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1 Context and objectives
According to Wikipedia,

The Mining Software Repositories (MSR) field analyzes the rich data avail-
able in software repositories, such as version control repositories, mailing list
archives, bug tracking systems, issue tracking systems, etc. to uncover interest-
ing and actionable information about software systems, projects and software
engineering.

The MSR field has received a great deal of attention and has now its own research con-
ference : http://www.msrconf.org/. However performing MSR studies is still a technical
challenge. Indeed, data sources (such as version control system or bug tracking systems)
are highly heterogeneous. Moreover performing a study on a lot of data sources is very
expensive in terms of execution time. Surprisingly, there are not so many tools able to help
researchers in their MSR quests [1}, 3, 4, [7]. This is why we created the Harmony platform,
as a mean to assist researchers in performing MSR studies.

2 Overview of the Harmony platform

The HARMONY platform (http://harmony.googlecode.com) has been created to be the
Swiss army knife for conducting MSR studies. Whatever your study is, we hope that
HARMONY will allow you to set it up quicker than you expected. For this purpose, we
designed HARMONY as an highly extensible platform.

Previously, we explained that most of the MSR studies have two main challenges:

e They have to work with a broad set of data sources,

e They perform heavy computation
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To cope with these issues, HARMONY includes the following features:
e A simple data model that abstracts the different types of data sources

e A set of sources extractors that can build the abstract model of a broad range of

data sources (Git, Mercurial, SVN, CVS, TFS ...)

e A collection of analyses that can be launch on the extracted data models (Object-
oriented Metrics,basic statistics, ... ).

Of course, each of these three features is extensible, meaning that you can:
e Customize the data model provided by Harmony

e Add new data source extractors

e Develop your own analyses on top of the Harmony model

The cherry on top of the cake is that HARMONY will take care of most of the annoying
things, such as dealing with data persistence or exploiting multicore architectures.

3 A unified model

HARMONY provides an unified model that enables you to describe your analysis inde-
pendently of any VCS. This model is "version" oriented as software evolution is a key
dimension in the MSR field. The Figure [1| presents this model.

The Source class represents a repository. An Event corresponds to a specific revision
of the repository. It can have multiple parent events, the HARMONY model is therefore
compatible with centralized or distributed versioning systems. Events are made by mul-
tiple authors : the Author class. Events contain a set of actions (Action class and the
ActionKind enumeration) that can be considered as modifications. Each of these actions
are affecting one item (Item class), or more precisely a file. We will not go into further
details here but be aware that it is possible to extend this general model to fit the need
of a specific study. The persistence of all the custom classes will also be handled by the
platform, using standard JPA annotations.

Even tough this model is mainly used to abstract source repositories, it was also de-
signed to be compatible with bug-tracking system. That is why the name of some concepts
are sometimes vague. For example with a bug-tracking system, an item would be a bug.

4 An extensible platform

The software architecture of HARMONY is based on the OSGi specifications [8] that defines
a dynamic component system for the Java language. The Figure 2| details this software
architecture.
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At the center of the platform is the core component that contains the definition of the
abstract model, provides the standard features and defines the interfaces of the different
services. Among the features provided by the core components we find a scheduler which is
in charge of executing the analyses in a correct order as well as managing parallelism. The
core component also handles data serialization to easily save your data model or exchange
data between analyses. Finally the core component embeds a collection of useful services
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Figure 1: Data model of HARMONY

for dealing with configuration files, output or logging.
The core component defines the interfaces of three services:

e [Analysis: an analysis that takes a source as input. This is the standard way for
implementing an analysis. Classes that implement [Analysis can be chained by spec-
ifying the dependencies between them in a configuration file. The scheduler will take
care of executing them in a correct order. Data exchanges based on the blackboard

pattern [6] can be performed by different analyses.
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Figure 2: Architecture of HARMONY

e [PostProcessingAnalysis: an analysis that take the whole collection of sources as
input and that will be executed at the end. There can only be one [PostProcessing-
Analysis per study.

e [SourceExtractor: a source extractor is in charge of building the Harmony model by
exploring a repository using a particular versioning system.

Thanks to this architecture you can develop an analysis that will be executed on a
source repository no matter what versioning system it uses. In addition to the abstract
model, the Harmony platform can give access to the repository files in order to perform
fine-grained analyses. Developers can then easily benefit from tooling embedded in the
Eclipse platform for parsing source code and configuration files such as the J DTE] or CDTﬂ

5 A straightforward tool

Even though HARMONY can be used with any OSGi implementation we recommend the
use of the Equinox implementation [5] developed by the Eclipse community. That is why
we also recommend to use Eclipse as IDE in order to ease the development of your analyses.
In this context, we provide an automatic installation procedures as well as a wizard for
creating new analyses.

! Java Development Tools - http://www.eclipse.org/jdt/
2C/C++ Development Tooling - http://www.eclipse.org/cdt/
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@0verride
public void runOn(Source src) {
HashMap<Item , HashMap<Author, Integer>> ownership = new HashMap<Item |,
HashMap <Author, Integer>>();

for (Item it : src.getlItems()) {
HashMap <Author, Integer> authors = new HashMap<Author, Integer>();
ownership.put (it, authors);
for (Action a : it.getActions ()){
for (Author at : a.getEvent().getAuthors()) {
Integer own = new Integer(1l);
if (authors.containsKey(at)){
own = authors.get(at)+1;
}
authors.put(at, own);
}
}
}
}

Listing 1: Example of analysis: computation of ownership

In order to show how easy it is to develop an analysis with Harmony we illustrates it
with an example. In the article [2] Bird et al. define that an author is a major contributor
of an item if he performed at least 5% of the actions on the files. Otherwise he is a minor
contributor. We will now see how to develop an analysis with Harmony that computes the
degree of ownership. After installing Harmony and using the wizard for creating a new
analysis (see User Manual for details) you will just have to implements the runOn method
of the analysis class file that was generated for you by the wizard. The listing (1| contains
the code needed to compute the degree of ownership for each developer on each file.

6 Perspectives

This papers shows that the current version of the HARMONY platform already enables
researchers to focus on designing and running analyses to answer research questions rather
than struggling with technical details to implement them. Thanks to the modular software
architecture of the HARMONY platform, the situation will carry on to improve with its
future versions. Components using various sampling methodologies will be developed to
ease the building of representative sets of sources. It will also be possible to embed script
based on the R language [9] into analyses in order to chain them directly with standard
HARMONY analyses.
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