N

N

Hydro-mechanical coupling in damaged porous media
containing isolated cracks or/and vugs: model and
computations

Jolanta Lewandowska, Jean-Louis Auriault

» To cite this version:

Jolanta Lewandowska, Jean-Louis Auriault. Hydro-mechanical coupling in damaged porous media
containing isolated cracks or/and vugs: model and computations. Poromechanics V, 2013, pp.1955-
1963. 10.1061/9780784412992.231 . hal-00856986

HAL Id: hal-00856986
https://hal.science/hal-00856986

Submitted on 2 Sep 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00856986
https://hal.archives-ouvertes.fr

Hydro-Mechanical Coupling in Damaged Porous M edia Containing
Isolated Cracks or/and Vugs: Model and Computations

J. LewandowsKaand J.-L. Auriauft

! aboratory of Mechanics and Civil Engineering (LM @niversity Montpellier 2,
CC 048, Place Eugene Bataillon, 34095 Montpellestex 5, France, PH (+33) 4 67
14 46 60; FAX (+33) 4 67 14 39 23; email: Jolantavandowska@univ-montp2.fr
’Laboratory Soils, Solids, Structures - Risks (L3S-Boseph Fourier University,
email: jeanlouis.auriault@3sr-grenoble.fr

ABSTRACT

In this paper we present the development of the@saopic model describing
the hydro-mechanical coupling of damaged porousianedntaining cracks or/and
vugs, by using the asymptotic expansion method. @halysis starts at the
mesoscopic scale at which we assume a generic stngcture and the validity of the
Biot model in the micro-porous domain saturatedabdjpid. In the crack/vug domain
the Stokes equation is assumed. After estimatiooraérs of magnitude of different
terms, the description is rendered non-dimensiandlthe homogenization process is
carried out. It leads to an extended Biot model fussesses the same mathematical
structure as the initial Biot model. However, thaamoscopic poro-elasticity and the
macroscopic Darcy conductivity are modified. In@rdo illustrate the performance
of the model, numerical computations of a macroscbpundary value problem were
performed. The results show practical importancenodlifications introduced in the
Biot model.

INTRODUCTION

Natural or damaged geomaterials (soils, rocks onec#-based materials)
contain very often cracks and/or vugs. In such <dise classical Biot model cannot
be directly applied, since it was initially devedapfor single porosity homogeneous
materials (Biot, 1941) In this paper we presentritaeroscopic model describing the
hydro-mechanical behaviour of such class of geomaddewhich was obtained by
using the asymptotic expansion method. An elastioys material with isolated
cracks and/or vugs that are periodically distridute the whole medium, is
considered. The porous material is completely a&ddrby an incompressible fluid
(example: water).



MESOSCOPIC PROBLEM

The analysis starts at the mesoscopic scale (Hol/oug scale) at which we assume a
generic microstructure, Figure 1, and the validifythe Biot model in the micro-
porous domain (matrix) saturated by a fluid. In @rack/vug domain occupied
exclusively by fluid, the Stokes equation is assuinfde description is completed by
the continuity conditions on the boundary betweka porous medium and the
crack(vug).

Figure 1 Microstructue of a porous medium with a crack (vug)

The dimensioless mesoscopic problem is formulatgd Hguations (1)-(11)
(Lewandowska and Auriault, 2012):

I'n the microporous domain:
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where: o™Mis the total stressg®is the solid partial strespPis the water pore

pressure in the microporous matkiXjs the average pore water velocity}is the
displacement,e,(u®)is the deformation tensog is the elastic tensorgPis the
porosity in the microporosity domaim is water dynamic viscosity andis the non-



dimensional space variable=(X/L). For simplicity, the Biot tensomr and the
conductivity tensoK are assumed isotropic.

In the crack (vug) domain:
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where: vCis the fluid velocity, p®is the water pressure in the crack (vug)(vC )is

the rate of deformation tensor <<l is the homogenization parameter. The

coefficients*in Equation (6) results from estimations of ordefsmagnitude of
different terms appearing in the description (Led@mska and Auriault, 2012):

At the microporous-crack (vug) interface:
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where: n is the unit normal vector which is exterior @, .

MACROSCOPIC PROBLEM

By following the asymptotic expansions method ($@zePalencia, 1980), we look
for the unknown quantities in the form

¢ =0 0(x,y,)+e gD (x ) +£42(x,y,0+.. (12)

where y= x/ & and all the term;éx(i )( X, y,t) are y-periodic. Then, we introduce the

expansions (11) into the problem (1)-(10) and ethlterms appearing at successive
orders ofe . After the analysis of each problem we obtainrtfaEroscopic description
in the form (12)-(18) (Lewandowska & Auriault, 2912
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where O'i'jVI =ci?E| exk|(us(0))-0/”eff p9 are the components of the total

. , eff eff ,
macroscopic stress. The macroscopic tensgqyis and aj; " are defined as the volume
averages over the period as follows:
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#Cis the volumetric fraction of cracks (vugs) in theriod. The symbol <. > stands
for the volume average.

The macroscopic Darcy law is derived in the form:
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where the macroscopic water conductivity is defiasdhe surface average
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Finally, the macroscopic mass balance equatiorstedesform:
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where the second macroscopic Biot parame)ﬂaeFf is given by Eq. (19) (after

correction of the exponent of (@-) )
B =(1-¢°) B+(1-a) eyi(n)) (19)

Note that the vectorg,7 and r are solutions of local boundary value problemd t
period (see Lewandowska & Auriault, 2012).

It can be seen that the macroscopic problem (18)fiesents the same form as the
classical Biot model. However, the macroscopic ipatars are modified due to the
damage of the porous medium.



NUMERICAL EXAMPLE

Let us consider a periodic porous medium with agget <1 which contains circular
vug of diameter 0.4 in the center. The local (mespik) parameters of the porous
medium are: Young modulus E = 1GPa, Poisson nati6.3, porosity n=0.126, Biot
parameters:a =0.334 and £=0.218 GPa&. The numerical solutions of the local

boundary value problems (see Lewandowska & Aurid0t2) give the following
values of the macroscopic Biot parameters of thenadged porous medium:

a®f =0.556and g =0.336.

M acroscopic boundary value problem

We solve a macroscopic boundary value problemhieigeometry presented in Figure
2. The example was inspired by water pumping proldelved in (Leak and Hsiek,
1997). Our example concerns water injection inte thyer 2. The aim of the
computations is to investigate the influence ofgheameters of the layer 2 for which
two sets of parameters were assumed: i) case howtidamage (without vugs) and
i) case 2: with damage (with vugs). The layersd 8 have the same mechanical and
hydraulic parameters. All data are collected inl@db
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Figure 2. Definition of the macroscopic problem.

The extended Biot problem (Equations 13-16-18) wsdved in domain
ABCDEFGHIJ with the following boundary conditions:

Hydraulic problem:

- Impervious boundary: DE, EF, FG, BC, GH, HI.

- Constant hydraulic charge H = 0: AB, AJ, 1J.

- Time dependent hydraulic charge: H(t)= +6 (m/y&ar)



M echanical problem:

- Zero displacement boundary u =v = 0: DE, EF, FG.
- Free of charge boundary: AJ

- Symmetry condition u = 0: AB, BC, CD, GH, HI, 1J.

Table 1. Physical parameters of the layers.

Quantity Layers 1 and 3 Layer 2
Hydraulic conductivity 2.89x10" m/s 1.16x10" m/s
Young modulus 800 MPa 80 MPa
Poisson ratio 0.25 0.25
Biot parameters a=1 Case 1:

B =1.02x10" pa’ a =0.334
B =2.73x10° pa’

Case 2:

a = 0.556
B = 4.12x10° pa*

Results

The problem was solved twice (Case 1 and Casen2figure 3 hydraulic head,
velocity streamlines and mechanical deformatiorraftater injection for Case 2, are
shown. A similar general behaviour is observed as€C1. We can see ground heave
(vertical displacement in the upward directionret surface.

Time=10 Surface: Hydraulic head [m] Streamline: Velocity field Max: 60.0
Deformation: Displacement 60

40

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5200 Min: O

Figure 3. Hydraulic head, velocity streamlines and mechanical deformation after
water injection for Case 2.



Figure 4 shows the heave of the ground surfacdfateht time in two cases in Cases
1 and 2. As expected, Case 2 leads to higher valud® heave with respect to Case
1. It proves that material damage is responsiblgifeater deformations.

a)

y-displacement [m]

o
o
&

o
o
v

o
g

y-displacement [m]

Q
o
@

o
o
]

0.01r

T

0 i i i i i  — o —|
1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
X

b)

y-displacement [m]

014~

=
i

y-displacement [m]
o
(=]
@

2
o
=

e
®

0.02 1

0 i i i i i I — ———
1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
X

Figure 4. Heave of the ground surface for different times (from 1 to 10 years): a)
Case 1, b) Case 2.

In Figure 5 strains in the horizontal directiontla¢ soil surface for different times
(from 1 to 10 years) in Case 1 and Case 2, areeptes. It can be seen that the
maximum extension (positive) as well as the maximgompression strains
(negative) are greater in Case 2 than in Case é@n Ewugh the volumetric fraction



of cracks (vugs) is only 0.126, there is a factdse2ween the maximum values of
strains. It clearly demonstrates the impact of dgena porous material on its hydro-
mechanical behaviour.
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Figure 5. Srainsin the horizontal direction at the soil surface at different times
(from 1to 10years): a) Casel, b) Case2.



CONCLUSIONS

This paper presents the extension of the Biot mtml¢he case of damaged porous
material, containing isolated cracks or/and vude odel was obtained by using the
method of asymptotic expansions. It was shown that corrections of effective
parameters of the Biot original model are neces3dmy numerical computations of a
particular boundary value problem show the quantgainfluence of cracks (vugs)
present in the microstructure on the macroscopirdiynechanical behaviour of the
medium.
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