
Results 
 
The problem was solved twice (Case 1 and Case 2). In Figure 3 hydraulic head, 
velocity streamlines and mechanical deformation after water injection for Case 2, are 
shown. A similar general behaviour is observed in Case 1. We can see ground heave 
(vertical displacement in the upward direction) at the surface.  

 
Figure 3. Hydraulic head, velocity streamlines and mechanical deformation after 
water injection for Case 2. 



 
Figure 4 shows the heave of the ground surface at different time in two cases in Cases 
1 and 2. As expected, Case 2 leads to higher values of the heave with respect to Case 
1. It proves that material damage is responsible for greater deformations. 
 
a) 

 
b) 

 
 
Figure 4. Heave of the ground surface for different times (from 1 to 10 years): a) 
Case 1, b) Case 2. 
 
In Figure 5 strains in the horizontal direction at the soil surface for different times 
(from 1 to 10 years) in Case 1 and Case 2, are presented. It can be seen that the 
maximum extension (positive) as well as the maximum compression strains 
(negative) are greater in Case 2 than in Case 1. Even though the volumetric fraction 



of cracks (vugs) is only 0.126, there is a factor 2 between the maximum values of 
strains. It clearly demonstrates the impact of damage of porous material on its hydro-
mechanical behaviour.  
 
a) 
 

 
b) 
 

 
Figure 5. Strains in the horizontal direction at the soil surface at different times 
(from 1 to 10 years):  a) Case 1, b) Case 2. 
 
 
 



CONCLUSIONS 
 
This paper presents the extension of the Biot model to the case of damaged porous 
material, containing isolated cracks or/and vugs. The model was obtained by using the 
method of asymptotic expansions. It was shown that the corrections of effective 
parameters of the Biot original model are necessary. The numerical computations of a 
particular boundary value problem show the quantitative influence of cracks (vugs) 
present in the microstructure on the macroscopic hydro-mechanical behaviour of the 
medium.  
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